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Preface

The network machine learning earthquake

In the early 1990s, a Stanford University Computer Science PhD student named
Larry Page turned his attention to the the world wide web.

With colleague Sergey Brin, Page conceptualized the complex web of docu-
ment links on the web as a large network, where a link from one page allows
navigation to another. Page and Brin theorized that the number of incoming
links to a document indicated its “popularity”, which they called the page rank.
The pair developed a query system to parse sentences into keywords and an in-
dexing system mapping keywords to high-ranking pages. After publishing with
other computer scientists, Page and Brin developed the Google search Engine
prototype in 1998 and founded Google, Inc. shortly after.

Networks have since become a dominant data structure for understanding
many everyday concepts. Social networks ushered in a new era of human inter-
connectedness, led by multi-billion dollar corporations such as Meta (Facebook),
X (Twitter), Linkedin, Instagram, Douyin (TikTok), and WeChat. The global
economy forms an interconnected network of companies and countries engaged
in daily trade. The Earth’s food chain constitutes an ecological network where
plants and animals compete for survival. Neurons of the brain form a web of
axons and synapses, uniquely producing an individual identity.

Network Machine learning in your projects

Network science has advanced rapidly, providing new strategies for deriving in-
sights about the world. Its researchers can expose shadowy financial networks
and corporate fraud, or create frameworks for measuring healthcare teamwork.
Ecologists can model relationships between animal species, while neuroscientists
can map neuronal communities in the brain. Data scientists can view diverse
company data — from user logs to financial records to sensor data — as networks,
revealing hidden insights.

Whatever your motivation, exploring and exploiting networks for analysis is a
worthy endeavor.
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Objective and approach

This book assumes minimal prior knowledge of network analysis. Its goal is
to equip readers with the concepts, the intuitions, and tools needed to apply
statistical learning and data science techniques to network data, as illustrated in
Figure 0.0.1.

Graph
Network Thegry Data

Science Science
This book

Network Machine
Modelling Learning

Statistical
Learning

Figure 0.0.1 Broadly, we think that the techniques developed and described in this
book fall somewhere in the middle of this Venn Diagram.

We will cover the fundamentals of network machine learning, focusing on de-
veloping intuition through both theory and relevant python code. By the end of
this book, readers will be able to utilize efficient, easy-to-use tools for network an-
laysis. The text introduces a range of new techniques, including representations,
theory, and algorithms for networks.

We will demonstrate these concepts using production-ready python frame-
works:

1 numpy [1] and scipy [2] provide scientific computing capabilities, including ar-
ray objects for computational network representation and linear algebra tech-
niques.

2 scikit-learn [3] offers efficient implementations of many machine learning
algorithms, serving as an excellent starting point for network analysis.

3 graspologic [4] and networkx [5] are open-source Python packages that provide
utilities and algorithms for network-valued data analysis.

Our approach emphasizes intuitive understanding of networks through con-
crete working examples and foundational theory. While the book can be read
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without a computer, we strongly encourage readers to experiment with the code
examples.

Many languages and software packages support network analysis, but time
constraints prevent us from covering all of them. matlab offers numerous built-in
utilities, while R’s igraph package [6] provides functionality complementary to
the techniques we discuss.

Readers unfamiliar with python versed in other languages should not find this a
significant obstacle. Working through the examples provides ample opportunity
to acquire new programming skills.

Prerequisites

Network science is fundamentally rooted in linear algebra. We expect readers
to have some familiarity with vectors, matrices, and basic operations on these
objects such as vector /matrix multiplication and addition.

A background in machine learning will enhance understanding of the book’s
concepts. Much of the content relates to statistical learning, which integrates
statistics with machine learning. We assume basic familiarity with probability
and statistics, such as coin flip models (Bernoulli trials) and expected values of
random quantities (means). The main content of the book uses formal mathemat-
ics as a supplementary tool to develop intuition (rather than rigorous proofing).

Some programming experience is beneficial, as we use python. Those with
limited Python or math background need not worry — we provide resources to
get started.

We also employ jupyter, a useful and easy to learn tool. We offer resources for
those unfamiliar with Python’s scientific libraries, and provide a pre-configured
programming environment via docker which is version controlled for all packages
in the text [7].

For readers interested in the underlying mechanics, appendices cover the the-
oretical foundations of the techniques discussed. These sections assume college-
level understanding of calculus, linear algebra, probability, and statistics.

Roadmap

This book is organized into four parts.

Part I Foundations introduces network machine learning and demonstrates solv-
ing a complete problem. It covers:
— What a network is and sources of data,
— Motivations for studying networks,
— Examples of ways you could apply network machine learning to your
own projects,
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— An overview of the types of problems network machine learning is good
at dealing with, and

— Exploring a real network machine learning dataset.

Part II Representations explores network conceptualization and representation

methods. Topics include:

— Properties of different network types,

— Preparation of network data for analysis,

— How to conceptualize networks with statistical models, and the utility
of this point of view,

— Network representation methods and their utility,

— Transforming networks into tabular forms, both individual networks
and groups of networks, and

— How to incorporate additional information (attributions) to networks.

Part III Applications is about exploiting the representations from Part II for down-

stream learning tasks. It covers the following topics:

— Figuring out if communities in networks are different from each other,

— Selecting reasonable statistical models to represent the data,

— Finding interesting nodes, edges, or communities,

— Finding anomolous time points in networks which are evolving over
time,

— Handling new data after model training,

— How hypothesis testing works with networks,

— Figuring out which nodes are the most similar in a pair of networks,
and

— diffusion methods and graph neural networks.

The appendices provide mathematical background for curious readers; these
sections present technical details omitted from the main text.

Other resources

Numerous resources compliment the content of this book.

For readers new to machine learning, we recommend Aurélian Géron’s excellent
work [8] as a starting point. Key ideas to familiarize oneself with include types of
machine learning problems, common algorithms and techniques (e.g., K-Means,
testing, validation), and basic machine learning data structures.

To our knowledge, this is the first book to explicitly focus on network ma-
chine learning for single and multiple network problems with a programming
component. For broader exposure to networks, we recommend:

1 “Network Science” [9], an accessible introduction to network science.
2 “Networks” [10], an overview of the mathematics of networks and network
models.
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3 “Python for Graph and Network Analysis’[11], Network analysis techniques in
Python.

4 “Network Analysis” [12], Network data structures and summary statistics.

5 “A User’s Guide to Network Analysis in R” [13], hands-on network analytics in
R.

6 “Statistical Analysis of Network Data” [14], Statistical models and methods
for network science.

Readers needing a linear algebra refresher may find the first two lectures of
“Numerical Linear Algebra” [15] helpful for later Chapters of the book. Basic
statistics and statistical inference knowledge is also beneficial; the ability to
understand the top portion of the Wikipedia summaries of “random variable”,
“normal distribution”, and “bernoulli distribution” should suffice.

For a more comprehensive statistical overview, we recommend “Statistical In-
ference” [16] or “Mathematical Statistics” [17]. An explicit introduction to sta-
tistical learning, such as “An Introduction to Statistical Learning” [18], may also
prove valuable.

Conventions used in this book

This book employs the following conventions:

e [talics denote definitions of terms or concepts.
e Unicode block: indicates algorithm names, function names, package names,
programmatic text elements, and related concepts.

Box 0.0.1 Remarks

These boxes contain ideas directly relevant or supplementary to the main
content, though not essential for understanding core concepts of a section or
paragraph.

Code examples

All code for simulations and algorithms appears within the book. Python code
blocks and their expected output follow this format:

def howdy_world():
# A function to print informative text.
print("Howdy world!")

howdy_world()

# Howdy world!
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When discussing initial environment setup, we occasionally demonstrate bash
commands for direct use in a terminal session. Mac and Linux users can ac-
cess these via the pre-installed terminal utility. Windows users should refer to
instructions in Chapter 2.

Bash code blocks, identified by a leading $, appear as follows:

$ echo "this is a bash demo"
this is a bash demo

The book emphasizes visualizations and plotting. We provide explicit code
for generating all figures initially, and assume that readers will become familiar
with the basic plotting utilities as we use them more frequently and be able to
reproduce the plots themselves in later sections. All plotting code and detailed
information for configuring your environment to reproduce our plots is available
online at www.cambridge.org/9781009405393. Readers can locate specific plots by
navigating to the appropriate book section.

How to Read this Book

As with all quantitative books, we recommend taking the time to carefully think
through the equations and math. The new information content contained in a
single equation can be much higher than that contained in a paragraph of text,
and should be treated accordingly.

We refer to other Chapters or Sections of the book regularly, referring them by
their number designation (e.g., “Section 4.7”). This is to help readers build their
mental network: concepts should always be understood through their connection
to each other rather than in isolation. For this reason, we also recommend that
readers pay careful attention to Chapter and Section numbers.

A note on randomness

Most examples in this book employ simulations and approaches involving inher-
ent randomness. Executing the same code twice will likely yield different results.
We sometimes use simulations without fixed seeds for three reasons:

1 Real-world networks tend to be large, with potentially slow analysis algo-
rithms. This presents a trade-off: using real-world examples may better demon-
strate certain properties but can be computationally intensive. Simulations
allow readers to develop intuition more quickly, with examples running in sec-
onds rather than minutes.

2 Simulations enable readers to modify and experiment with algorithms and
approaches, fostering insight by altering simulation parameters. We encourage
hands-on exploration to challenge and refine intuition. This approach means
that each run will produce slightly different results, and plots may not exactly
match those in the book.

3 Many network algorithms incorporate randomness to achieve faster or numer-
ically superior solutions. To familiarize readers with relevant field techniques,
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we cannot ignore these methods. Running the same algorithm on an identical
network may produce slightly different numerical results, even if conclusions
remain similar.

While specific outputs may differ, the broad implications of each code segment
should lead to similar conclusions as those presented in our plots. Readers should
expect qualitatively similar but quantitatively different results. This adds an-
other dimension to the learning process, requiring readers to identify important
aspects of figures and solidify their intuition about whether they have reproduced
the intended conclusion.

Situationally, we will use hard-coded seeds to ensure reproducibility. However,
readers should generally anticipate that their outputs will match ours qualita-
tively (exhibiting the same phenomena) but not necessarily quantitatively (spe-
cific numerical values may differ).

Using code examples, citations, and feedback

This book aims to teach network machine learning code development. We pro-
vide this code for readers to borrow and repurpose in their programs and doc-
umentation. Brief snippets may be used with proper attribution to our citation
(provided below). Programs borrowing code may be written without permission.
However, permission is required for selling or financially profiting directly from
code provided in this book.

To cite this textbook, you can use the following MLA citation:

Bridgeford, Eric W. et al. Network Machine Learning. Cambridge University
Press, 2025.

For permission requests, feedback, or discussion, please contact the authors di-
rectly using the information provided on our website at www.cambridge.org/9781009405393.
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Terminology

In this section, we define the mathematical terminology, notation, and operations
used throughout the book.

Mathematical concepts

Symbol Definition Description/Example
x A scalar number r=5
)
z A column vector Z= |2
6

x; the " element of a column | zo =2

vector
X A set 7={1,2}
D ien Ti A sum indexed by a set N Sier i =Yg i =T
[Lica i A product indexed by aset N' | [[;cr i = H?zl x; =10

. 1 2

Y A matrix Y = {3 4}
Yij The (i,7)™" element of a ma- | y2p =4

trix

Mathematical operations

Operation Name Definition
7y The Euclidean inner product | Y7 x;y; = |Z||y] cos
C =AB Matrix multiplication Cij = Y peq Qikbii
& The k-norm of & (57 Jaal ) ¥
1Z — 7|2 The Euclidean distance be- S (w—yi)?

tween Z and ¥
[1X||F The Frobenius norm of X NOIED D

Probability and statistics concepts
We assume an undergraduate-level background in probability and statistics.
Readers should have a grounded concept of randommness, and know what a
random variable is (for example, a Normal or Gaussian random variable, or
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a Bernoulli “coin flip” random variable). Unprepared readers can educate them-

selves by exploring the pages for “random variable”,

YRS

normal distribution”, and

“Bernoulli distribution” on wikipedia. The notation that we will use in this book

is:

Symbol Explanation Example
X A random variable x takes the value 0 or 1
with probability 0.5
y A random vector y = {}’1]
Y2
Z A random matrix Z = {ZH Zlﬂ
Zo1 722
Pr(A) Probability that an event | Pr(x=1) =0.5
A happens
Bern(p) The Bernoulli distribution | If x is a Bern(p) random

with probability p

variable, then Pr(x =
1) = p, and Pr(x = 0) =
l-p
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The Network Machine Learning
Landscape

We begin by exploring the network machine learning landscape. We start with
high-level concepts about networks, introducing basic terminology required to
understand network data. This will make Chapter 3 more digestible when we
formally introduce network data structures and how to manipulate them.

We also describe the different types of problems in network machine learn-
ing, and how network data fits into the types of problems practitioners need to
address.

This chapter covers the following:

1 How do networks fit into the world of machine learning, and why are they
important?

2 What does it mean to learn from a network, and what kinds of things should
we try to learn?

3 How can we use network-valued data to understand the world better?

4 What challenges might we encounter when we analyze network-valued data?

This high-level understanding provides the context necessary for understand-
ing the practical significance of the methods that we will develop throughout the
book.
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What is network machine learning?

Machine learning is a field of inquiry devoted to understanding and building
methods that learn; that is, methods that leverage data to improve predictive
performance on some set of tasks [1].

Machine learning has grown enormously over the past few decades, and its
use-cases are rapidly pervading modern life. For instance, a photo editor working
in pattern recognition might want to automatically segment an object so that
they can blur the background (see Figure 1.1.1). An audio engineer might want
to identify and separate unique instruments in a song. A student might have
software draft an essay. All of these examples use data to learn a pattern that
can be leveraged to accomplish some task.

Before After

Figure 1.1.1 Learning how to segment an image to blur the background. A machine
learning system is trained using numerous images with the foreground segmented out.
This trained system is then used to segment out the foreground on new images, and
then the background is blurred.

Traditional machine learning leverages tabular data structures

In traditional machine learning, data follows a tabular format. The data are
arranged in a table or array, where each row represents a single observation
or datapoint, and each column represents a feature or dimension. This tabular
structure is convenient because it allows techniques developed in one domain
of machine learning to be modified or applied to problems in another domain
without reinventing the wheel. For example, given a tabular dataset where each
row represents a particular lobster with columns representing its length and sex,
we might try to predict the lobster’s claw size. We could accomplish this by
fitting a linear regression model for the claw size of other lobsters depending on
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their length and biological sex. For a more detailed discussion of tabular data
structures, we recommend the pandas tutorial on tabular data [2].

In Figure 1.1.2, we explore how tabular data is used in a machine learning
system using a basic classification task. Each observation is either blue or orange.
Some of the data (the training set, circles) is used to train a machine learning
algorithm (learning, the transparent blue and orange cells above and below the
diagonal), and the remainder of the data is used to test the trained algorithm on
new data (evaluating, the new colored red and blue squares). The trained model
can then be further refined (updated), or deployed for an intended use-case.

Obtain Data Visualize and Study Learn Evaluate

Observation |Dimension 1|Dimension 2|

~
=
kel
2 —— 5
o

N I I

Dimension 2

Dimension 1 Dimension 1 Dimension 1

T Update Algorithm

Figure 1.1.2 Machine learning systems start by obtaining inputs as tabular data,
where the rows are observations and the columns are features, i.e. dimensions of each
observation.

What is a network?

Many people have some notion of a “network” as describing a system like the in-
ternet, or cell phone towers transmitting data. Networks have a specific definition
in machine learning and data science. In a network:

1 We have a group of items (e.g., people in a social network), and
2 These items are interconnected through clearly defined relationships (e.g.,
which people are friends with one another).

Unlike tabular data where each row represents an independent observation,
networks capture relationships between nodes. These connections cannot be eas-
ily represented in the tabular format without losing crucial structural informa-
tion. This necessitates specialized approaches in network science for analysis and
learning.

Networks can also be referred to as graphs. In this book, we primarily use
the term “network” rather than “graph” to avoid confusion with the other use of
the word graph (plots on z/y coordinate axes). However, we may encounter the
word “graph” in some algorithm or tool names.

Each object in a network is called a node, or a vertex (for consistency we’ll
stick to “node” in this book). A connection between two nodes is called an edge.
Figure 1.1.3(A) illustrates a simple network of business with 8 notes, with edges
indicating transactions. We observe that some nodes are well-connected with
other nodes — for example, the node in the center has edges with four other
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(A) A simple 8-node network of businesses (B) Business network with business size metadata
A well-connected Alarge
business A disconnected business Asmall
business business
[ ] .

Figure 1.1.3 (A) indicates a simple network, where nodes are businesses, and edges
exist if a given pair of businesses transact with one another. (B) indicates the same
simple network, but each node also has a piece of information attached to it, the
number of employees (indicated by the node size).

nodes — and we also have nodes which are not connected to anything, like the
disconnected business.

Networks might also contain extra information. For example, each node might
be associated with a feature vector. For instance, in the business transaction
network shown in Figure 1.1.3, we might have information about the company
size. We could reasonably assume that larger companies tend to have more busi-
ness transactions with other companies. Figure 1.1.3(B) illustrates this scenario,
where the network includes company size information represented by the size of
each node. In this case, each node is associated with a scalar value (the company
size), which can be thought of as a length-one vector.

Why do we study networks?

Networks are ubiquitous and can be used to model almost any scenario involving
objects interacting with each other. Some examples include:

e Social networks, where nodes represent people and edges represent friendships.

e Computer networks, where nodes represent computers and edges represent
data transmission.

e Air traffic networks, where nodes represent cities and edges represent flights
between them.

e Infection networks where nodes represent people and edges represent disease
transmissions.

e Brain networks in neuroscience, where nodes represent neurons and edges rep-
resent their white matter connections.

More examples include ecological networks, electrical networks, and gene net-
works. We frequently use networks to represent mathematical relationships:

e In Bayesian networks, nodes represent variables and edges represent condi-
tional dependencies.
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e Correlation networks can be created from data, where nodes represent vari-
ables and edges represent their correlations.

e We can create semantic networks in natural language processing, where nodes
represent concepts and edges represent their semantic distance from one an-
other.

e Neural networks in computer science, where nodes are artificial neurons and
edges are weights between them.

e Attention networks in large language models like ChatGPT, where nodes are
tokens (parts of words), and edges define the information that should be trans-
ferred between them

e More generally, we can create Euclidean networks from any tabular dataset by
representing data points as nodes and defining a distance or similarity metric
between pairs of data points to create edges.

Our own daily cognitive processes can be viewed as movement through a vast
semantic network, with nodes as concepts or ideas and edges as mental associa-
tions between them. To see this directly, visualize a concept or object. Perhaps
the food you had for breakfast this morning, or the city you live in. Now, think
about the connections between those concepts and others. Maybe you had eggs
and toast for breakfast. Eggs and toast are connected with a multitude of other
concepts in your mind: forks and silverware, kitchens, hunger, protein, carbo-
hydrates, your morning routine, chickens, wheat, other breakfast foods, and so
forth. Exploring these mental relationships is equivalent to walking along a small
subset of your personal cognitive network.

For business-minded readers, this is an opportune time to learn about net-
works. Language models have become ubiquitous in the startup environment,
but they hallucinate and need to be well-grounded. Using networks as their back-
bone is an excellent way to accomplish this goal. The application section of the
book provides many tools useful for tackling real-world network problems. Some
examples include analyzing social networks, optimizing supply chains, detecting
fraud, developing recommendation systems, and using graph neural networks to
develop new medical treatments.

The development of network machine learning follows a typical pattern in
scientific advancement:

1 Academic phase: Researchers spend 10-20 years publishing proof-of-concept
papers, exploring problem-solving approaches, and developing fundamental
tools. This work is often done informally, with code existing primarily in
Jupyter notebooks.

2 Industry adoption: As the field matures, companies begin to recognize the
potential of these academic tools. They adapt them to enhance their products
or services and develop user-friendly packages (like networkx or graspologic)
to make the tools accessible to a broader audience.

Network machine learning is currently at a critical juncture. Its academic
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Obtain Network Choose Suitable Representation Apply Machine Leamning System
Observation |Dimension 1|Dimension 2| Visualize and Study. Leam
%( — 12 L T §.. gl
“ I — — — A

Update Algorithm

Figure 1.1.4 The network machine learning pipeline: We start with a network, choose
a suitable representation, apply appropriate machine learning techniques, and
interpret the results in the context of the original network.

foundations have been established over the past two decades, and we are now
seeing the transition of its tools from academia to industry. This presents a
unique opportunity for early adoption of application-focused network machine
learning tools in business contexts.

Why do we need special machine learning approaches for
networks?

In the wild, networks primarily exist as nodes and edges rather than in a tabular
format. This presents a challenge, since techniques that were developed over
decades for tabular data cannot be directly applied for network-valued data.
However, we can adapt networks to traditional tabular formats using network
representation tools. Once we transform these networks into more conventional
structures, we can apply techniques from other domains of machine learning to
analyze our networks.

Figure 1.1.4 illustrates the high-level process of network machine learning. By
network machine learning, we refer to machine learning techniques applied to
network-valued data (data which is a network, not a tabular structure). This
process typically involves the following steps:

1 Obtain a network dataset,

2 Select a suitable representation for the network, based on the questions we
wish to address,

3 Apply appropriate machine learning techniques to our representation, and

4 Interpret the results in the context of the original network structure.

We will now explore the types of problems we might encounter in network
machine learning. Then, in Chapter 2, we will walk through a simple end-to-end
network analysis project.

Types of network machine learning problems

There are many different types of network machine learning systems. We broadly
group them into the following categories:
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e whether they involve one or multiple networks (single or multiple network
learning systems),

e whether they require additional information in the form of network attributes
(attributed or non-attributed network learning systems),

e whether they ask questions about an edge, a node, a group of edges/nodes, or
about the network itself, and

e whether the approach can be used in isolation from a statistical model (non-
model based or model-based network learning systems).

To illustrate these criteria, we will use two running examples:

Example 1.2.1 Brain networks for musicians and non-musicians

Brain networks have been acquired from a large group of people. The nodes
represent areas of the brain, and the edges represent whether a pair of areas
can communicate using neurons. Each network is either from a musician or a
non-musician.

Example 1.2.2 A pair of social networks for students at a school

We will also use social networks for students at two schools. Nodes represent
students, and edges represent whether the students are connected on social

media. Networks exist from two social media sites: Facebook and Instagram.

These categories are not mutually exclusive, and a network machine learning
system will pull elements from several categories simultaneously. For instance,
a system might be single network, node-attributed, and non-model-based like a
community detection algorithm.

Single vs multiple network learning systems

Single network learning systems

In many network learning scenarios, there is only a single sample: the network
itself. A single network learning system derives insight from a single network,
which is a single collection of nodes and edges. This differs from traditional ma-
chine learning frameworks, in which having a single sample would be disastrous:
in that case, insight would be impossible, because we need multiple observations
to identify trends or patterns.

However, in network learning, a single sample is not necessarily limiting. While
there may be only one network, it is defined by a collection of many nodes and
edges. Thus, it is still possible to learn about relationships that exist among
the nodes, edges, or both. The caveat is that the conclusions drawn are limited
by the specific network under study, which may not be representative of the
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global population of networks. This limitation is often not significant, depending
on what the network represents. Most of the tools in this book are for single
network learning systems.

Multiple network learning systems
A multiple network learning system derives insight from multiple networks, each
consisting of collections of nodes and edges. Unlike a single network learning
system where conclusions can only be drawn based on characteristics of that
particular network, a multiple network learning system can generate insights
both within and across the networks.

The following are examples of multiple network learning systems:

multiple network representation learning in Section 5.5,
anomaly detection in Section 8.1,

signal subnetworks in Section 8.2, and

graph neural networks in Section 9.1.

Non-attributed vs richly-attributed network learning systems

While machine learning typically distinguishes between unsupervised and su-
pervised learning, network learning employs more specific terminology for these
concepts.

Non-attributed network learning systems

The concept of a non-attributed network learning system is analogous to fully
unsupervised machine learning. Unsupervised learning can be defined as a learn-
ing problem where the data provided to the algorithm does not include the
desired solutions, known as labels. A network learning system is considered non-
attributed if the data given to the system include only the nodes and edges at
the time of the analysis.

For instance, consider the Facebook network from Example 1.2.2. Suppose
that the information about which students attend which school has been lost.
We hypothesize that there might be two groups of students in the network, called
communities, and that if a student is in a particular community, they tend to be
better friends with other students in the same community. We want to see if we
can identify these communities programmatically, and perhaps recover the school
information for each student. Figure 1.2.1 illustrates a non-attributed network
learning problem. The groups of nodes that are heavily connected (indicated by
the gray circles) correspond to the schools that each student attends.

Examples of non-attributed network learning systems include:

network embeddings in Section 5,

community detection in Section 6.1,

latent position comparisons in Section 7.1, and
anomaly detection in Section 8.1.
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Figure 1.2.1 A school network. Nodes represent students, and edges indicate
friendships. The grey circles indicate guesses as to which school each student belongs
to.

Attributed network learning systems

Similarly, the concept of an attributed network learning system is analogous
to supervised or semi-supervised machine learning. Supervised learning can be
loosely defined as a learning problem where data provided to the algorithm
includes labels, and stypes of learning systemslemi-supervised learning can be
loosely defined as a learning problem in which the data provided to the algorithm
includes some of the labels. A network is an types of learning systems!attributed
network learning system if at the time of analysis, the network(s) include at-
tributes in addition to nodes and edges. These attributes do not necessarily have
to be scalar-valued labels: they can be vectors as well. There are four main types
of attributed network learning systems. They are:

e Networks with node attributes,
e Networks with edge attributes,
e Networks with network attributes, and

e Networks with multiple-network attributes.

Networks with node attributes

When networks have node attributes, each node has an additional piece of in-
formation describing it. Returning to the school example, consider a scenario
where for each student, there is an additional piece of information: their school.
The goal is to investigate whether the probability of two students being friends
is higher in school one or in school two. A problem for networks with node
attributes is shown in Figure 1.2.2(A).

Examples of problems that deal with node attributes include:

joint representation learning in Section 5.6,

model selection in Section 6.4,

testing for differences in block matrices in Section 7.2, and

testing for differences between groups of edges in Section 6.3.
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@ Student in school 1 A
® Student in school 2 ( )

=== \/\/ithin-School Edge B
Between-School Edge ( )

Figure 1.2.2 (A) the school network for Facebook, analyzed using node attributes.
(B) the school network for Facebook, analyzed using edge attributes.

Networks with edge attributes
When networks have edge attributes, each edge has an additional piece of in-
formation describing it. For example, in the school network, we could entirely
ignore the school assignments, and simply focus on whether the students have
more friends within schools (solid edges) or between schools (dashed edges). This
example is illustrated in Figure 1.2.2(B). Rather than focusing on the school as-
signments of the nodes, we focus on two groups of edges (the within-school edges,
and the between-school edges).

An example of a problem with edge attributes is testing for differences between
groups of edges in Section 6.3.

Networks with network attributes
When networks have network attributes, each network has an additional piece
of information describing it. Referring back to Example 1.2.1, each brain net-
work was from either a musician or a non-musician. This piece of information
characterizes each of the networks as either from a musician or a non-musician
individual, and applies to the entire collection of nodes and edges for a given
network. Figure 1.2.3 illustrates a network with network attributes.

An example of a problem that leverages network attributes is signal subgraph
estimation, in Section 8.2, or graph neural networks in Section 9.1.

Networks with multiple-network attributes

A network with multiple-network attributes consists of a collection of networks
(each of which has nodes and edges) where we have additional information that
describes how the nodes (or the edges) of the different networks relate to one
another. Returning to Example 1.2.2, let’s add another dimension. Imagine the
accounts are, for all intents and purposes, anonymous, since identifying infor-
mation is not shared by default on Facebook or Instagram accounts. However,
we know that a particular Facebook account corresponds to the same person’s
Instagram account for three people. We want to see if we can use this cross-
network attribute (the matched accounts) to discover suitable matchings for the
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m Non-musician
m Musician

Figure 1.2.3 A collection of brain networks, where the nodes represent areas of the
brain and the edges indicate which brain areas can communicate. The color of the box
around each network indicates whether it comes from a musician or a non-musician.

remaining accounts in the network. A problem with multiple-network attributes
is shown in Figure 1.2.4.

Facebook Network Twitter Network

o---o Matched Accounts
s Unknown Accounts

Figure 1.2.4 Two social networks from different social media sites. The nodes are
people’s accounts on the social media sites (they are the same for both sites) and the
edges indicate which pairs of accounts follow one another for that particular site. For
three people, we know a matching across the two networks (yellow nodes, dashed
edges).

An example of a problem which leverages cross-network attributes is seeded
graph matching, in Section 7.3.

Scope of network analysis

Network machine learning often tempts researchers to explore entire networks,
even when questions are more focused. Consider a transportation network with
stations as nodes and rush-hour ridership counts between stations as edges. A
different network might exist for each week of the year. The following examples
demonstrate questions about different network components.
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1 Studying a single edge: Determining whether a particular route needs an ad-
ditional train due to rush hour popularity might require examining this route
across many networks to estimate passenger numbers.

2 Studying a single node: Deciding on station expansion could involve analyzing
passenger throughput at a specific station.

3 Studying groups of nodes or edges: Evaluating the impact of canceling an entire
line would require considering effects on other stations (groups of nodes) and
passenger numbers on other lines (groups of edges).

4 Studying the entire network: Assessing the need for increased public trans-
portation funding might entail analyzing the city’s weekly cost across the en-
tire transportation network.

Model-based vs non-model-based network learning systems

Statistics forms a core component of network learning systems. This is because
network learning problems inherently involve randomness, whether in the sam-
pled networks, the set of acquired networks, the collected data, or other factors.

In statistics, we often sample observations from a population, and then use
what we learn from the sample to extrapolate to the population. We often build
statistical models in service of this.

Consider a statistical model as a conceptual framework that explicitly accounts
for variation, randomness, or error in the networks we obtain compared to the
entire population. The balance between model-based and non-model-based net-
work learning is a core aim of this book, so we will explain the difference without
reference to networks.

Model-based learning systems
A model-based learning system requires a statistical model to derive meaning
from an analysis.

Consider two coins, each flipped twenty times. To determine if the probability
of heads is the same or different for these coins, we use a hypothesis test. We
have two hypotheses: that we have the same (first hypothesis) or different (sec-
ond hypothesis) probability of landing on heads. A hypothesis test determines
whether or not the data provide evidence against the first hypothesis.

This question requires a statistical model because “probability” has a specific
statistical interpretation. To answer this question, several factors about the ex-
periment require clarification:

e Are heads and tails the only possible outcomes for each coin? For example,
could a thicker coin have a non-zero probability of landing on its edge?

e Is the probability of heads consistent across all twenty flips for each coin?
Could different flipping techniques in the first and last ten flips affect the
frequency of heads?
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e Are the outcomes of coin flips independent? For instance, would saying a prayer
after two tails influence the probability of getting heads on the next flip?

e Is the sample size sufficient to detect differences between the coins? Many
statistical tests, including this one, can be interpreted in various ways. With
small sample sizes, assumptions must be carefully considered, as certain testing
approaches (like the chi-squared test) may only be meaningful with larger
datasets.

In order to make a conclusion based on our hypothesis test, we need to be
specific about the assumptions we make about these details of the our data sam-
ple, since the answer to our question depends on these assumptions. Therefore,
we need to understand the assumptions that we made, so that we can make a
decision based on the outcome of the hypothesis test that we performed.

Non-model-based learning systems

Many questions can be addressed using either model-based or non-model-based
techniques. While models can provide intuition, they are not always necessary
to answer questions. A nmon model-based learning system does not require a sta-
tistical model to derive meaning from an analysis.

>
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Figure 1.2.5 (A) Two-dimensional data shown in a scatter plot. The first principal
component (PC) represents the axis of maximum variation, while the second PC is
orthogonal to the first and captures the next highest variation. Arrows show data
projection onto the first PC. (B) PCA projects data onto the first PC by reorienting
the dataset along the first and second PCs (dashed circles and lines), then removing
the second PC (solid circles). This reduces dimensionality from two to one, discarding
the direction of less variation.

To illustrate this concept, consider Principal Components Analysis (pca), a
non-model-based machine learning technique. pca reduces high-dimensional data
to a more manageable number of dimensions, allowing for downstream analysis
with other strategies. Figure 1.2.5 provides a visual illustration of pca, showing
data reduction from two dimensions to one along the first principal component
(PC).
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pca can be executed without additional knowledge about the data, simply as an
algorithm to make data more manageable for other machine learning techniques.
However, understanding pca through the lens of a statistical model (assuming
normally distributed observations) provides additional insight. In this context,
principal components represent directions of maximum variation in the data.

In Figure 1.2.5(A), the black points spread more along the red PC than the
green PC. The degree of variation preserved by each PC is indicated by its score.
This interpretation is useful for machine learning tasks like K-Means clustering,
where distinguishable classes require variability between observations.

Challenges of network machine learning

Like other branches of science, network machine learning is not without its chal-
lenges. The networks we analyze often contain random imperfections. Rather
than collecting exhaustive data, we typically examine reasonably sized subsets.
This may mean studying a social network with 1000 nodes instead of 100 million,
or 200 brain networks rather than one from every person in the world.

Because our data is not perfect, we often use tools from statistical learning, a
machine learning framework that uses statistics to refine problems, quantify the
reasonableness of conclusions, and make rigorous inferences about networks. In
this section, we will discuss several of the challenges that may arise as a result
of random imperfections in network data. The remainder of the book will be
dedicated to developing models and techniques that allow us to overcome some
of these limitations.

We might imperfectly observe the network

In many branches of science, collecting network data can be an imperfect and
noisy process. Only recently did we acquire a detailed map of the connectome
of a complex organism, the fruit fly larva [3]. Even though fruit fly larvae are
small, this was a substantial undertaking: the fruit fly brain is comprised of
several thousand neurons (nodes), and hundreds of thousands of neuronal con-
nections (edges), all of which fit into a volume smaller than a cubic millimeter.
To study the brain at the neuron-scale, researchers sliced it into thousands of
tiny pieces smaller than a human hair, and then examined each piece individually
with a microscope. From there, algorithms and manual tracing were performed
to reconstruct, slice-by-slice, which neurons were connected with which other
neurons. To complicate matters further, all of this work was derived from a sin-
gle organism. This means that each step allowed minimal room for error. The
neuron-by-neuron map was used to construct a network (called the connectomne
of the organism) of connections between neurons.

With so many areas for potential error, it is almost impossible that the fruit fly
connectome is absolutely perfect. We may have missed some neurons, overlooked
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Underlying Network Data=Network Sample

@ Faithful nodes observed
— Faithful edges observed
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Figure 1.3.1 The true underlying network contains a lot of information that we did
not measure properly in the course of observing or sampling the network.

connections, or made small mistakes anywhere in this complicated process. Fig-
ure 1.3.1 explores what it means for a network to be imperfectly observed. On
the left, we see the underlying network we are trying to obtain. On the right, we
see the actual network we obtained: we might be missing some of the nodes (red
dashed nodes), we might be missing some of the edges (red dashed edges), or we
might see edges which should not really be present (non-vertical edges, red solid
edges). While a portion of the network might faithfully represent the underlying
system (solid green nodes and edges), we do not actually know what part of our
sample is faithful or unfaithful with respect to the true underlying network. The
key is that when we build network machine learning systems, we desire insights
that are robust to these imperfect observations. This is because in some cases,
it might be impossible to ever obtain the data that we need otherwise.

We might not see the whole network

When studying a network, we rarely observe the entire system perfectly in its
entirety. For instance, consider a social network, in which the nodes are people
within the network, and edges represent friendships. If we wanted to study the
network in its rawest form, we might need to collect data from millions, or
billions, of accounts to construct a network that might take an infeasible amount
of space just to store. Actually analyzing the network represents another huge
hurdle; we would need to be able to devise techniques which could efficiently
churn through terabytes worth of data. However, focusing our attention on a
subset of the network involving a few thousand or hundred thousand people
may allow us to ask richer questions. On this reduced subset of people, we are
less limited by computational constraints and so we can apply a wider range of
analytical techniques.

The fruit fly larva (drosophila) connectome example illustrates how researchers
have approaches studying large networks over time. While the complete connec-
tome was mapped only recently, brain networks have been studied for decades.
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Previously, due to economic, computational, and analytical challenges, inves-
tigations focused on subsets of the brain rather than the whole. Despite only
collecting bits and pieces of the network, major insights were learned which di-
rectly informed the effort to collect the entire network.

In both of these cases, we can learn a lot of valuable information by reducing
the size of a network, learning from it, and then applying what we learned to
the entire network. Figure 1.3.2 illustrates sampling a subset of nodes from a
network. The left panel depicts shows the true underlying network with both
solid and dashed edges and nodes. The right panel depicts the sampled network,
which only includes a subset of the nodes and edges.

Network Population Data = Network Sample

Figure 1.3.2 The true underlying network has both solid and dashed edges and nodes,
shown in the left panel. However, when we sample the network on the right, our
sample only includes the subset of nodes and edges that are solid.

We might only see a subset of the networks

Consider again Example 1.2.1 of musician and non-musician brain networks. A
team of psychologists might hypothesize that the brains of musicians tend to
be better connected in areas responsible for fine motor coordination and hear-
ing, which are crucial skills for many instruments. To test this hypothesis, the
psychologists could take one of two approaches. They could collect brain net-
works from every individual, or they could collect a subset of brain networks
from groups of musicians and non-musicians in their area. Figure 1.3.3 demon-
strates sampling a subset of networks from a population. Despite the fact that
the psychologists only studied a subset of musicians and non-musicians, with
some statistical assumptions they can derive conclusions that will apply more
broadly than just the group of people they analyzed.

Statistics allows us to generalize to the unseen from the seen

If we collect a set of brain networks, we have collected a sample, a subset of
objects from the larger population. Statistical analysis of the sample allows us



1.3 Challenges of network machine learning 19

Network Population Data = Network Sample

Figure 1.3.3 The true underlying population contains many more networks than we
are able to actually sample. In the left panel, we have green and red networks, but in
the sample, we only get to see the green networks.

to draw broader conclusions. Rather than limiting our findings to the specific
group or network we sample, statistics enables us to rigorously extend conclu-
sions to a more general population. Figure 1.3.4 summarizes this concept. Note
that “network population” may have different interpretations depending on the
specific question. It might refer to a population of many networks, from which
we observe a sample with some level of uncertainty, or to a “true” single network,
which we can only observe with some level of randomness because of how the
nodes or edges were obtained.

Network Population

Network Sample

Network Machine Learning

\ \. C

Choose Suitable Representation

[Observation]Dimension 1[Dimension 2
T I I

Apply Machine Learning System

TV S —

Network Population » |
Assumption

Learn property about network population assumption

Figure 1.3.4 We have a network population, which in this case means a large network
that we cannot properly observe. We obtain a sample of this network, and then use
analyses on this sample and knowledge of how it was taken from the population to
derive assumptions about our system. Ideally, this will reasonably represent the
network population itself. Using network machine learning, we try to understand the
properties of this network population.

We can learn many things about our network data without leveraging statistics
at all. However, using statistical learning gives us a quantitative framework to
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generalize our findings. Conclusions can then be applied more broadly to the
general population rather than being limited to our specific network data.

Other challenges

Section 1.2 introduced several types of network machine learning problems. The
field is rapidly evolving, with new problem formulations continually emerging.
Researchers face numerous challenges, including:

1 Categorizing problems appropriately,

2 Reformulating research questions to align with existing techniques,
3 Selecting suitable analytical strategies, and

4 Developing entirely new methods when necessary.

These challenges often require significant effort and resources to address. The
following chapter presents an example data analysis in network machine learning,
illustrating how researchers approach these problems in practice.
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This chapter provides a practical introduction to network machine learning, of-
fering a behind-the-scenes look at the complete process of working through a
project.

This chapter covers the following:

[t

Section 2.1 discusses how to approach a network machine learning problem.
Section 2.2 guides readers through setting up a local environment for running
the code in this textbook and obtaining example data.

Section 2.3 prepares the data for downstream analysis.

Section 2.4 covers the algorithm selection process for network data.

Section 2.5 demonstrates a learning algorithm for network data.

Section 2.6 illustrates how network machine learning can reveal new insights
about network data.

[\V]

S U W

While some of the material in this section may feel opaque, we choose to begin
by emphasizing the big picture rather than minute details, giving the reader a
“global view” before diving into detail in Chapter 3. This approach also ensures
a proper setup of code and dependencies from the outset, which generally leads
to a smoother workflow. Readers are strongly recommended to follow along in
code, diverging and exploring as they go.
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Looking at the big picture

Welcome to the Neurobiology Institute! A colleague has come to you with an
interesting problem. Brains consist of neurons. Neuronal connection patterns
produce the brain’s unique functions: breathing, moving, hearing, seeing, and
higher level thought.

When they are electrically stimulated, neurons can transmit that electrical
signal to other neurons. This process consumes a lot of energy; while the brain is
only about 2% of the body’s weight, it consumes about 20% of its daily energy.
To keep the neurons replenished with energy (and to remove waste that the cells
produce when they work), the brain has a complicated network of blood vessels.
When a brain area is in use, the body dedicates blood supply to the area that
will need it most.

Neurobiologists have come up with a clever way to decipher brain activity in
humans by looking at this blood flow. Using MRI, they can follow blood move-
ment towards particular areas. Because blood movement correlates with neuron
activity, following blood movement can tell scientists about that activity. Experi-
ments have been performed that empirically demonstrate this strong correlation.

(A) (B)

Al
Figure 2.1.1 (A) A hiker on a trail sees a bird pirched in a tree in his field of view

(faint red triangle). (B) The occipital lobe, which is responsible for sight, sits in the
back of the brain (star). The presence of the bird in the field of view causes neurons
to be electrically stimulated (blue line). The activity of the neurons causes the brain
to send blood to the area as the neurons are stimulated (red line). While individual

neurons are too small to see, the blood flow caused by many neurons firing at once
can be picked up by an fMRI scanner.

— Electrical Activity
— Blood Flow

Response

Time

This imaging technology, known as functional MRI, has proven to be useful
for neuroscientists [1]. By measuring pairs of brain areas, researchers can see
whether the two areas tend to be active together. The idea is that, perhaps,
different combinations of brain areas tend to work together as a unit, allowing
the complicated thought patterns that humans are capable of. By viewing the
different areas of the brain as nodes of a network, and the blood flow correlations
as its edges, scientists can use network machine learning to study the brain. This
area of study, called connectomics, is an active and network-centric subdomain
of neuroscience research [2].

Your colleague has come to you with a set of networks from fMRI sessions,
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and wants to know whether there are any groups of brain areas that tend to have
similar activity. Can you, as a network scientist, take this network of nodes and
edges, and figure out a way to break the nodes into functionally similar groups?

Framing the problem

The first question to ask your colleague is; what exactly is the objective here? In
network machine learning, the choice of the model used is everything. The model
determines what sorts of questions we are capable of asking, and what sorts of
answers we are capable of learning. Asking about the objectives will directly
shape which models and approaches you use.

Your colleague wants to know whether there are any sub-groups of areas that
tend to behave similarly. By “behave similarly”, what your colleague means is,
are there sub-groups of brain areas that tend to work together in conjunction
with other sub-groups of brain areas?

The next task is to determine what type of network machine learning problem
you have. What type of data exists? Are there covariates associated with that
data? Do you need to change your question based on this information? Do you
want to test a hypothesis, or make predictions? What characteristics will your
model need to be able to answer the question appropriately? Before you progress
further, you should answer these questions for yourself.

Once you have gotten a sense of the question and the data, you need to de-
termine what other researchers have already tried. This will prevent you from
repeating work, help you understand where to start approaching the problem,
and give you a reference for how well your techniques are performing. This step
will likely involve reading literature and having conversations with colleagues
about what work has already been done.

You emerge from this process with new information. The data is a set of fMRI
scans taken from patients doing nothing, lying in a scanner. Remembering back to
the types of network machine learning problems in Section 1.2, you conclude that
this is a multiple network learning problem. Your networks are non-attributed,
since you only know their nodes and edges. You want to understand relationships
between groups of nodes and edges. You are going to need to come up with a
definition of what it means for pairs of areas to be similar, and you are going to
want to be able to group areas in a way that is meaningful for your colleague.

Check the assumptions

Throughout the course of this book, we will try to keep the assumptions being
made by our techniques in mind. We want to choose the simplest set of as-
sumptions that can reasonably reflect the data, which means using the simplest
statistical model that can properly answer the questions we ask. In this case, we
don’t care about individual brain area-to-brain area connections at all: we only
care about how groups of brain areas behave in relation to other groups of brain
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areas. This means that we want to choose models which will allow us to learn
about pairs of brain area groups, which is a very different problem from learning
about individual brain areas themselves.

After talking over your understanding of the problem with your colleague, you
are confident that he wants a way to be able to group brain areas together based
on how similar they are, and you have the freedom to define that however you
choose. You have the green light to begin coding.
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Getting the data and configuring your environment

In this section, we will start to get our hands dirty with some real network
datasets. We recommend walking through these examples with your laptop in a
jupyter notebook. To ease your ability to interact directly with the code of this
book, we’ve developed a standalone docker container that you can use.

Interacting with the book via docker

Getting software to run across multiple operating systems, particularly software
with lots of dependencies, can range from difficult to impossible. While most of
the packages required to run the contents of this book can be installed relatively
easily via a combination of git, pip, and virtual environments, the easiest and
fastest way to get to coding and interacting with real python code is docker.

docker allows you to run standalone software in a separate area of your com-
puter called a docker container to allow software to operate without conflicting
with your local operating system. This means that you can, with a very small
number of button clicks, create deployable software that thousands of people can
use.

To install docker, see their installation guide at [3].

Obtaining the docker container for the textbook

Once you have docker installed on your computer, you can obtain the docker
container for the book relatively easily. If you have a ubuntu/mac operating
system and the docker daemon running on your computer, you can open up a
terminal session and type the following command:

$ docker pull neurodata/graph-stats-book

which will fetch the docker container for the book from [4].

This docker container contains all of the dependencies needed to run the code
within this book, and will allow you to use the book in conjunction with jupyter,
a lightweight, web-based interactive computing platform that you can access
through your web browser at localhost:<port>, where <port> is the port you
provide to the container for execution. We will use port 8888 by default. You can
start the docker container like this:

$ docker run -ti -v <path/to/local/working/directory>:/home/book -p
<port>:8888 neurodata/graph-stats-book \
jupyter-lab --ip=0.0.0.0 --port=8888 /home/book/ \
- -NotebookApp.token="graphbook"

This will launch a jupyter-1lab session, and should automatically log you into
the session in your browser. If it does not, open up a browser of your choice,
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and go to localhost:<port>, where you will be prompted to enter the log-in
password for your session. That login-in password is graphbook, generated from
-NotebookApp.token in the command above. The port is so that your browser can
communicate with the jupyter session inside the docker container (which runs
jupyter internally on port 8888).

If you don’t want to use the docker container, that’s fine too: you can install the
dependencies as they arise manually in an environment of your choice. Detailed
information for configuring your environment, working with the docker container,
and viewing section-by-section pre-prepared jupyter notebooks can be found via
links on our companion website www.cambridge.org/9781009405393.

Downloading the data

When we work with network data, it is rarely the case that the raw data that
we will use is already a network. The raw data is the least processed version of
the data for a project, and is the information upon which the rest of the data is
derived. A derivative is a piece of information that is derived from the raw data.
For us, the raw data are the brain scans. These brain scans were preprocessed
by breaking the scans into brain regions, and then finding blood-flow correlation
between those regions.

We have access to that preprocessed data. You could navigate over to the
neurodata website and download this data directly, but it tends to be useful
to do this programmatically, because if the data changes, you might want your
analysis to automatically use the latest and best version of the data at the time
you execute your function. Further, if you intend your code to be reproducible,
having a function which downloads and prepares the data in a way which the
computer can use will simplify the process of disseminating your work.

To begin, we will start with a code snippet which fetches the required data for
our analysis:

import os

import urllib

import boto3

from botocore import UNSIGNED

from botocore.client import Config

from graspologic.utils import import_edgelist
import numpy as np

import glob

from tqgdm import tqgdm

# the AWS bucket the data is stored in

BUCKET_ROOT = "open-neurodata"

parcellation = "Schaefer400"

FMRI_PREFIX = "m2g/Functional/BNU1-11-12-20-m2g-func/Connectomes/" + parcellation +
"_space-MNI152NLin6_res-2x2x2.nii.gz/"

FMRI_PATH = os.path.join("datasets", "fmri") # the output folder

DS_KEY = "abs_edgelist" # correlation matrices for the networks to exclude
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def fetch_fmri_data(bucket=BUCKET_ROOT, fmri_prefix=FMRI_PREFIX,
output=FMRI_PATH, name=DS_KEY):

A function to fetch fMRI connectomes from AWS S3.

# check that output directory exists
if not os.path.isdir(FMRI_PATH):
os.makedirs (FMRI_PATH)
# start boto3 session anonymously
s3 = boto3.client(’s3’, config=Config(signature_version=UNSIGNED))
# obtain the filenames
bucket_conts = s3.list_objects(Bucket=bucket,
Prefix=fmri_prefix)["Contents"]
for s3_key in tqdm(bucket_conts):
# get the filename
s3_object = s3_key['Key']
# verify that we are grabbing the right file
if name not in s3_object:
op_fname = os.path.join(FMRI_PATH, str(s3_object.split(’'/’)[-11))
if not os.path.exists(op_fname):
s3.download_file(bucket, s3_object, op_fname)

def read_fmri_data(path=FMRI_PATH):

A function which loads the connectomes as adjacency matrices.
fnames = glob.glob(os.path.join(path, "+.csv"))

# sort for consistency

fnames.sort()

# import edgelists with graspologic

# edgelists will be all of the files that end in a csv
networks = [import_edgelist(fname) for fname in tgdm(fnames)]
return np.stack(networks, axis=0)

Now when you call fetch_fmri_data(), it creates a new directory called datasets/fmri
in your workspace, and downloads the adjacency matrices, the standard way to
represent a network as a mathematical object (see 3.4), into your local directory
datasets/fmri.

Throughout this book, we will also use the graspologic package, built for
statistical analysis on networks. We load the dataset using the graspologic utility
import_edgelist():

fetch_fmri_data()
As = read_fmri_data()

2.2.3 Visualizing the data

Next, let’s take an in-depth look at one of the adjacency matrices. In network ma-
chine learning, when dealing with a new dataset, our recommendation is to always
start with visualization. We typically visualize network data using a heatmap.
The resulting plot is shown in Figure 2.2.1(A).
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from graphbook_code import heatmap

A = As[0]
ax = heatmap(A, vmin=-1, vmax=1, title="Heatmap of Functional Connectome")

This plots the adjacency matrix for the functional connectome of a human,
illustrated in Figure 2.2.1(A). The nodes of this network are numbered sequen-
tially. A heatmap is a network visualization in which the z and y coordinates of
a given entry in the matrix indicate the pair of nodes an edge is connected to,
and the color for the (z,y) point in the figure indicates the weight of the edge
between nodes x and y. The edge weight is stronger if the pair of brain areas are
active together more, and lower if the pair of brain areas are less active together.
This is real data, generated from actual fMRI scans.

One thing that we can notice from this plot is that a lot of the edges have tiny
weights. Let’s explore this a little bit further.

A useful summary of the network is to look at a histogram for the edge-weights.
A histogram shows the number of edges (on the vertical axis) which have a given
edge weight range (indicated by the width of a particular bar on the horizontal
axis). You can call this directly on the adjacency matrix (albeit flattened), and
it will plot a histogram of the edge weights. We will do this using seaborn’s
histplot():

import seaborn as sns
import matplotlib.pyplot as plt

ax = sns.histplot(A.flatten(), bins=50)
ax.set_xlabel("Edge weight")
ax.set_title("Histogram of functional connectome edge-weights")

A plot of the adjacency matrix’s edge weights is shown in Figure 2.2.1(B). A lot
of the edge-weights tend to be right around the 0.2 to 0.6 range, which tells us
that, in general, the pairs of fMRI regions have slightly correlated activations.
This is because the correlation metric used for fMRI data is between —1 and 1,
where higher values indicate higher correlations. When some node tends to be
active, other nodes also tend to be active. If this were not the case, the histogram
would be a bit more centered around 0.0.
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(A) Heatmap of Functional Connectome (B) Histogram of functional connectome edge-weights
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Figure 2.2.1 (A) a raw connectome, (B) the raw connectome edge-weight histogram.

Preparing the data

Next, it’s time for us to prepare our networks for analysis. When we implement
code, we will try to be modular and functional. This is because:

1 Functions will make the useful data preparation code that we write usable on
new networks,

2 We can gradually build libraries of utility functions,
3 We can modularize functions into other parts of our analysis pipeline to keep
a lean module-oriented design, and

4 We can easily try different transformations of the data and evaluate which
ones tend to work best.

Data cleaning

Many network machine learning algorithms cannot work with a node that is
isolated, meaning that the node has no edges. Let’s start with fixing this. We
can remove isolated nodes from the network as follows:

1 Compute the number of nodes each node connects to. This consists of summing
the matrix along the rows (or columns). The network is undirected, which
means that if a node can communicate with another node, the other node can
communicate back.

2 Identify any nodes which are connected to zero nodes along either the rows or
columns. These are the isolated nodes.

3 Remove the isolated nodes from the adjacency matrix.

Let’s see how this works in practice. We begin by first taking the row sums
of each node, which tells us how many nodes each node is connected to. Next,
we remove all nodes with are not connected to any other nodes (the row and
column sum are both zero) from both the adjacency matrix and the labels:



30 End-to-end Biology Network Machine Learning Project

def remove_isolates(A):
A function which removes isolated nodes from the
adjacency matrix A.

degree = A.sum(axis=0) # sum along the rows to obtain the node degree
out_degree = A.sum(axis=1)

A_purged = A[~(degree == 0),:]

A_purged = A_purged[:,~(degree == 0)]

print("Purging {:d} nodes...".format((degree == 0).sum()))

return A_purged

A = remove_isolates(A)
# Purging 0 nodes...

So no isolated nodes were found, and consequently no nodes were purged.
Great! What else can we do?

With functional MRI connectomes, we often want to look at absolute correla-
tions rather than the original correlations. The intuition is that, if one node is
less active when another node is active, that kind of indicates that they are still
operating together. Let’s see how to compute absolute correlations:

import matplotlib.pyplot as plt
from graphbook _code import heatmap

A_abs = np.abs(A)

fig, axs = plt.subplots(1l,3, figsize=(21, 6))

heatmap(A, ax=axs[0], title="Human Connectome, Raw", vmin=np.min(A), vmax=1)
heatmap(A_abs, ax=axs[1l], title="Human Connectome, Absolute", vmin=np.min(A), vmax=1)
heatmap(A_abs - A, ax=axs[2], title="Difference(Absolute - Raw)", vmin=0, vmax=1)

Several of the values will change (the faint bands), which is indicated by larger
differences from the raw to the absolute data. We can use this heatmap function
to plot the adjacency matrix as we manipulate it later on in this section.

To streamline the process of cleaning up the raw data, we often need to
write custom data cleaners. We will want our cleaners to work seamlessly with
sklearn’s functions, since we will be using that package regularly. This requires
us to implement three class methods: fit(), transform(), and fit_transform().
By adding TransformerMixin as a base class, we do not even have to implement
the third method. If we use BaseEstimator as a base class, we will also obtain
get_params() and set_params() methods, which may be useful for hyperparam-
eter tuning steps later.

Here is an example cleaner class which purges the adjacency matrix of isolates
and remaps the categorical labels to numbers. A key step to implementing this
all as cleanly as possible is that the inputs, an adjacency matrix and a vector
of node labels, are passed in as a single tuple object. This is because sklearn
anticipates that the return arguments from calls of transform() can be passed
sequentially to one another.
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from sklearn.base import TransformerMixin, BaseEstimator

class CleanData(BaseEstimator, TransformerMixin):

def fit(self, X):
return self

def transform(self, X):
print("Cleaning data...")
Acleaned = remove_isolates(X)
A_abs_cl = np.abs(Acleaned)
self.A_ = A_abs_cl
return self.A_

data_cleaner = CleanData()

A_clean = data_cleaner.transform(A)
# Cleaning data...

# Purging 0 nodes. ..

Edge weight transformations

One of the most important transformations that we will come across in net-
work machine learning is called an edge-weight transformation. Many networks,
such as the human functional connectome, will have edge weights which do not
just take values of 1 or 0 (edge or no edge, a binary network); rather, many
networks may have discrete-weighted edges (the edges take non-negative inter
values, such as 0, 1, 2, 3, ...), or decimal-weight edges (the edges take values like
0, 0.1234, 0.234, 2.4234, ...). For a number of reasons discussed in Section 3.6,
this is often not a desirable characteristic. The edges in a network might be error
prone, and it might be desirable to capture only one (or a few) properties about
the edge weights, rather than complicating things by leaving them in their raw
values. Further, a lot of the techniques we explore throughout this book might
not work on nonbinary networks. For this reason, we should get accustomed to
transforming edge weights to take new sets of values.

There are two common approaches to transform edge weights: the first is called
binarization (set all of the edges to take a value of 0 or 1), and the second is
called an ordinal transformation.

Binarization of edges

Binarization is quite simple. It means the edges in the raw network take non-
binary values (values other than just Os and 1s), and we need them to be 0s and
1s for some reason; often, so that an algorithm can work properly. How should
we do this rigorously?

The simplest thing to do is usually to just choose a threshold, and set edges
with weights less than the threshold to 0, and edges with weights greater than the
threshold to 1. Let’s take a look at how we can implement this using graspologic.
We first look at the network before binarization, and then after:
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from graspologic.utils import binarize

threshold = 0.4
A_bin = binarize(A_clean > threshold)

When we plot the cleaned adjacency matrix and the binarized adjacency ma-
trix in Figure 2.3.1(B), we see that it retains a lot of the “general idea” of the
weighted adjacency matrix, but is a lot simpler. Whereas the edge weights in
the left plot were continuous, we’ve now binarized the edges of the network to
only take two possible values (0 or 1). This has the effect of potentially reduc-
ing the variance (since we no longer will need as complicated of descriptions to
summarize the edge-weights), but potentially increasing the bias (since we have
simplified our data and have therefore potentially “thrown away” information
that might be important).

We also could have normalized these edge weights using a pass to ranks. The
rank of an edge is its index if all nonzero edges are ordered by their magnitude.
Through pass to ranks, nonzero edges are replaced with a function of their ordinal
rank, from smallest to largest, with the largest item having a rank of one, and the
smallest item having a rank of 1/(number of non-zero edges). This is called an
ordinal transformation, in that it preserves the orders of the edge-weights, but
discards all other information. The adjacency matrix of the ranked connectome
is shown in Figure 2.3.1(C).

from graspologic.utils import pass_to_ranks

A_ptr = pass_to_ranks(A_clean)

(A) Raw Connectome

B) Binarized Conni
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Figure 2.3.1 (A) The cleaned connectome, before re-weighting. (B) The binarized
connectome. (C) The ranked connectome.

This has shifted the histogram of edge-weights, as we can see by plotting a
histogram:

import seaborn as sns

fig, axs = plt.subplots(2, 1, figsize=(10, 10))
sns.histplot(A_clean[A_clean > 0].flatten(), ax=axs[0], color="gray")
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axs[0].set_xlabel("Edge weight")

axs[0].set_title("Histogram of human connectome, non-zero edge weights")
sns.histplot(A_ptr[A_ptr > 0].flatten(), ax=axs[1l], color="gray")
axs[1l].set_xlabel("ptr(Edge weight)")

axs[1l].set_title("Histogram of human connectome, passed-to-ranks")

plt.tight_layout()

The histograms before and after passing the adjacency matrix to ranks are shown
in Figure 2.3.2.

(A) Histogram of human connectome,
non-zero edge weights

Count

0.0 0.2 0.4 0.6 0.8 1.0
Edge weight

(B) Histogram of human connectome,
passed-to-ranks

3000

Count

0.0 0.2 0.4 0.6 0.8 1.0
ptr(Edge weight)

Figure 2.3.2 (A) Histogram of the edge-weights in the adjacency matrix before
normalization. (B) Histogram of the edge weights in the adjacency matrix after ptr.

Passing to ranks has the desirable property that it bounds the network’s edge
weights to be between 0 and 1, as we can see above. This is often crucial if
we seek to compare two or more networks and the edge weights between the
networks differ in magnitude (an edge’s weight might mean something in relation
to another edge’s weight in that same network, but an edge’s weight means
nothing in relation to another edge’s weight in a separate network). Further,
passing to ranks allows us to lower our susceptibility to outliers, as we will see
in later chapters.

Again, we will turn the edge-weight transformation step into its own sklearn-
compatible class:

class FeatureScaler(BaseEstimator, TransformerMixin):

def fit(self, X):
return self
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def transform(self, X):
print("Scaling edge-weights...")
A_scaled = pass_to_ranks(X)
return (A_scaled)

feature_scaler = FeatureScaler()
A_cleaned_scaled = feature_scaler.transform(A_clean)
# Scaling edge-weights...

Transformation pipelines

As you can see, there are a number of data transformations that need to be exe-
cuted to prepare network data for machine learning algorithms. For this reason,
it may be desirable to develop a pipeline which automates the data preparation
process. We can create this using the Pipeline class from sklearn, which can
apply sequences of transformations to data inputs. Here is a simple pipeline for
doing all of the steps we have performed so far:

from sklearn.pipeline import Pipeline

num_pipeline = Pipeline([
('cleaner’, CleanData()),
('scaler’, FeatureScaler()),

1)

A_xfm = num_pipeline.fit_transform(A)
# Cleaning data. ..

# Purging 0 nodes...

# Scaling edge-weights..

The pipeline class takes a list of name/estimator pairs defining a sequence
of steps. All but the last estimator must be transformers, which implement the
fit_transform() method. In our case, this is handled directly by the TransformerMixin
base class.

When you call the fit_transform() method of the numerical pipeline, it calls
the fit_transform() method on each of the transformers, and passes the output
of each call as the parameter to the next call, until it reaches the final estimator,
for which it just calls the fit() method.

Next, we see the real usefulness of the Pipeline module. The reason we went
to lengths to define a pipeline was that we wanted to have an easily reproducible
procedure that we could efficiently apply to new connectomes. This is easy to
apply to the second subject in our dataset:

A_xfm2 = num_pipeline.fit_transform(As[1])
# Cleaning data. ..

# Purging 0 nodes...

# Scaling edge-weights...
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Selecting and training a network machine learning model

You've got your data loaded and pre-processed. Now comes the fun part: mod-
eling your data. To do this, you first want to think about the generative process
that made it: what probabilistic model should you assume?

When you’ve made a decision, you should use that probabilistic model to
create a representation for your data, often by moving from network space, with
nodes and edges, to Euclidean space, with points on a coordinate axis. Moving
to Euclidean space is equivalent to converting to tabular data; we usually think
about geometry when we say “Euclidean”, and about data tables when we say
“tabular data”. The rows of the data table are equivalent to points in Euclidean
space, with the columns corresponding to the axes of that space.

Finally, you want to implement some downstream analysis method which helps
answer whatever question you set out to answer. For your case, you want to use
models and representations amenable to finding groups of correlated nodes.

Generating new representations from your data

As we briefly mentioned in Section 1.1, a major problem with learning from
network data is that networks in their rawest form are not tabular datasets.
To apply techniques from general machine learning (typically designed for tab-
ular datasets), we need to adapt the network to be compatible with tabular ap-
proaches, or adapt our general machine learning architecture for network layouts
such as adjacency matrices, which properly convey the dependencies in network
data. This is called representation learning, and is an important field of study
across machine learning.

We will use a representation learning technique called a spectral embedding,
which you will learn about in Chapter 5. Spectral embedding will appear many
times, whether you are studying one network, pairs of networks, or multiple
networks. Let’s use it to create representations for our connectomes, also called
embedding them:

from graspologic.embed import AdjacencySpectralEmbed

embedding = AdjacencySpectralEmbed(n_components=3, svd_seed=0).fit_transform(A_xfm)

An embedding takes the adjacency matrix, which is a matrix representation
of the entire network, and turns it into a tabular array. Each row of the array is
called an estimated latent position for a given node, and each column is called an
estimated latent dimension of the network. If there are n nodes, there are n rows
of the spectral embedding array, and if there are d estimated latent dimensions
of the network, there are d columns. The spectral embedding has taken the n xn
adjacency matrix, which we can’t use traditional machine learning algorithms
on, and transformed it into a n x d tabular array, which we can use machine
learning algorithms on. We’ll visualize this embedding using a pairs plot, which
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is a scatter plot where each node is a single point in the plot, and the x and y
axes are different pairs of latent dimensions:

from graspologic.plot import pairplot

_ = pairplot(embedding, title="Spectral Embedding for connectome")

This pairs plot is shown in Figure 2.4.1(A).

The representation of the adjacency matrix we chose, which uses the spectral
embedding, can be tied to a statistical model with some assumptions. In particu-
lar, it ties to the stochastic block model described in Section 4.3. In a stochastic
block model, each node is a member of a subgroup, called a community, and
its connectivity probability to other nodes in the network is dictated by which
community it is a member of, and which community the other node is a member
of. This sounds a lot like the question that your colleague wanted you to explore,
since it gives a way to take the nodes of the network and form “functionally
similar” subgroups from them.

Using the representations to learn new features from the network

Now that we have a tabular representation of the data, we can use the intuition
and assumptions of the stochastic block model to cluster our nodes. Let’s see
what happens when we apply KMeans to our data:

from sklearn.cluster import KMeans

labels = KMeans(n_clusters=2, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels, legend_name="Predicter Clusters",
title="KMeans clustering")

The results of this pairs plot are shown in Figure 2.4.1(B). So, it looks like the
k-means was able to learn two clusters of brain regions from our dataset. These
clusters are indicated by the “blobs” of points that are red or blue, respectively.

If we're careful, we will notice we did something a little weird here. Why did we
choose two? Why not five? Why not eight? We chose two somewhat arbitrarily.
In general, when you don’t know what to expect from your data (we didn’t
know what to expect here, other than that we wanted a modestly sized way to
group the nodes up), it’s a good idea to use quantitative means to make these
determinations for you.

With KMeans, we can use a metric called the silhouette score to do this for us.
You choose the optimal number of clusters as the clustering with the highest
silhouette score (This is covered in Section 6.1 when you learn about commu-
nity detection). graspologic makes this process pretty straightforward with a
KMeansCluster class, which uses the silhouette score under the hood to predict
the number of clusters:

from graspologic.cluster import KMeansCluster



2.4 Selecting and training a network machine learning model 37

(A) Spectral Embedding for connectome (B) KMeans clustering

Dimension 1
Dimension 1

Predicter Clusters
e 0
o 1

Dimension 2
Dimension 2

Dimension 3
Dimension 3

Dimension 1 Dimension 2 Dimension 3 Dimension 1 Dimension 2 Dimension 3

Figure 2.4.1 (A) The pairs plot for the estimated latent dimensions. (B) The pairs
plot with predicted communities of nodes via KMeans with 2 clusters.

labels = KMeansCluster(max_clusters=10, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels, title="KMeans clustering, automatic selection",
legend_name="Predicted Clusters")

Dynamically identifying an ideal number of clusters might not necessarily get
you the same number when you repeat it multiple times: clustering algorithms
tend to include some randomization. Here, we got 3 predicted clusters. The pairs
plot for the embedded data with the new labels are in Figure 2.4.2(A). Note that
you might get a different number of estimated clusters than we did, because there
is some randomness in the unsupervised learning procedure that we used.

So, what about other possible approaches? Unless you are pretty confident
that the clusters you are looking for have “blobs” that are totally spherically
symmetric (basically, they look like “balls” in the dataset), K-means can be a bad
idea. Another strategy called the Gaussian Mixture Model, or GMM, handles this
slightly more elegantly, allowing the cluster blobs to be any ellipse-like shape. We
can use GMM and automatically select the number of clusters using the Bayesian
Information Criterion, or BIC, with AutoGMMCluster:

from graspologic.cluster import AutoGMMCluster

labels = AutoGMMCluster(max_components=10, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels, title="AutoGMM Clustering, automatic selection",
legend_name="Predicted Clusters")

The pairs plot for the embedded data with the labels determined by GMM in Figure
2.4.2(B). You might get a different number of clusters when you run it than us
(again, due to randomness); here, we got 7.
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(A) KMeans clustering, automatic selection (B) AutoGMM Clustering, automatic selection
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Figure 2.4.2 (A) the pairs plot for the embedded data, with node communities
estimated by KMeans. (B) the pairs plot for the embedded data, with node
communities estimated by AutoGMM.

Fine tuning a network machine learning model

In Section 2.4 we took one of the fMRI networks, created a representation for
it with spectral decomposition, and used various clustering techniques to learn
about latent structure between the brain regions.

However, there is a big caveat: your colleague sent you over a hundred net-
works, and you ignored all but one of them. Surely, there’s something that you
can learn from all of them.

Fortunately, when you have a multiple network problem, there are plenty of
approaches that you can use to learn from all of them simultaneously. Let’s break
down how we can approach this.

We want to produce a representation of all of our networks. The corresponding
nodes of all of these networks represent the same areas of the brain. For all intents
and purposes, we can assume that these different nodes mean the same thing
across all of the different people, even if the networks vary for each individual.
We want to learn whether there is some shared group structure across all of the
different networks, so that we can find groups of related brain regions. To do this,
we will want to take all of our networks, and combine them to produce a single
embedding in which we can look at brain regions separately from individuals.
Does anything exist to help us?

A particular representation called MASE from Section 5.5.3 does just this. It
allows us to take many networks, and learn a single representation for the nodes
across all of the networks. This representation will use information from all of
the networks, so we will not have to worry about ignoring informative networks
like we did before.

from graspologic.embed import MultipleASE

# transform all the networks with pipeline utility
As_xfm = [num_pipeline.fit transform(A) for A in As]
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# and embed them
embedding = MultipleASE(n_components=5, svd_seed=0).fit_transform(As_xfm)
_ = pairplot(embedding, title="Multiple spectral embedding of all connectomes")

The MASE embedding used all of the networks to produce a single latent
embedding called embedding. It is an array with rows corresponding to nodes
(brain regions), and columns corresponding to dimension. Let’s see what happens
when we apply our clustering method to this embedding;:

labels = AutoGMMCluster(max_components=10, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels,
title="Multiple spectral embedding of all connectomes",
legend_name="Predicted Clusters")

The pairs plot of the MASE embedding with labels estimated by GMM is shown in
Figure 2.5.1. Again, AutoGMMCluster, the clustering algorithm, has some element
of randomness to it. Don’t be concerned if you don’t get the exact same number
of predicted clusters as we did, or if your clusters look a little different.
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Figure 2.5.1 The MASE embedding, with labels learned by GMM.
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Discover and visualize the system to gain insights

We now have a codebase built to read in the input data, get it cleaned up, embed
it using information from all networks, and predict brain region clusters.

We now arrive at the most important part of any computational analysis:
making sense of whatever it is that we did.

How could we visualize node clusters (formally called communities)? We al-
ready known about the pairs plot, which we saw in Figure 2.5.1(B).

The nodes in this analysis correspond to areas of the brain, and our goal is to
figure out if there are groups of brain regions that are related to each other. We
can therefore gain insight by visualizing how the clusters we found really look in
the brain’s natural space.

We picked a set of networks such that the nodes correspond to known 3D
points in the brain. This means that, with some minor work, we can figure out
the coordinates of the individual nodes for the brain. You don’t need to worry too
much about how this code works; at a high-level, it just obtains 3D coordinates
for the nodes of the network in a json file, and then parses them into a pandas
dataframe:

from urllib import request
import json

import pandas as pd

from pathlib import Path

coord_dest = os.path.join(FMRI_PATH, "coordinates.json")
with open(coord_dest) as coord_f:
coords = []
for roiname, contents in json.load(coord_f)["rois"].items():
try:
if roiname != "0":
coord_roi = {"x" : contents["center"][0], "y" : contents["center"][1], "z"
contents["center"][2]}
coords.append(coord_roi)
except:
continue

coords_df = pd.DataFrame(coords)

Now that we have the coordinates, let’s try plotting the nodes, but in their
native spatial position. Here, the color will indicate the predicted label, from
our clustering. The slices we show will be a saggital slice through the brain. A
saggital slice shows the brain nodes oriented from back (left of the plot) of the
brain to front (right of the plot), and from bottom (bottom of the plot) to top
(top of the plot). On the left, we show the brain with the lobe annotations, and
on the right, the predicted labels of each node in color, where each node is shown
in its true physical location:

import matplotlib.image as mpimg
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coords_df["Community"] = labels

coords_df[’Community’] = coords_df[’Community’].astype(’category’)

fig, axs = plt.subplots(l, 2, figsize=(18, 6))
axs[0].imshow(mpimg.imread(’./Images/lobes.png’))

axs[0].set_axis_off()

sns.scatterplot(x="y", y="z", data=coords_df, hue="Community", ax=axs[1])
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Figure 2.6.1 (left) brain lobe annotations for different areas of the brain (created by
[5]), (right) predicted node communities oriented by spatial position of each node in
the brain.

The resulting plot is shown in Figure 2.6.1. So, the estimated communities of
each node don’t quite perfectly align with the brain lobe that the node is in.
However, nodes tend to be spatially close to other nodes in the same estimated
community. Notice, for instance, that a lot of nodes in the left side of the brain,
the part marked “occipital lobe” in the plot, are the same color. In our plot, these
nodes are red; in your plot, they might be a different color.

In neuroimaging, there tend to be “groups” of brain areas that are organized
together, which are delineated in files called “parcellations”. The idea is that they
“parcellate” (segment) different areas of the brain based on two factors: whether
the areas of the brain work together, and whether they are located near each
other in the brain. This is a generalization of the concept of “brain lobes” that
we briefly went over above.

Let’s see how well the labels we obtained align with one of these parcellations,
known as the “Yeo7” parcellation. We will begin by finding which “Yeo7” parcels
the nodes of our network are positioned in. We will do this using some code
borrowed from the neuroparc repository [6]. The code below will first grab the
mapping of image pixels to Yeo7 parcels, and then grab the mapping of image
pixels to nodes in our network (Schaefer400 parcels). These are stored in the files
with the extensions .nii.gz below. Once we have those files, we will compare
the parcels of nodes in our network to figure out which Yeo7 parcels they fall
within spatially:

import datasets.dice as dice

# obtain the Yeo7 parcellation
group_dest = os.path.join("./datasets/", "Yeo-7_space-MNI152NLin6_res-2x2x2.nii.gz")
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request.urlretrieve("https://github.com/neurodata/neuroparc/" +
"blob/master/atlases/label/Human/" +
"Yeo-7_space-MNI152NLin6_res-2x2x2.nii.gz?raw=true", group_dest);
# obtain the Shaefer parcellation
roi_dest = os.path.join("./datasets/", parcellation +
"_space-MNI152NLin6_res-2x2x2.nii.gz")
request.urlretrieve("https://github.com/neurodata/neuroparc/" +
"blob/master/atlases/label/Human/" +
parcellation + " space-MNI152NLin6 res-2x2x2.nii.gz?raw=true", roi_dest);

# decipher which Schaefer labels fall within Yeo7 regions

dicemap, _, _ = dice.dice_roi("./datasets/", "./datasets",
"Yeo-7_space-MNI152NLin6_res-2x2x2.nii.gz",
parcellation + " space-MNI152NLin6 res-2x2x2.nii.gz",
verbose=False)

actual_cluster = np.argmax(dicemap, axis=0)[1:] - 1

So, to be clear, we have now produced two mappings:

1 For each node, we have an estimated (predicted) community for the node. This
is a delineation on the basis of functional similarity of the nodes from the data
that we observed across the networks.

2 For each node, we have a Yeo7 region for the node. This will serve as the “True
parcel” for the nodes.

Next, we will try to figure out whether our predicted communities and the true
communities align with a confusion matrix. Its rows are each of the true parcels
in the reference (Yeo7 region), and its columns are the predicted communities
that we found above. The entries of the matrix are the counts of nodes in the
network that are assigned to a given predicted community and a given parcel:

import contextlib
from sklearn.metrics import confusion_matrix
from graphbook code import cmaps

# make confusion matrix
cf_matrix = confusion_matrix(actual_cluster, labels)

# and plot it

ax = sns.heatmap(cf_matrix, cmap=cmaps["sequential”])
ax.set_title("Confusion matrix")

ax.set_ylabel("True Parcel")

ax.set_xlabel("Predicted Community")

The resulting plot is shown in Figure 2.6.2. The MASE embedding followed by
clustering tends to find groups of nodes that have similar connectivity patterns in
the connectomes (it will do a good job at finding the nodes that work together).
The nodes in the same community tend to behave “as a unit”, in that they tend
to be active/inactive together. What the plot above shows is that nodes that
have similar connectivity patterns (from the networks) tend to also be in the
same true parcel, which makes sense since the parcels are based on connectivity
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Figure 2.6.2 The confusion matrix of the estimated clusters for each node in the
networks, compared to the parcel that each node is in.

profiles from brains. The clustering is not perfect, in that it is never the case that
a single predicted label corresponds to exactly one true label. If that were the
case, we would expect nodes assigned to each column in the “confusion matrix”
to only have one possible true label assigned to them (which is not quite what
we saw here).

Taking these conclusions together, we find that some areas of the brain (such
as the occipital and parietal areas) feature nodes which are both functionally and
spatially similar: they tend to show similar connectivity patterns with respect to
other groups of nodes in the network, and are in similar spatial positions in the
brain. On the other hand, for other areas of the brain, while the nodes may be
functionally similar, they might not necessarily be spatially similar. This is where
the domain expertise kicks in: we don’t know how to interpret this particular
aspect of our finding, but maybe our colleagues do.

Further, while this analysis only really ended up looking at whether different
groups of regions worked together, there’s no reason we couldn’t also incorpo-
rate spatial information about the nodes into our analysis. In Section 5.6, we will
learn techniques for incorporating both the network data itself and other infor-
mation about the nodes through a technique called Covariate-Assisted Spectral
Embedding (CASE).

And this is where the fun of network machine learning comes into play: network
machine learning is a tool not only to apply algorithms to data, but to facilitate
learning new things about that data as well. We might get some predictable
conclusions (such as some of the nodes being both functionally and spatially
similar), and we might get some unpredictable conclusions (such as some of the
nodes being functionally, but not spatially, similar). Your ability to understand
network machine learning, while crucial, is going to go hand in hand with your
ability to understand the intricacies of the domain you want to apply network
machine learning to. We hope that we can help with the former part; we will
leave the latter to you.
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Try it out

This chapter gave a small scale peek at what a network machine learning project
looks like, and a brief introduction to some tools we can use to gain novel insights
from our network data. The process from obtaining data to choosing appropriate
network machine learning problems can often be extremely arduous. In fact, as
a network machine learning scientist, you might find that just obtaining data in
a useful form (a network) and cleaning the data to be usable takes an enormous
chunk of your time.

If you haven’t already done so, now is a fantastic time to grab your laptop,
select a network dataset you are interested in, and start trying to work through
the whole process from A to Z. If you need some pointers, the graspologic
package makes several datasets available [7]. We recommend working through the
contents of this book by first using the example data presented in the chapter,
and then trying to apply the techniques to your own new data.
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In Section 1.3, we introduced Figure 1.3.4, which will recur throughout this book
to contextualize the process of learning from networks. Figure 3.0.1 dives into
the first step after obtaining our data: describing our network sample. Chapter
3 takes a careful look at this step: we explore basic properties, relationships,
statistics, representations, and preprocessing methods for samples of network-
valued data.

Network Population

Network Sample Network Machine Learning

Choose Suitable Representation Apply Machine Learning System

Network Population
Assumption

Learn property about network population assumption

Figure 3.0.1 The statistical learning pipeline.

We cover the following:

1 Section 3.1 introduces the basic properties and representations of networks,
including a formal description of the adjacency matrix.

2 Section 3.2 covers descriptive properties of nodes and relationships between
nodes in a network.

3 Section 3.3 explains key network summary statistics like density, clustering
coefficient, and average path length.

4 Section 3.4 discusses matrix representations of networks beyond adjacency
matrices, including degree and Laplacian matrices.

5 Section 3.5 covers subnetworks and connected components within larger net-
works.

6 Sections 3.6 and 3.7 explain regularization techniques for networks, including
node pruning and edge thresholding.
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7 Section 3.8 describes methods for rescaling edge weights in weighted networks.

We will often use the term “observed network” or “network sample”. As de-
scribed in 1.3, we call it this because the sample of network data that we observe
constitutes only a noisy observation of the population of network data that we
actually want to study. In Chapter 4, we will explore how we can use random
network models to account for the imperfections in our observed network sample.
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The Basics of Networks

In Section 1.1, we introduced the concept of networks as collections of nodes and
edges. Together, the nodes and edges are known as the topology of the network.
This section expands on that foundation, developing a framework in which to
understand network properties and representations.

We begin with adjacency matrices, the primary mathematical representation
for network data. The adjacency matrix encodes the nodes and edges of a network
in matrix form, providing a foundation for network analysis.

We then explore key properties of networks, including;:

1 Edge directionality,
2 Node loops, and
3 Edge weightedness.

We use a running example of New York City boroughs connected by major
bridges to illustrate these concepts concretely. Later, Section 3.4 explores the
degree matrix and the Laplacian. Sections 3.8, 3.6, and 3.7 build on concepts
from this Section to develop preprocessing techniques.

The fundamental object we use to describe networks is called the adjacency
matriz 1], which is a large square matrix whose (4, ) entry is 0 if an edge does
not exist between nodes 7 and j, and nonzero if an edge does exist. Many ways
to represent networks can be directly derived from the adjacency matrix.

Adjacency Matrices for simple networks

Let’s say we have a network with n nodes. We give each node an index (usually
some value between 1 and n, with one value per node) and then we create an
n x n matrix. If there is an edge between node i and node j, we fill the (i, j)"
and (j,7)™" values of the matrix with a value of 1, and we say that nodes i and
j are adjacent. We leave it as 0 otherwise.

The adjacency matrix looks like this:

A: . '.. . s
an1 ... Apn

Let’s see this in action. We will make a small, simple network with only three
nodes, and then see what it looks like as an adjacency matrix. To visualize this
network, we use a layout plot, provided by nx.draw_network().

import numpy as np
import networkx as nx

G = nx.DiGraph()
# add nodes to the network
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.add_node("1", pos=(1,1))
.add_node("2", pos=(4,4))
.add_node("3", pos=(4,2))
add edges to the network
.add_edge("1", "2")
.add_edge("2", "1")
.add_edge("1", "3")
.add_edge("3", "1")

OO0 #H o000

# the coordinates in space to use for plotting the nodes
# in the layout plot
pos = {"1": (0, ©), "2": (1, @), "3": (.5, .5)}

nx.draw_networkx(G, with_labels=True, node_color="white", pos=pos,
font_size=10, font_color="black", arrows=False, edge_color="black",
width=1)

(A) Layout Plot (B) Adjacency Matrix

1

Nodes 1 and 3
are adjacent

0 0

Nodes 2 and 3
aren't adjacent

0 0
@
2 3
Node

Figure 3.1.1 (A) A layout plot of the network, where nodes are circles and edges are
the lines connecting them. (B) the network, visualized as an adjacency matrix.

The resulting plot of the network is shown in Figure 3.1.1(A). Our network
has three nodes, labeled 1, 2, and 3. Each of these three nodes is either adjacent
or not adjacent to the other nodes. We’ll make a square matrix A, with 3 rows
and 3 columns, so that each node has its own row and column associated to it.

So, let’s fill out the matrix. We start with the first row, which corresponds to
the first node, and move along the columns. If there is an edge between the first
node and the node whose index matches the current column, we put a 1 in the
current location. If the two nodes aren’t adjacent, we add a 0. When we’re done
with the first row, we move on to the second. We keep going until the whole
matrix is filled with 0’s and 1’s.

Since the second and third nodes aren’t adjacent, there is a 0 in locations
az,1 and ap 2. There are also zeroes along the diagonals, since nodes don’t have
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edges with themselves. Here we plotted the adjacency matrix using heatmap();
we won’t always show this plot in the future.

from graphbook_code import heatmap
import matplotlib.pyplot as plt
import seaborn as sns

# convert the networkx graph to a numpy array
A = np.asarray(nx.to_numpy_array(G))

heatmap (A, annot=True, linewidths=.1, cbar=False,
title="Adjacency matrix", xticklabels=[1,2,3], xtitle="Node",
yticklabels=[1,2,3], ytitle="Node"
)

The resulting adjacency matrix is shown in Figure 3.1.1(B).

A running example for the sections ahead

Now that we understand the basics of the adjacency matrix, we are ready for a
running example that we will use for the next few sections.

Let’s say we have a network representing the five boroughs of New York (Staten
Island SI, Brooklyn BK, Queens Q, the Bronx BX, and Manhattan MH). The
nodes in our network are the five boroughs. An edge (4, j) of our network exists
if one can travel from borough i to borough j along a bridge. Let’s start by
defining a network with networkx’s DiGraph() function:

import networkx as nx
from graphbook code import heatmap

create an undirected network G
= nx.Graph()

add the nodes like before
.add_node("SI", pos=(2,1))
.add_node("MH", pos=(4,4))
.add_node("BK", pos=(4,1.7))
.add_node("0", pos=(6,3))
.add_node("BX", pos=(6,6))

[ I~ B> R B B S ) I

# specify boroughs that are adjacent to one another
pos = nx.get_node_attributes(G, 'pos’)
G.add_edge("SI", "BK")

.add_edge("MH", "BK")

.add_edge("BK", "Q")

.add_edge("MH", "Q")

.add_edge("MH", "BX")

.add_edge("Q", "BX")

[2 BN BN B ]

A = nx.to_numpy_array(G)

# plotting
nx.draw_networkx (G, with_labels=True, node_color="black", pos=pos,
font_color="white", edge_color="black")
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(A) Map of NYC Boroughs (B) Layout Plot (C) Adjacency Matrix

Borough

s MH BK Q BX
Borough

Figure 3.1.2 (A) a map of New York. We use this to construct a network of New
York, where the nodes are boroughs of New York and the edges are bridges between
different boroughs. (B) Visualized as a layout plot. (C) Visualized as a heatmap.

# pass in the xticklabels and yticklabels corresponding to the
# appropriately ordered boroughs (in the order we constructed them)
heatmap(A.astype(int), xticklabels=["SI", "MH", "BK", "Q", "BX"I,
yticklabels=["SI", "MH", "BK", "Q", "BX"1,
xtitle="Borough", ytitle="Borough"
)

Figure 3.1.2 shows a map of New York City, a layout plot representation of a
network derived from the the boroughs of New York, and an adjacency matrix
as a heatmap of this network.

Directionality and networks

There is a concept of directedness in edges. We have two nodes ¢ and j. In an
undirected network, if there is an edge from node ¢ to node j, there is also an
edge from j to i; the two nodes are simply adjacent. In a directed network, this
is not necessarily the case: an edge from j to ¢ doesn’t imply an edge from ¢ to
j. We will primarily deal with undirected networks in this book, but it is useful
to know that directed networks exist.

Let’s explore this idea with the New York City borough example. When we
decide to travel from borough ¢ to borough j, we care about whether we can
actually drive in that direction. The directedness of the bridge network describes
whether we need to worry about one-way bridges and bridge closures. If our
network contains one-way bridges, then a bridge from borough i to borough
j doesn’t necessarily imply that a path along that bridge from borough j to
borough i exists. If, for instance, the bridges in the Brooklyn (BK) to Staten
Island (SI) direction are closed, this would appear as a directed edge in our
network.

We typically show directionality using arrows in the layout plot. Note that
there is no arrow going from Brooklyn to Staten Island along this edge, so we
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cannot drive directly from BK to SI via a bridge. We can do this by removing
the arrowhead from BK to SI, although there is still an arrowhead from SI to
BK:

from copy import deepcopy

G_dir = G.to_directed()

# remove the edge from BK to SI
G_dir.remove_edge("BK", "SI")

nx.draw_networkx(G_dir, with_labels=True, node_color="black", pos=pos,
font_color="white", arrows=True, edge_color="black")

Note that we passed the arrows=True argument, which tells networkx to include
the arrows in our plot. A plot of this network is shown in Figure 3.1.3(B). There
are bi-directional arrows (arrows from one node to the other, as well as the
reverse) for all pairs of nodes except Brooklyn and Staten Island. When we see
a layout plot without any arrows like in Figure 3.1.2(B), this typically indicates
that the network is undirected.

(A) Undirected Network (B) Directed network (C) Network with self-loops

BK to Sl out

of service Sl self-loop

Figure 3.1.3 (A) The undirected network. (B) A plot of the network with the bridge
from BK to SI out of service. (C) a plot of the network with a self-loop.

A plot of the undirected network is shown in Figure 3.1.3(A). For the adjacency
matrix A, remember that an edge between nodes ¢ and j is represented by the
adjacency value a;;. This means that if the network is undirected, a;; = a;; for
all pairs of nodes 7 and j. By definition, this tells us that the adjacency matrix
A is symmetric, so A= AT. We can verify this condition with graspologic:

from graspologic.utils import is_symmetric

A = nx.to_numpy_array(G)
is_symmetric(A)

# True

A_dir = nx.to_numpy_array(G_dir)
is_symmetric(A_dir)

# False
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Loops and networks

If we are already in a borough, why would we want to take a bridge to that
same borough? This logic relates to the concept of self-loops in a network. A
self-loop in a network describes whether nodes can connect back to themselves.
For instance, consider the following loop on Staten Island. This would have the
interpretation of a bridge which connects Staten Island back to itself:

G_loopy = deepcopy(G)

# add edge from SI to itself

G_loopy.add_edge("SI", "SI")

nx.draw_networkx(G_loopy, with_labels=True, node_color="black", pos=pos,
font_color="white", edge_color="black")

A plot of this network is shown in Figure 3.1.3(C). A network is loopless if
self-loops are not possible. It is also important to note that both directed and
undirected network can have self-loops; we only show the undirected case.

For the adjacency matrix A, a self-loop would be represented by the adjacencies
a;; for all nodes i, the diagonal entries of A. Therefore, for a loopless network, all
adjacencies a;; on the diagonal do not exist. Mathematically, we represent this
by defining the diagonal entries to be 0, which means that the matrix is hollow.
This property is often abbreviated by stating that the diagonal of the adjacency
matrix is 0, or diag(A) = 0. It is important to understand that if a network is
loopless, there is a theoretical distinction between 0 and does not exist. Denoting
the diagonal in an adjacency matrix of a loopless network with 0 is a convenience
and a convention for the field.

We can verify this condition using:

from graspologic.utils import is_loopless
is_loopless(A)

# True

A_loopy = nx.to_numpy_array(G_loopy)
is_loopless(A_loopy)

# False

Weightedness and networks

For most examples in this book, we will discuss unweighted or binary networks. A
network is unweighted or binary if we only care about whether edges are present
or absent. In an unweighted network, a potential edge a;; takes the value 1 if
there is an edge from node 7 to node j, and takes the value O if there is not an
edge from node ¢ to node j.

In our borough example, we could use edge-weights w(i, ) to describe the
average speed of traffic on the bridge. The network is undirected, so we do not
have to worry about directionality differences. The edge-weight is indicated by
the number along the corresponding edge.
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Figure 3.1.4 The New York City borough network, where weights indicate the average
speed of traffic. (A) a layout plot for the weighted network, and (B) a heatmap of an

adjacency matrix for the weighted network.

G_weight = nx.Graph()

G_weight.add_node("SI", pos=(2,1))
G_weight.add_node("MH", pos=(4,4))
G_weight.add_node("BK", pos=(4,1.7))
G_weight.add_node("Q", pos=(6,3))
G_weight.add_node("BX", pos=(6,6))

# this time, we add weights to the edges
pos = nx.get_node_attributes(G, 'pos’)
G_weight.add_edge("SI", "BK", weight=20)
G_weight.add_edge("MH", "BK", weight=15)
G_weight.add_edge("BK", "0", weight=5)
G_weight.add_edge("MH", "Q", weight=15)
G_weight.add_edge("MH", "BX", weight=5)
G_weight.add_edge("Q", "BX", weight=15)

edge_wts = nx.get_edge_attributes(G_weight, "weight")

nx.draw_networkx(G_weight, with_labels=True, node_color="black", pos=pos,
font_color="white", edge_color="black")

nx.draw_networkx_edge_labels(G_weight, pos, edge_wts)

We can identify whether a network is unweighted using is_unweighted():

from graspologic.utils import is_unweighted

A_weight = nx.to_numpy_array(G_weight)
is_unweighted(A)

# True

is_unweighted(A_weight)

# False

In a lot of your data analyses, you will come across weighted networks, so we

give you an example of what they will look like in Figure 3.1.4(B).
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The weighted adjacency matriz

In most situations, it is favorable to organize these weights w(, j) in a weighted
adjacency matrix W. The weighted adjacency matrix is simply the n x n matrix
whose entries (for adjacent pairs of nodes) w;; are the weights w(i, j) between
all pairs of nodes 7 and j.

We will need to be careful to choose an appropriate way to represent the idea
that no edge exists between a pair of nodes in the weighted adjacency matrix. In
our example, traffic moving at 0 mph is approximately similar to two boroughs
having no bridge between them (e.g., traffic at a standstill still means we cannot
move between a pair of nodes), and therefore we could just set w;; to 0 for nodes
not linked by a bridge and the weight of 0 would make sense for both adjacent
and non-adjacent nodes alike.

Consider, for instance, if the edge-weights instead had represent the travel
time between a pair of nodes ¢ and j. In this case, a travel time of zero would
indicate that in no time we can get from node ¢ to j. In this situation, it might
instead make more sense to use a value other than 0 for non-adjacent pairs of
nodes (such as infinity, since you can never travel from one node to the other
along a non-existant bridge).

For this reason, the utility for converting a networkx network to a weighted
adjacency matrix has an argument nonedge which indicates the default weight
for non-adjacent nodes. In our example where edge-weight represents average
speed of traffic, we can simply specify nonedge=0:

A_weight = nx.to_numpy_array(G_weight, nonedge=0).astype(float)

heatmap(A_weight, xticklabels=["SI", "MH", "BK", "Q", "BX"],
yticklabels=["SI", "MH", "BK", "Q", "BX"], title="Weighted adjacency matrix",
xtitle="Borough", ytitle="Borough")

The heatmap for the borough network weighted adjacency matrix is shown in
Figure 3.1.4(B).

Box 3.1.1 This book considers simple networks

A simple network is loopless, undirected, and unweighted. We develop most
of the examples and techniques in this book for simple networks. Fortunately,
focusing on simple networks is not usually a significant limitation, because the
techniques and packages we describe extend naturally to directed networks
and networks with weights or loops. Most approaches discussed in this book
apply to these more complex network types.

Software package like networkx, graspologic, or igraph typically warn or raise
errors if a technique is incompatible with a given network type. When imple-
menting network analysis methods independently, we recommend reviewing
documentation to ensure the method is compatible with the network struc-
ture.
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Node Properties and Relationships

In Section 3.1, we explored the general properties of networks and their edges.
Just as networks have properties, so too do individual nodes or groups of nodes.
We explore several of these node properties here. We will cover:

1 Node neighbors and incidences, which describe how nodes are linked to each
other,

2 Node degree, which quantifies the number of edges incident to a node, and

3 Path length, which describes how far apart two nodes are in the network.

Exploring these node properties often provides quick intuition on the over-
all network. In Section 3.3, we will build on these concepts and the concepts
discussed in Section 3.1 to explore statistics that summarize network and node
properties. The degree matrix in Section 3.4 will then solidify the idea of a node
degree into its own matrix representation.

Node neighbors and incidences

The simplest property of a network is adjacency. A pair of nodes ¢ and j in an
undirected network are neighbors (or, adjacent) if an edge exists between them.
In the adjacency matrix, two nodes ¢ and j are neighbors if their potential edge
a;; is nonzero. A node is incident to an edge if it is one of the two nodes linked
by that edge.

In the bridge example in Figure 3.1.2(B), we might say that MH and BK are
neighbors because there is a bridge between them (the Brooklyn Bridge, amongst
other bridges). Alternatively, we could say that both MH and BK are incident
to the Brooklyn Bridge.

Node degree quantifies the number of edges

The simplest summary statistic for a node is known as the node degree. The node
degree of a node 7 in a simple network is the number of nodes with which it is a
neighbor. Remember that if two nodes are not neighbors, the adjacency matrix
entry corresponding to this potential edge takes a value of zero. This means that
we can just count the potential edges a;; for a node i to get its degree. We do
this by just summing the " row (or equivalently, if the network is undirected,
its 5" column):

d; = degree(i) £ Zaij = Zaji (3.1)

The reason for the equality of these expressions is that for an undirected net-
work, the adjacency matrix is symmetric, so a;; = a;;. This is not just counting
edges which exist, since it counts every potential edge for node i. If an edge
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exists, a;; takes a value of 1, whereas if an edge does not exist, a;; takes a value
of 0. This means that every a;; is either zero or one:

In the left sum, since every a;; is defined to be 1, this is just the number of
times that node 7 neighbors another node. The right sum has every a;; defined
to be zero, so this is just zero.

For instance, the node BK in our example touches three edges, indicated in
bold in Figure 3.2.1(A), so degree(BK) = 3. In the corresponding adjacency
matrix, summing the entries for node BK along its row outputs three. The
entries which would be summed row-wise or column wise for BK are shown in
black boxes, in Figure 3.2.1(B).

(A) BK has three neighbors (B) Degree from adj. matrix

Il

-0

Neighbors

Q
Borough

Figure 3.2.1 A case-study of the BK borough. (A) shows that BK has three
neighbors, SI, MH, and Q (edges to SI/MH/Q are bold-faced). (B) shows the axes of
the adjacency matrix which could also be summed to derive this fact. Note the
row/column corresponding to BK (black boxes) has a sum value of three.

Further, if the network is loopless, we can explicitly exclude the diagonal from
our computation, because for a node i, a;; = 0. So Equation (3.1) can equivalently
be written:

d; = degree(i) = Zaij = Zaﬁ (3.2)
j#i i
This expression will be useful when computing properties of random networks.
Degrees for directed networks

In directed networks, we distinguish between the in-degree and out-degree of a
node.
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The out-degree of a node i in a directed network is its number of outgoing
connections, which we obtain by summing node ¢’s outgoing connections along
its row ¢ of the adjacency matrix:

n
out __ .
d; —g aij

j=1

Whereas the in-degree of a node 7 is its number of incoming connections, which
we obtain by summing node #’s incoming connections along its column i:

n
in B
d; —E aj;
Jj=1

Here, aj; is 1 if there is a directed edge from node j to node 4, and 0 otherwise.
Note that the expression in Equation (3.1) has defined the in- and out-degrees
to be equal for undirected networks.

We can use the following code to calculate the in-degrees and the out-degrees
for a network, given its adjacency matrix.

def in_degrees(A):
A function to compute the in-degrees for the nodes of an adjacency matrix.
return A.sum(axis=1)

def out_degrees(A):
A function to compute the out-degrees for the nodes of an adjacency matrix.
return A.sum(axis=0)

# get the degree for node BK, which is node 2 in our network,

# using either the in- or out-degree

print(in_degrees(A)[2])
# 3.0

Degrees for weighted networks

If the network is weighted, then all of the logic we’ve learned so far applies
directly both for directed and undirected networks. The adjacency matrix A
has entries a;; = w(i,j) if the edge exists between nodes i and j and usually 0
otherwise. This means that when we compute the degrees (either the undirected
node degree, the in-degree, or the out-degree), we instead sum edge weights when
the edge exists, and usually Os otherwise. Note that the defining and interpreting
node degrees in weighted networks may change based on the properties of the
edge weights. For instance, a 0 place-holder for “non-existent” edges could be
substituted for other values depending on the edge weight interpretations.
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The path length describes how far two nodes are

How many bridges would you need to cross to get from Staten Island to the
Bronx? This is an example of a path in a network. A path between two nodes
1 and j is a sequence of edges which starts at node i, and traverses through
other nodes in the network until reaching node j. By convention, paths do not
traverse the same node or set of nodes multiple times. Two nodes are described
as connected if a path exists between them. The path length is the number of
edges in the path. In the New York example, one could travel from Staten Island
to the Bronx in four possible ways, two of which are indicated in in (B) and (C)
in Figure 3.2.2.

(A) NYC boroughs (B) Length 3 path (C) Length 4 path

Figure 3.2.2 (A) The New York boroughs. (B) A length 3 path from SI to BX. (C) A
length 4 path from SI to BX.

In this case, there are only four paths from SI to BX which do not visit the
same node more than once, but in a larger network, there may be many possible
paths from one node to another. We will usually be interested in one particular
path, the shortest path. The shortest path length or distance between nodes i
and 7 is the path with the smallest path length that connects nodes ¢ and j.
In our example, a shortest path is indicated by Figure 3.2.2(B), in which the
shortest path length is three. There are multiple shortest paths of length three
in this example. If it is not possible to get from node i to node j using edges of
the network, the shortest path length is defined to be infinite.

A common statistic is the distance matrix for the network D, which is the
n X n matrix whose entries d;; are the shortest path lengths between all pairs of
nodes in the network. For the New York example, we can compute and visualize
the distance matrix using:

D = nx.floyd_warshall_numpy(G)
heatmap (D, title="Distance matrix", xticklabels=["SI", "MH", "BK", "Q", "BX"],
yticklabels=["SI", "MH", "BK", "Q", "BX"], xtitle="Borough", ytitle="Borough")

Paths in directed networks
If the network is directed, the interpretation of a path is the same, except we
have to be careful to account for the directionality when finding paths from one
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node to the next. For instance, in Figure 3.1.3(B), there is a path from the node
SI to BK, MH, Q, or BX, but there are no paths from BK, MH, Q, nor BX to
ST (since the bridge from BK to SI is out of service).

Paths in weighted networks

If the network is weighted, path lengths typically are instead the sum of edge-
weights along the path. For instance, in Figure 3.1.4(A), the path from ST to MH
via BK would have a path length of 35.
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Network summary statistics

We have now explored the basic properties and representations of networks in
Section 3.1, as well as descriptive properties of nodes and relationships between
nodes in Section 3.2.

Building on this foundation, we now turn our attention to network summary
statistics, which provide concise quantitative measures of network structure and
characteristics.

In this section, we will learn several network summary statistics, including:

1 The network density, which quantifies how many edges are present relative to
the total possible edges,

2 The clustering coefficient, which measures the tendency of nodes to form
tightly connected groups, and

3 The average shortest path length, which captures the typical distance between
pairs of nodes in the network.

These summary statistics complement the network representations we will ex-
plore in Chapter 5. They provide a ‘birds-eye’ understanding of the relationships
within and between networks, though they should be complimented by direct
examination of the full network structure. Section 4.6.3.1 extends the concept
of network density to random networks, and Section 6.2 explores how sparsity
impacts computational efficiency in large-scale network analysis.

Box 3.3.1 Shorthands in network science

There are a number of short-hands to be familiar with in network science.
The most common ones are:

1 Double sums Y77, 337, x;; will often be abbreviated as 377", ;. i and
j are both summing over the same indexing set {1,...,n}, and therefore it
is redundant to write it twice.

2 Likewise, triple sums »°" | 37| >, @ will often be abbreviated as
D20 k=1 Tijh-

3 There may be ambiguous sums, such as ZZ ; Tij- This would sum over all
possible values ¢ and j could take that would make sense when considered
with the summand (e.g., the z;; term). For example, if z;; are the entries
of an n x m matrix X, this sum would be 377, 3770 ;.

4 Sums may index inequalities, such as >, 25 Tij- This means to consider all
possible pairs (i, j) where i # j. Two of these appear frequently for square
adjacency matrices A:
® 3.2 aij, which means 377, 37, a;;.
® 3o @ij, which means 3300, >0 1 aij.
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The network density

Given the adjacency matrix A of a simple network, what fraction of the possible
edges actually exist?

To understand this quantity, first we must understand how many edges are
possible in a network. This is where the “caveat” about loopless networks come
in: we need to count in such a way that we don’t accidentally assume that self-
loops are potential edges; since the self-loops are simply not possible, we need
to ignore them.

There are n total nodes in a network, so A is an n x n matrix. Therefore, A
has n? total entries. However, over half of these entries are redundant for simple
networks. Since we assume the network is simple, it is by definition loopless. This
means that every entry is by default 0 along the diagonal. Since each node ¢ has
a corresponding diagonal entry a;;, this comes to n entries that we do not need
to count. This leaves n? total possible edges (the total number of entries in the
matrix A) minus n (the total number of entries which are automatically 0), or
n? —n = n(n — 1). This quantity represents the total number of possible edges
not in the diagonal.

If the network is undirected, every node that is not in the diagonal is also
being double counted. This is because in the adjacency matrix of an undirected
network, for every pair of nodes ¢ and j, a;; = aj;. So we are overcounting the
number of possible edges not in the diagonal by a factor of two. This leaves the
total number of possible edges in the network as $n(n — 1): the total number of
possible edges not in the diagonal reduced by a factor of two. This quantity is
notated by (%), which is read as “n choose 2”. In the network in Figure 3.3.1(B),
we see all of the possible edges indicated. If you were to count them up, there
are 2 -5 (5—1) = 10 possible edges.

Now, how many edges actually exist in the network? The sum of all of the
entries of A can be represented by the quantity Z? j—1 @ij- For each node i, we
sum all of the a;;, and then we add these across all of the nodes. Since A is
loopless, we don’t need to count the diagonal entries. This brings the quantity
to Z#j a;;, since we don’t need to count any edges along the diagonal of A.
Next, due to the undirected property, if an edge in A exists between nodes i and
J, both a;; and aj; take the value of 1. To obtain the edge count of A, we only
need to count either a;; or a;;. By convention we will always count the entries
a;; in the upper triangle of A, which are the entries where j > 4. This brings the
quantity to Zj>1:

The six total edges in the network are indicated in Figure 3.3.1(A).

To put it all together, the network density indicates the density of edges which
are present in the network. For a simple network, the network density can be
defined as the ratio between the total number of edges in A and the total number
of edges possible in A:

Qjj.

Zj>i Qij _ 2 Zj>i Qij

density(A) = B) n(n —1)

(3.3)
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(A) NYC borough network (B) Potential edges

Figure 3.3.1 (A) The New York Borough network. The actual edges are shown. (B)
The New York Borough network with all possible potential edges.

In our example, this is simply the ratio of edges which actually exist to edges
which could possibly exist, which is 1—60 = 0.6. We can use networkx to compute
the network density using the function density():

nx.density(G)
# 0.6

In a simple network, there are additional ways this equation can be written.
Notice the following inequality, by definition of a simple network:

n

Z Qj :Zaij+2@ij+zaii

ij=1 j>i i>j i=1
= E aij + E aij + 0,
j>i i>j

because the network is loopless (so the diagonal is 0). Further, since a;; = a;s,
the first term is exactly equal to the second term, so:

Z Qj :Zaij+zaij

ij=1 J>i i>7
:E aij+E @ijZQE Qi
> >t 7>
1 n
= E Q5 = 5 Q5
G>i ij=1

This gives us the useful relationship that we can plug into Equation (3.3):
3 2oimt 2oy Qi _ i X1 %
@ nn 1)

We wrote out the double sum to point out a key relationship. Notice that the
inner-most sum is just computing the degree d; of each node i, because d; =

density(A) =
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Z;lzl a;; in an undirected network. This means that:

1 n n

2 i= dl - d1
density(A) = 2 Z;L_l = Liz1
(2) n(n—1)
Finally, notice that % Z?=1 d; is the average degree over all of the n nodes in the
network. We will typically abbreviate this quantity using the symbol d. Using

this fact with the right-most equality in Equation (3.4), we see that:

(3.4)

density(A) = —7
The density can therefore be conceptualized as the average degree of each node
in the network, divided by the maximum possible degree each node could have
(which, in a simple network, is n — 1, since a node could at most have an edge
to the other n — 1 nodes in the network). This concept will become useful when
we discuss sparsity in Section 6.2.

The clustering coefficient indicates how much nodes tend to cluster together

A triplet is an ordered tuple of three nodes which are connected by two or three
edges. For a tuple of three nodes to be a triplet, there must be a contiguous path
from one end of the triplet to the other. The triplets are closed if there are three
edges, and open if there are only two edges.

The clustering coefficient indicates the fraction of closed triplets. In the New
York example, we look at only Brooklyn, Manhattan, Queens, and the Bronx,
and temporarily ignore Staten Island:

G_clus = nx.Graph()

G_clus.add_node("MH", pos=(4,4))
G_clus.add_node("BK", pos=(4,1.7))
G_clus.add_node("0Q", pos=(6,3))
G_clus.add_node("BX", pos=(6,6))

pos = nx.get_node_attributes(G, 'pos’)
G_clus.add_edge("MH", "BX")
G_clus.add_edge("MH", "BK")
G_clus.add_edge("BK", "Q")
G_clus.add_edge("MH", "0Q")
G_clus.add_edge("Q", "BX")

nx.draw_networkx(G_clus, with_labels=True, node_color="black", pos=pos,
font_color="white", edge_color="black")

The plotted result is shown in 3.5.1(B). We have the following triplets:

1 Open triplets between Bronx, Manhattan, and Brooklyn: (BX, MH, BK), (BK,
MH, BX)
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2 Open triplets between Brooklyn, Queens, and Bronx: (BX, Q, BK), (BK, Q,
BX)

3 Closed triplets between Brooklyn, Manhattan, and Queens: (BK, MH, Q),
(BK, Q, MH), (MH, BK, Q), (MH, Q, BK), (Q, BK, MH), (Q, MH, BK)

4 Closed triplets between Bronx, Manhattan, and Queens: (BX, MH, Q), (BX,
Q, MH), (MH, BX, Q), (MH, Q, BX), (Q, BX, MH), (Q, MH, BX)

To clarify a fine technical point of open triplets, we do not count (BK, Q, MH)
as a triplet because there is no edge from BK to Q. We must be able to go from
the first node to the second to the third along edges that exist in the network
in order for three nodes to count as a triplet. In our example, there are twelve
closed triplets amongst the nodes (delineated in number 3. and 4. above), and
there are 4 open triplets (delineated in numbers 1. and 2. above). The global
clustering coefficient (or transitivity) is defined as:

number of closed triplets

number of closed triplets + number of open triplets

In our example, this comes to C' = % = 0.75. This equation can also be

understood in terms of the adjacency matrix. If a triplet between nodes i, 7,
and k is closed, then all three of the potential edges a;;, ajr, and ax; have a
value of 1. Therefore, the number of times that a;ja;iar; = 1, is the number of
closed triplets. This means that the number of closed triplets can be expressed
as ZZj,k:l Qi Q1A

For a given node 4, we can find an arbitrary triplet (either open or closed)
with the following procedure.

1 Pick a single neighbor j for node i. The node i has a number of neighbors
equal to degree(i) = d;, so there are d; possible neighbors to choose from.

2 Pick a different neighbor k for node 4. Since node 7 had d; neighbors, it has
d; — 1 neighbors that are not node j.

3 Since nodes j and k are both neighbors of node 7, we know that a;; and a;, both
have values of one, and therefore the edges (¢,j) and (i, k) exist. Therefore,
the tuple of nodes (4, j, k) is a triplet, because at least two edges exist amongst
the three nodes. This tuple is closed if the edge (j, k) exists, and open if the
edge (4, k) does not exist.

4 Therefore, there are d;(d; — 1) triplets in which node 7 is the leading node of
the triplet.

Since triplets are ordered tuples, we can repeat this procedure for all nodes,
which counts the total number of triplets for the entire network. Therefore, the
number of open and closed triplets in the network is the quantity >, d;(d; —1).
Then we can express the clustering coefficient in terms of the adjacency matrix
as:
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D jk=1 @i Ok Gk
>y di(di — 1)

Which gives us an expression to implement programmatically. The clustering

C:

coefficient can be computed via networkx using:

nx.transitivity(G_clus)
#0.75

The average shortest path length

Another common statistic computed using the distance matrix from Section 3.2.3
is the average shortest path length. Conceptually, the distance matrix D can be
thought of as capturing the “accessibility” of the network, in that if it tends to
have larger values, nodes tend to be separated by longer paths, and vice-versa.
The average shortest path length d of a simple network is the average of all of
the shortest paths between two distinct nodes ¢ and j of the distance matrix:

- 1
1= ) 2
i#]

The normalizing factor is n(n — 1) because the sum » -, is short-hand for the
double-sum Z?:l > ki In a network with self-loops, the average shortest path
length does not exclude the diagonal, and therefore we should be careful with
which expression we use. The left-most sum has n terms, and for each node i,
there are n— 1 other possible values that j can take where j # 4. This means that
we are summing n — 1 terms n times (which is n(n — 1)). This can be computed
using networkx:

dbar = nx.average_shortest_path_length(G)
# 1.5
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Degree Matrices and Laplacians

In Section 3.1, we introduced adjacency matrices as the primary mathemati-
cal representation for network data. This section explores additional matrices
derived from the adjacency matrix.

We cover the following matrix representations for networks:

1 The degree matrix, which encodes node degrees on its diagonal, and

2 The network Laplacian and its variations, including the normalized Laplacian,
the DAD Laplacian, and the regularized Laplacian (used to address issues with
low-degree nodes).

The Laplacian and its properties in particular are fundamental to several of the
spectral methods we will learn about in Chapter 5. Further, many of the spectral
methods we develop in Chapters 6, 7, and 8 can be equivalently applied to the
Laplacian, with unique advantages over other spectral methods. In Section 4.6.4,
we will extend the Laplacian to random networks, and then use the Laplacian to
build an embedding technique in Section 5.4. Section 5.6 creates a joint represen-
tation using the regularized Laplacian, and Section 6.2 explores how the sparsity
of the DAD Laplacian impacts computational efficiency in network analysis.

In general, we will represent networks with matrices. In addition to being
computationally convenient, using matrices to represent networks lets us use
tools from linear algebra and statistics. Using matrices also lets us use common
python tools for array manipulation like numpy or pytorch.

The degree matrix

In Section 3.2.2, we defined the degree of a node i in a simple network as the
number of nodes that ¢ is connected to.

The degree matrix takes this a step further, representing the degree of every
node in the network. The degree matrix appears relatively often as a step in
creating other matrix representations of networks. It is a diagonal matrix with
the values along the diagonal corresponding to the degree of each node:

dp 0 0

0 .o :
D=|" , d; = degree(i)

R (]

0 .. 0 d,

D is called diagonal because all of the entries d;; = 0 unless ¢ = j. The diagonal
entries d;; of the degree matrix are the node degrees degree(i) for each node i.
Using the counting procedure described in Section 3.2.2, we see that the node SI
has degree one, the node BK has degree three, the node MH has degree three,
the node Q has degree three, and the node BX has degree two. We can compute
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Remark 3.4.1 Overloading notation

In Section 3.2, we used the same letter, D, for the distance matrix as we do
for the degree matrix. From now on in the book, D will refer to the degree
matrix, unless stated otherwise.

the degree matrix for an unweighted, undirected network by using either of the
following commands:

# in-degree matrix

D_in = np.diag(in_degrees(A))

# out-degree matrix

D_out = np.diag(out_degrees(A))

# the network is undirected, so in and out degrees are same
print(np.all(D_in == D_out))

# True

These two methods are identical when the network is undirected because the in-
and out-degrees for undirected networks are the same.

# arbitrarily set degree matrix to in-degree matrix
D = D_in

Figure 3.4.1 plots the degree matrix using the heatmap utility that developed
for the adjacency matrix.

The Laplacian Matrix

The standard Laplacian Matrix L = D — A [2]| is a direct derivative of the
Adjacency Matrix A, since the degree matrix D can be calculated from A. It is
used in practice because it has a number of interesting mathematical properties
which are useful for analysis. For instance, the magnitude of its second-smallest
eigenvalue, called the Fiedler eigenvalue, tells us how well-connected our network
is, and the number of eigenvalues equal to zero is the number of “islands” or
connected components our network has (a concept introduced in Section 3.5.1).
Incidentally, this means that the smallest eigenvalue of the Laplacian will always
be 0, since any simple network always has at least one connected component
(itself).

Another interesting property of the Laplacian is that the sum of its diagonals
is twice the number of edges in the network. This is because the i;; diagonal, L;;,
is the degree of node ¢, and a;; = a;; causes us to over-count. Because the sum
of the diagonal of a matrix is the trace, and the trace is also equal to the sum
of the eigenvalues, this means that the sum of the eigenvalues of the Laplacian
is equal to twice the number of edges in the network.

Since the only nonzero values of the degree matrix is along its diagonals, and
because the diagonals of an adjacency matrix never contain zeroes if its network
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doesn’t have nodes connected to themselves, the diagonals of the Laplacian are
just the degree of each node. The values on the non-diagonals work similarly
to the adjacency matrix: they contain a —1 if there is an edge between the two
nodes, and a 0 if there is no edge.

The Laplacian for a simple network looks like the degree matrix, but with —1s
in all the locations where an edge exists between nodes ¢ and j. We compute it
in Python below.

L=D-A

Figure 3.4.1 shows a plot of the Laplacian matrix as a heatmap, along with
the degree and adjacency matrices.

Laplacian L Degree matrix D Adjacency matrix A

ano -1 0 0
) 1 -1 -

- I
o
o
o
o

Borough
BX Q BK MH
=
-
Borough
BX Q BK MH SI
o
Borough
BX Q BK MH SI

0 -1 -0
SI MH BK Q BX SI MH BK Q BX SI MH BK Q BX
Borough Borough Borough

Figure 3.4.1 The Laplacian matrix, along with the components that are used to
compute it (the degree matrix and the adjacency matrix).

The Normalized Laplacian

There are a few variations on the standard D — A version of the Laplacian
which are widely used in practice, and which (confusingly) are often also called
the Laplacian. They tend to have similar properties. The Normalized Laplacian,
L™ ig one such variation. The Normalized Laplacian [2] is defined as:

Lrorm. — p=1/2Lp=1/2 = [ _ p=1/24p-1/2

Where [ is the identity matrix.

Below we can see the normalized Laplacian in code. We use graspologic’s
to_laplacian() function, with the form set to I - DAD, which computes L™°"™
above.

from graspologic.utils import to_laplacian
L_sym = to_laplacian(A, form="I-DAD")

A heatmap of the normalized Laplacian is shown in Figure 3.4.2(A).

We can understand the normalized Laplacian from the name: we can think
of it as the Laplacian normalized by the degrees of the nodes associated with a
given entry.
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Here is what the operation is doing:

L = DT3LD"3

[

dl lll lln dl
L dn lnl lnn dn
M1 1
Nz 111 lln Nz
1 l l 1
L Vd, nl nn Van
[ W _bin__
dy VdiVd,
ln1 lnn
VdnVdi dn

lij

Vdin/d;'
We can plug in the value of L to obtain a similar relationship with the adja-
cency matrix A.

So the normalized laplacian has entries [7°"™ =

Lnorm- — D=3 [,D"%
=D 3(D-A)D" 3
=D :DD *— D AD"
=D2D 7 —D 3AD"?
=Iyxn— D 2AD™2

N|=

=

The D~Y2DD~1/2 term can be thought of as spiritually the same as what we
would think of % (if that were not undefined!), since it just works out to be the
identity matrix. The D~Y/2AD~1/2 is just doing the same thing to A that we
did to L. So we’re normalizing the entries of the adjacency matrix by the degrees

ajj

of the nodes a given entry is concerned with; that is .
g1ve y WIS 5 \/I\/E

The eigenvalues of the normalized Laplacian are bounded between 0 and 2,
and so the Laplacian is a positive semidefinite matriz, which means that it is a
matrix with non-negative eigenvalues. This means that a suite of linear algebra
techniques, which may not run successfully on the adjacency matrix (which is not
positive semidefinite in its most raw form for simple networks, as we will learn in
Section 4.5), can be executed on the network Laplacian. For more details about
the properties of the Laplacian, see [3].
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3.44 The DAD Laplacian

We will often use the spectral embedding of the Laplacian (see Section 5.4). To
understand the spectral embedding, we will need a related Laplacian, called the
DAD Laplacian:

LPAD _ D=3 AD 2

LPAD and L™°"™™ share major similarities. Performing the same manipulations
as in Equation (3.5), we find that (74P = \/(Tal\]/E We can therefore understand
the DAD Laplacian to be the adjacency matrix, but with entries a;; normalized
by the square-root of the degrees of the nodes i and j.

In Section 5.4, we will learn about the importance of the singular value decom-
position for spectral embedding of Laplacians. The singular value decomposition
will allow us to look at the laplacian as a sum of simpler matrices. “Simple”, in
this context, means a rank-one matrix created from the outer product of two
vectors. By looking only at a few of these “simple” matrices, we can learn about
the Laplacian and reduce noise in the Laplacian itself. The properties of the DAD
Laplacian are discussed at length in [4] and [5].

The most important connection is that these “simple” matrices will be identical
for L™ and LPAP | except for one important fact: they will be in reverse order
from one another. In L™°"™  the matrices we will want to use will be the last
few, and in LP4P the matrices we will want to use will be the first few. When
we compute the singular value decomposition, there are ways to only compute
the first few matrices without having to go through the trouble of computing all
of them, whereas the reverse is not true. To get the last few simple matrices, we
would have to compute all of the preceding ones first. This means that to get the
simple matrices we want, we can get much better computational performance
using LPAP instead of L™"™.

We can compute the LP4P in graspologic similarly to above, but with form="DAD":

L_dad = to_laplacian(A, form="DAD")

Figure 3.4.2(B) shows a heatmap of the DAD Laplacian.

345 The regularized Laplacian

The regularized Laplacian is an adaptation of the DAD Laplacian. When networks
have degree matrices where some of the degrees are extremely small, the spec-
tral clustering approach we will learn about in Section 6.1 will not perform well:
The spectral clusterings will be influenced by the small-degree nodes. To over-
come this hurdle, instead of using the DAD Laplacian, we can use the regularized
Laplacian, defined similarly to the DAD Laplacian, as:
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LTDAD(T) — D;%AD;%

Where 7 is a regularization constant which is greater than or equal to zero,
and D, = D + 71. This 7 term “inflates” the diagonal elements of the degree
matrix by increasing the small degrees by 7. This is make the nodes with small
degrees less impactful on our results. If 7 = 0, then L™PAP(7) = LPADP, The
regularized Laplacian is discussed at length in [6].

Let’s see what L™PAP(7) and LPAP look like when we pick 7 to be 1. We

can do this in graspologic using form="R-DAD", and then setting regularizer
appropriately:

tau =1

L_rdad = to_laplacian(A, form="R-DAD", regularizer=tau)

The R-DAD Laplacian is shown in Figure 3.4.2(C).

We will learn about some other ways to handle nodes with very low degrees
in Section 3.6 on Regularization.

(A) Normalized Laplacian (B) DAD Laplacian (C) reg. DAD Laplacian
» “ ] . v 2
I - -
23 23 23 !
3% 2% I 3%
o o 5] -0
mo- M or- ey
x| > | % -t
o o o
SI MH BK Q BX SI MH BK Q BX S| MH BK Q BX
Borough Borough Borough

Figure 3.4.2 Different variations of Laplacians for the same underlying network.
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Subnetworks and Connected Components

In Sections 3.1, we introduced the basic representation of networks, the adja-
cency matrix. We built some understanding of network and node properties in
Sections 3.2 and 3.3. Building on this foundation, we now turn our attention to
subnetworks and connected components within larger networks.

This section covers:

1 The concept of subnetworks, including induced subnetworks,

2 Connected components and their properties, and

3 The largest connected component (LCC) and its significance in network anal-
ysis.

Understanding subnetworks and connected components allows us to focus on
specific regions of interest or to decompose large networks into manageable parts.
These concepts are particularly important during preprocessing, where we often
choose to operate only on the largest connected component. Section 4.10 uses
the concept of subnetworks to define a statistical model. Sections 8.3 and 8.2
demonstrate how identifying specific subnetworks can reveal important signals
in applied settings. Using relevant substructure rather than full networks often
leads to more computationally tractable solutions in applied settings.

It is often useful to break a large network into smaller bits. For instance, when
we were looking at the clustering coefficient in Section 3.3.2, we found it useful
to break out the nodes BK, Q, BX, MH and their edges so that we could count
triplets.

A subset of nodes and their edges pulled from a network is called a subnetwork.
In this case, the network topology of the New York example is (V, £) defined by
the sets:

1 The nodes V: {SI,BK,Q, MH,BX}, and
2 The edges E: {(SI, BK), (BK, MH),(MH,Q),(MH, BX),(Q, BX)}.

and the subnetwork which removed Staten Island, SI is the network:

1 The nodes Vi: {BK,Q, MH, BX}, and
2 The edges B, {(BK, MH), (MH,Q), (BK,Q), (MH, BX),(Q, BX)}.

In the subnetwork with nodes and edges (Vi, Es), every element in V; is an
element of V| the nodes of the complete network, and every element in E is an
element of E, the edges of the complete network. So (Vj, Es) is a subnetwork of
(V, E). This particular subnetwork is also induced. A subnetwork is induced by
a set of nodes if the following conditions hold:

1 The nodes V; are a subset of the nodes of the network V', and
2 The edges E; consist of all of the edges from the original network where both
of the corresponding nodes are in V.
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Box 3.5.1 A caveat with the adjacency matrix of subnetworks

Conceptualizing an induced subnetwork as a mere deletion of rows and
columns, without regard for network structure, complicates later analysis.
This approach obscures node identities, making it difficult to associate re-
tained nodes with their original properties or metadata. For example, a vec-
tor containing useful node information becomes challenging to interpret if we
lose track of which nodes remain in the subnetwork. To avoid confusion, we
recommend recording the indices of the nodes from the initial network when
computing a subnetwork.

An example of our induced subnetwork is shown in Figure 3.5.1(B). Figure
3.5.1(C) shows an example of a subnetwork which is not an induced subnetwork.
We can create an induced subnetwork (in this case, from BK, MH, Q, and BX)
using networkx:

G_induced = G.subgraph(["BK", "MH", "0Q", "BX"]).copy()
nx.draw_networkx(G_induced, with_labels=True, node_color="black", pos=pos,
font_color="white", edge_color="black")

(A) NYC boroughs (B) Induced subnetwork (C) Non-induced subnetwork

)

Figure 3.5.1 (A) The New York Borough example. (B) The subnetwork induced by
the node set {BX, MH, Q, BX}. This is also the example that we used to study
clustering. (C) A non-induced subnetwork.

Representing subnetworks

A subnetwork is a collection of nodes and edges defined on these nodes. Therefore,
a subnetwork is itself also a network. This means that we could still represent a
subnetwork using an adjacency matrix, with the caveat that its size might change
(since the nodes of a subnetwork are a subset of the nodes of the network) and
the density might change (since the edges of a subnetwork are a subset of the
edges of the network).
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35.1 The largest connected component

A particular induced subnetwork that we will often be concerned with is known
as the largest connected component (LCC). To define the largest connected com-
ponent, we will need to modify our example slightly. Let’s say the bridge network
also includes the Boston area, and we have two new nodes, Boston (BO) and
Cambridge (CA). Boston and Cambridge have several bridges between one an-
other, so an edge exists between them. However, there are no bridges between
boroughs of New York and the Boston area, so there are no edges from nodes in
the Boston area to nodes in the New York area.

G_withbos = deepcopy(G)

G_withbos.add_node("B0", pos=(8, 6))

G_withbos.add_node("CA", pos=(8, 8))

G_withbos.add_edge("B0", "CA")

# fetch positions with boston and cambridge added

pos = nx.get_node_attributes(G_withbos, 'pos’)

# plot

nx.draw_networkx(G_withbos, with_labels=True, node_color="black", pos=pos,
font_color="white", edge_color="black")

We visualize the network with Boston and Cambridge in Figure 3.5.2(A).
The entire network can be described by the sets:

1 V={SI,MH,BK,BX,Q,CA, BO}, and
2 £€={(SI,BK),(MH,BK),(MH,Q),(BK,Q),(MH,BX),(MX,Q),(CA, BO)}.

We have two distinct sets of nodes, those of New York and those of Boston,
which are only connected amongst one another. These two sets of nodes induce
connected components of the network topology (V,€). A connected component
is an induced subnetwork in which any two nodes are connected to each other
by a path through the network. The largest connected component (LCC) of a
network is the connected component with the most nodes.

The two connected components are the New York induced subnetwork:

1 The nodes Vy: {SI,BK,Q,MH,BX}, and
2 The edges Ex: {(SI, BK), (BK, MH), (MH,Q),(BK, Q), (MH, BX),(Q, BX)}.

and the Boston induced subnetwork:

1 The nodes Vg: {C A, BO}, and
2 The edges Ep: {(CA, BO)}.

We plot each individually in Figure 3.5.2(B) and Figure 3.5.2(C). If the net-
work and the largest connected component are equivalent, we can omit the term
component, and just say that the network is connected.

In our example, the New York connected component has five nodes, whereas
the Boston connected component has two nodes. Therefore, the New York con-
nected component is the LCC of this simple network. We can compute the con-
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(A) Boston area + NYC boroughs (B) LCC (C) Second CC
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Figure 3.5.2 (A) shows the New York boroughs with the added nodes for Boston and
Cambridge. (B) shows the connected component induced by the boroughs of New
York, which is also the LCC. (C) shows the connected component induced by Boston
and Cambridge.

nected components and plot the largest connected component using networkx
like this:

# returns a list of connected components, ordered

# by decreasing size (#nodes)

cc_withbos = nx.connected_components(G_withbos)

# return the connected components, as networks

CC_nets = [G_withbos.subgraph(cc).copy() for cc in cc_withbos]

# plot the LCC
nx.draw_networkx(CC_nets[0], with_labels=True, node_color="black", pos=pos,
font_color="white", edge_color="black")

Often our networks will already be in the form of adjacency matrices. We can
pass adjacency matrices directly into graspologic to obtain a LCC using:

from graspologic.utils import largest_connected_component as lcc

A_withbos = nx.to_numpy_array(G_withbos)
A_lcc, retained_nodes = lcc(A_withbos, return_inds=True)

This is one of the most common instances in which our warning about retaining
subnetwork indices arises. The return_inds argument returns the rows/columns
of A_withbos that were retained for the LCC. The default functionality is to not
return these indices, so proceed with caution.

Connected components in directed networks

Connected components for directed networks need to be defined differently than
for undirected networks. A directed subnetwork is strongly connected if directed
paths exist between every pair of nodes in the subnetwork.

A directed subnetwork is weakly connected if the underlying directionalities
are ignored, and the resulting undirected subnetwork is a connected component.
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Figure 3.1.3(C) shows an example of a strongly connected network, because we
can travel along a path from each node to every other node in the network.
On the other hand, Figure 3.1.3(B) shows an example of a weakly connected
component when the bridge from MH to BK is out of service. This is because
there is no longer a way to follow a path from SI or BK to MH, Q, and BX. When
we ignore the arrows entirely, the resulting undirected network is still connected,
as shown in Figure 3.1.3(A).
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Regularization and node pruning

In Sections 3.1 through 3.5, we built techniques to understand the properties of
simple network observations. However, real-world observations of networks are
often noisy and biased. To build predictive models, we usually preprocess and
regularize our data. We now turn our attention to techniques which do this to
help mitigate overfitting and improve generalization.

This section covers:

1 The concept of regularization in network machine learning,
2 Node pruning as a regularization technique, and
3 Methods for removing nodes based on degree and other properties.

Regularization is crucial for reducing noise and improving the robustness of
network analyses. Node pruning, in particular, allows us to focus on the most
relevant parts of a network by removing nodes that may introduce noise or
instability.

Real world networks are often noisy, and so the analysis of one real world
network might not generalize very well to a similar real world network. Regular-
ization is the process by which we either:

1 Modify data for the purpose of mitigating overfitting due to idiosyncrasies of
the observed data, and/or

2 Modify the function we are estimating due to its fragility to the idiosyncracies
of the observed data.

We first focus our attention on node pruning, a regularization technique in
which we remove nodes for one reason or another. Typically, we will remove
nodes due to some property about their degrees, or other properties (such as
their connectedness with other nodes). These strategies are covered loosely in
the book [7], and can be found in more computation-heavy network papers.

For each section covering regularization, we will give an example, a simulation,
and code for how to implement the desired regularization approach. We might use
several of these techniques simultaneously in practice, or we might use techniques
that go outside of our working examples.

For node regularization, we will introduce a business network working example,
discussed in Example 3.6.1, and visualized in Figure 3.6.1.

from graphbook_code import heatmap

from matplotlib import pyplot as plt

from graspologic.simulations import er_np
import networkx as nx

n =10
A_bus = er_np(n, 0.6)

# add pendants
n_pend = 3
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Example 3.6.1 Business network

There are 17 nodes in a network corresponding to local businesses. An edge
exists between a pair of businesses if they have business dealings with one
another (they buy or sell products from/with the company). Three of these
businesses operate in total exclusion and do not have any edges. Three of these
businesses only work with one other business. One businesses works with all
of the non-excluded businesses.

A_bus = np.column_stack([np.row_stack([A_bus, np.zeros((n_pend, n))]),
np.zeros((n + n_pend, n_pend))])
n=n + n_pend

# add pizza hut node

n_pizza =1

A_bus = np.column_stack([np.row_stack([A_bus, np.ones((n_pizza, n))]),
np.ones((n + n_pizza, n_pizza))])

n=n+ n_pizza

# add isolates

n_iso = 3

A_bus = np.column_stack([np.row_stack([A_bus, np.zeros((n_iso, n))1),
np.zeros((n + n_iso, n_iso0))1)

A_bus = A_bus - np.diag(np.diag(A_bus))

n=n+ n_iso

# as a heatmap

node_names = [i for i in range(0, n)]

heatmap(A_bus.astype(int), title="Business Network Adjacency Matrix",
xticklabels=node_names, yticklabels=node_names)

# as a layout plot
G_bus = nx.from_numpy_array(A_bus)
node_pos = nx.shell_layout(G_bus)

plt.figure()
nx.draw(G_bus, pos=node_pos, node_color="white’, edgecolors='black’, with_labels=True,
node_size=1500)

3.6.1 Degree trimming removes nodes with unfavorable degrees

In our business network, there are several low-degree nodes which will impart
“strange” properties undesirable for downstream analysis. They may generate
numerical instability when we apply machine learning algorithms to them, for
instance. For this reason, it may be advantageous to remove nodes whose degrees
are very different from the other nodes in the network, sometimes called outlier
nodes.

One special case of degree trimming is removing isolates. An isolated node has
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Figure 3.6.1 The business network, where nodes are businesses and edges are whether
the pairs of businesses have a business relationship.

a degree of 0, meaning that it is not connected to any other nodes in the network.
See if you can spot the isolates in Figure 3.6.1.

Another special case of degree trimming is called the removal of pendants. A
pendant node has a degree of 1, meaning that it is only connected to one other
node in the network. Try spotting the pendants in 3.6.1.

We can easily remove isolates or pendants. We simply need to compute the
degree of each node in the network, and then retain the nodes with a degree above
our chosen threshold. To remove isolates, we would pick this threshold to be 0
(retain nodes with non-zero degree), and to remove both pendants and isolates,
we would pick this threshold to be 1 (retain nodes with a degree exceeding 1).
We can do this like follows:

def compute_degrees(A):
# compute the degrees of the network A
# since A is undirected, we can just sum
# along an axis.
return A.sum(axis=1)

def prune_low_degree(A, return_inds=True, threshold=1):
# remove nodes which have a degree under a given
# threshold. For a simple network, threshold=0 removes isolates,
# and threshold=1 removes pendants
degrees = compute_degrees(A)
non_prunes = degrees > threshold
robj = A[np.where(non_prunes)[0],:]1[:,np.where(non_prunes)[0]]
if return_inds:
robj = (robj, np.where(non_prunes)[0])
return robj

A_bus_lowpruned, nonpruned_nodes = prune_low_degree(A_bus)

Next, we'll plot the network as a layout plot. In Section 3.5, we discussed
that if we just “threw away” nodes without retaining their indices we would run
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into trouble. Here is an example. If we had just pruned the low degree nodes,
we would have no idea which nodes were originally plotted where in the initial
layout plot. Fortunately, since we included this information, we can easily recover
the spatial position of each node, and replot the network with the nodes that
were not pruned in the same place that they were before:

# relabel the nodes from 0:10 to their original identifier names
node_names_lowpruned = {i: nodeidx for i, nodeidx in enumerate(nonpruned_nodes)}

G_bus_lowpruned = nx.from_numpy_array(A_bus_lowpruned)
G_bus_lowpruned = nx.relabel_nodes(G_bus_lowpruned, node_names_lowpruned)

nx.draw(G_bus_lowpruned, pos=node_pos, with_labels=True, node_color="white’,
edgecolors="black’, node_size=1500)

The resulting layout plot is shown in Figure 3.6.2(A).

(A) Pruned degree < 1 (B) Pruned degree < 1 and pizza hut

Figure 3.6.2 (A) The business network after pruning nodes with a degree less-than or
equal to 1, which consists of isolates and pendants. (B) The business network after
pruning isolates and pendants followed by pizza-hut nodes.

A useful way to determine whether we have isolates or pendants is to look
at the degree distribution histogram of the network, which indicates the number
of nodes (y-axis) within a given range of degrees (x-axis, individual “buckets”
for the histograms). When the values we want a histogram for can only take a
limited number of possible values, we may choose to make each possible value
its own bucket. Sometimes, when there are a large number of possible values,
this might not be possible. We might have to bin similar values together to
make the plot appreciable. The degree distribution, before and after removing
pendants/isolates, looks like this:

degrees_before = compute_degrees(A_bus)
degrees_after = compute_degrees(A_bus_lowpruned)

and can be plotted like this:
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from seaborn import histplot
fig, axs = plt.subplots(1l,2, figsize=(15, 4))

ax = histplot(degrees_before, ax=axs[0], binwidth=1, binrange=(0, 14))
ax.set_xlabel("Node degree");

ax.set_ylabel("Number of Nodes");

ax.set_title("Business Network, before pruning");

ax = histplot(degrees_after, ax=axs[1], binwidth=1, binrange=(0, 14))
ax.set_xlabel("Node degree");

ax.set_title("Business Network, after pruning")

Removing pizza hut nodes

On the other end of the spectrum, it is often useful to remove nodes which tell
us nothing about the network because they are connected to everything. We
call these pizza hut nodes, because pizza hut can be delivered anywhere. After
pruning, we actually created a pizza hut node, which we can see from the low-
degree pruned network in Figure 3.6.2(A).

We can prune these nodes just as easily as before. This time, note that our
pruning threshold is simply set as the maximum possible node degree. Further,
since we pruned the pizza-hut node from the low-pruned network, we again need
to recover which nodes from the original network were retained.

def prune_high_degree(A, return_inds=True, threshold=0):
# remove nodes which have a degree over a given
# threshold. For a simple network, threshold=A.shape[0] - 1
# removes any pizza hut node
degrees = compute_degrees(A)
non_prunes = degrees < threshold
robj = A[np.where(non_prunes)[0],:][:,np.where(non_prunes)[0]]
if return_inds:
robj = (robj, np.where(non_prunes)[0])
return robj

# pruning nodes
A_bus_pruned, highpruned_nodes = prune_high_degree(A_bus_lowpruned,
threshold=A_bus_lowpruned.shape[0] - 1)

# relabel the nodes from 0:9 to their original identifier names,

# using the previous filters from node_names_lowpruned

node_names_highpruned = {i: node_names_lowpruned[lowpruned_idx] for
i, lowpruned_idx in enumerate(highpruned_nodes)}

G_bus_pruned = nx.from_numpy_array(A_bus_pruned)

G_bus_pruned = nx.relabel_nodes(G_bus_pruned, node_names_highpruned)

nx.draw(G_bus_pruned, pos=node_pos, with_labels=True, node_color="white’,
edgecolors="black’, node_size=1500)

The result of both low-degree pruning (for isolates and pendants) and high-degree
pruning (for pizza hut nodes) is shown in Figure 3.6.2(B).
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Again, we might want to visualize the degree distribution histogram to decide
whether we want to prune nodes with high degrees.

The Largest Connected Component is the largest subnetwork of connected
nodes

Section 3.5.1 explored the largest connected component. This is a node pruning
technique, because it “throws out” all of the nodes other than the ones which are
in the largest connected component.
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Edge Regularization

In Section 3.6, we introduced regularization techniques for networks, focusing on

node pruning. This section extends those concepts to edge regularization, which

involves modifying the edges of a network to improve its properties for analysis.
We cover the following edge regularization techniques:

1 Diagonalization methods to deal with loops,

2 Sparsification methods to reduce network density,

3 Thresholding approaches to convert weighted networks to unweighted net-
works, and

4 Edge weight transformations to adjust the distribution of edge weights.

We use a hobby network and a friendship network as reference throughout
this section. Edge regularization is crucial for reducing noise, improving compu-
tational efficiency, and enhancing the interpretability of network analyses. These
techniques are particularly important for weighted and dense networks where
the number of edges can overwhelm traditional analysis methods. The concepts
introduced here build upon earlier discussions of network density (Section 3.3.1)
and compliment other regularization approaches like the Regularized Laplacian
(Section 3.4.4).

Running examples for regularization

To explore edge regularization, we will introduce some new examples from the
preceding business network. We have two non-simple networks, covered in Ex-
ample 3.7.1 and Example 3.7.2.

Our scientific question of interest is how well activities and hobbies align with
perceived notions of friendship. We want to use the networks of Examples 3.7.1
and 3.7.2 to learn about a hypothetical third network, whose nodes are identical
to these two networks, but whose edges are whether the two individuals are
friends (or not) on facebook. To answer this question, we have to do to some
work to make our networks better suited to the task. We will simulate some
example networks, with plots illustrated in Figure 3.7.1.

from graspologic.simulations import sbm
import numpy as np

wtargsa = [[dict(n=50, p=.09), dict(n=50, p=.02)],
[dict(n=50, p=.02), dict(n=50, p=.06)]]
# activity network as upper triangle matrix
A_activity uppertri = sbm(n=[25, 25], p=[[1,1], [1,1]], wt=np.random.binomial,
wtargs=wtargsa, loops=False, directed=False)
A_activity uppertri = np.triu(A_activity_uppertri)

# friend network
wtargsf = [[dict(a=4, b=2), dict(a=2, b=5)],
[dict(a=2, b=5), dict(a=6, b=2)]]
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Example 3.7.1 Activity/hobby network

The nodes of this network are a group of 50 school students, the first 25 of
whom are athletes, and the second 25 are in marching band. To collect the
first network, we ask each student to select from a list of 50 school activities
and outside hobbies that they enjoy. For a pair of students ¢ and j, the weight
of their interest alignment will be a score between 0 and 50 indicating how
many activities or hobbies that they have in common.

We will refer to this as the activity /hobby network. This network is undi-
rected, since if student 7 shares = activities or hobbies with student j, then
student j also shares x activities or hobbies with student i. It is also weighted,
since the score is between 0 and 50. Finally, this network is loopless, because
it would not make sense to look at the activity/hobby alignment of students
with themselves, since every student would have perfect alignment of activities
and hobbies with him or herself.

Because the network is undirected, the researchers have only saved the portion
of the adjacency matrix that includes the entries a;; where j > 1.

Example 3.7.2 Friendship network

This network is collected using the same 50 students as the activity /hobby
network. To collect the second network, we ask each student to rate how good
of friends they are with other students, on a scale from 0 to 1. A score of 0
means they are not friends with the student or do not know the student,
and a score of 1 means the student is their best friend. We will refer to
this network as the friendship network. This network is directed, since two
students may differ on their understanding of how good of friends they are.
It is also weighted, since the score is between 0 and 1. Finally, this network
is also loopless, because it would not make sense to ask students how good of
friends they are with themselves.

A _friend = sbm(n=[25, 251, p=[[.8, .41, [.4, 111, wt=np.random.beta, wtargs=wtargsf,
directed=True)

Symmetrizing adjacency matrices

If we wanted to learn from the friendship network about whether two people
shared similar hobbies/activities, a reasonable first place to start might be to
symmetrize the friendship adjacency matrix. The activity /hobby network is undi-
rected, which means that if a student i shares hobbies with student j, then stu-
dent j also shares hobbies with student i¢. On the other hand, the friendship
network is directed. Since our question of interest is about an undirected net-
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Figure 3.7.1 A comparison of the two networks that we sampled to use in this section.
The activity /hobby network is shown in (A), and the friendship is shown in (B).

work but the network we have is directed, it might be useful to take the directed
friendship network and build an undirected network from it.

We also might seek to symmetrize the friendship adjacency matrix because
we think that asymmetries that exist in the adjacency matrix are just noise. We
might assume that the adjacency entries a;; and a;; relate to one another, so
together they might be able to produce a single summary number that better
summarizes their relationship all together.

As a final reason, we might think that the asymmetries are meaningful, but
that they are not feasible to consider. Many statistical models for networks, and
many techniques developed to analyze networks, might only have interpretations
for undirected networks. This means that if we want to use these techniques, we
might have to settle for using undirected networks, even if our data are not
undirected.

Remember that in a symmetric matrix (for an undirected network), a;; = a;s,
so in an asymmetric adjacency matrix (for a directed network), a;; # aj; for at
least one pair of nodes i and j. To symmetrize the friendship network, we want
a new adjacency value, which we will call w;;, which will be a function of a;;
and aj;. Then, we will construct a new adjacency matrix A’, where each entry
al ; and a;i are set equal to w;;. The little apostrophe just signifies that this is a

potentially different value than either a,;; or aj;. Note that by construction, A’

! li
ij — Qi

we will look at a generic adjacency matrix that looks like this:

is in fact symmetric, because a; due to how we built A’. For this matrix,

ail a12 A1n

an—1,n

anl Qp,on—1 Qpn
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Ignoring a “triangle” of the adjacency matrix

The easiest way to symmetrize a network A is to just ignore part of it entirely.
In the adjacency matrix A, we have an upper and a lower triangular part of the
matrix. The upper triangle looks like this:

a1 ai2 A1n
0
A =
. An—1,n
0 0 Ann

This is called the upper triangle because if we look at the non-zero entries, they
form a triangular shape in the matrix when the matrix is in its row/column
orientation like this. Note this matrix is identical to A for any row ¢ and column
j where 7 > ¢, but is equal to 0 for any entries where j < i. The transpose of
this matrix is:

ail 0 0
AT — a12
0
ain n—1,n Qnn

So when we add the two together, we get this:

2@11 a2 A1n

ai2
A+AT =
: Gn—1,n
G1n Qp—1,n Qann

We just need to subtract back the diagonal of A, which we will do using the
matrix diag(A) which has values diag(A); = a;i, and diag(A);; = 0 for any
1

a1 ai2 A1n

A=At AT —diag(A) = |“2 ]
. t. o an—l,n

ain - Ap—1n Apn

which leaves A’ to be a matrix consisting only of entries which were in the upper
right triangle of A. A" is obviously symmetric, because a;; = a}; for all 7 and j.
Since the adjacency matrix is symmetric, the network A’ represents is undirected.

So what does this mean in terms of the network itself? This means that the
network originally had edge weights a;;, where a;; might not be equal to a;;.
Let’s consider this in terms of the activity /hobby network. The activity /hobby
network, which is undirected, perhaps has been stored in a representation where
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Box 3.7.3 When is “ignoring” a triangle appropriate?

When we have an undirected network, it is often the case that the network
will be stored only as a single “triangle” with the diagonal, since half of the
matrix is redundant. Therefore, we can potentially save space by only storing
a little over half of it (because we need to retain only one triangle + the
diagonal, and can ignore the other triangle of the matrix). So if we want the
actual adjacency matrix, we need to “ignore” the uninformative triangle, and
“retain” the informative one, like the procedure above.

the entire lower-left triangle is just zeros, for space purposes. When we then
upper-right symmetrize it, the network looks like this, using the graspologic
function symmetrize with method="triu" (upper triangular symmetrization):

from graspologic.utils import symmetrize

# upper-triangle symmetrize the upper triangle
A_activity = symmetrize(A_activity_uppertri, method="triu")

We plot the two heatmaps in Figure 3.7.2.
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Figure 3.7.2 The matrices A_activity_ uppertri and A_activity_triu_symmetrized
showing the (A) upper triangle, (B) and upper-right symmetrized adjacency
matrices.

Likewise, if the network only had the lower triangle stored, we could do the
same thing but with method="tril" to retain the lower triangle of the matrix.

Taking a function of the two values

There are many other ways we use a function of a;; and a;; to get a symmetric
matrix (and an undirected network). One is to just average. That is, we can let
the matrix A" be the matrix with entries a;; = @iy tagi
form, this operation looks like this:

for all ¢ and j. In matrix
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1
A= F(A+ AT)

1 ail cee [e5TD) ail ee [02°%}
== +
an1 eee Apn A1n ves Apn
[L(a1+an) ... (@i, +an)
_%(aﬂl +'a1n) %(ann,+'ann)
i ai %(aln + an1)
_%(anl +—a1n) . Ann

As we can see, for all of the entries, a}; = 1(aij + aj;), and also al; = L(aj; +
ai;). These quantities are the same, so a}; = a’;, and A’ is symmetric. As the
adjacency matrix is symmetric, the network that A’ represents is undirected.

The asymmetry in the friendship network means student ¢ might perceive their
friendship with student j as being stronger or weaker than student j perceived
about student . Instead of just arbitrarily throwing one of those values away, we
can average if it would better represent their friendship. This produces a single
friendship strength a;; where a}; = a’;.

We can implement this with graspologic as follows:

# symmetrize with averaging
A_friend_avg_sym = symmetrize(A_friend, method="avg")

We encourage readers to plot the outcome and convince themselves that it is,
in fact, symmetric using the is_symmetric() function.

We will will use the friendship network symmetrized by averaging (A_friend_avg_sym)
in several of the below examples, which we will call the “undirected friendship
network”.

3.7.3 Diagonal augmentation

Numerous techniques which operate on adjacency matrices require them to be
positive semidefinite. We will explore this concept in Section 4.11.2. When we
have a loopless network, a common practice is to set the diagonal to zero. This
leads to adjacency matrices being indefinite (which means not positive semidefi-
nite). This means that many network machine learning techniques cannot operate
on these adjacency matrices. However, as we mentioned before, these entries are
not actually zero, but simply do not exist, and so we need a way to represent
them.

Diagonal augmentation is a procedure for imputing the diagonals of adjacency
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matrices for loopless networks. This gives us “placeholder” values that do not
cause this issue of indefiniteness, and allow our techniques to work. For a simple
network, the adjacency matrix will look like this:

0 a12 eee A1n
a1
A =
Gn—1,n
An1 vee Gn,n—1 0

What we do is impute the diagonal entries using the fraction of possible edges
which exist for each node. This quantity is simply the node degree d; (the number
of edges which exist for node 4) divided by the number of possible edges node i
could have (which would be node i adjacent to each of the other n — 1 nodes).
Remembering that the degree matrix D is the matrix whose diagonal entries are
the degrees of each node, the diagonal-augmented adjacency matrix is given by:

dy

n_1 Q12 es QA1n
A=Ayt p_ |
n—1
An—1,n
d
an1 e Gp,n—1 njl

When the matrices are directed or weighted, the computation is a little different,
but fortunately graspologic will handle this for us. Let’s see how we would apply
this to the directed friendship network:

from graspologic.utils import augment_diagonal

A_friend_aug = augment_diagonal(A_friend)

We will rotate back to the problem of positive semidefiniteness in Section 4.5 as
it relates to statistical models for networks, and will pivot back again in Section
5.3 for the implications of this concept on adjacency matrices.

Regularizing the edges of weighted networks

We are often concerned with the bias/variance tradeoff. The bias/variance trade-
off is an unfortunate side-effect that concerns how well a learning technique will
generalize to new datasets [8].

1 Bias is an error from erroneous assumptions we make about the system that
we are learning about. For instance, if we have a friendship network, we might
make simplifying assumptions, such as an assumption that two athletes from
different sports have an equally likely chance of being friends with a member
of the band. This might be flat out false, as band members might be selectively
better friends with athletes depending on which sports they play.
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2 Variance is the degree to which an estimate will change when given new data.
An assumption that a football player has a higher chance of being friends with
a band member might make sense if the band performs at football games.

The “trade-off” is that these two factors tend to be somewhat at odds, in that
raising the bias tends to lower the variance, and vice-versa:

1 High bias, but low variance: Whereas a lower variance model might be better
suited to the situation where the data we expect to see is noisy, it might not as
faithfully represent the underlying dynamics we think the network possesses.
A low variance model might ignore that athletes might have a different chance
of being friends with a band member based on their sport all together. This
means that while we won'’t get the student relationships correct, we might still
be able to get a reasonable estimate that we think is not due to overfitting.
In this case, we have smoothed away signal from the data at the expense of
avoiding noise.

2 Low bias, but high variance: Whereas a low bias model might more faithfully
model true relationships in our training data, it might fit training data a little
too well. Fitting the training data too well is a problem known as overfitting.
If we only had three football team members and tried to assume that football
players were better friends with band members, we might not be able to well
approximate this relationship because of how few individuals we have who
reflect this situation.

Here, we show several strategies to reduce the variance (but, add bias) due to
edge weight noise in network machine learning.

Sparsification of the network

The procedure of sparsification is one in which we take a network remove edges
from it, which is described by [9] and [10]. Removing edges, in terms of the
adjacency matrix, is analogous to setting the corresponding adjacencies to zero.
A matrix with many zero entries is called a sparse matrix. So, the reason we call
the removal of the edges from a network sparsification is that we are producing
a network with a sparse adjacency matrix.

Sparsification is a general class of edge regularization techniques, and includes
many flavors. Here, we discuss a few of them. In network sparsification, we will
often pick some property of the network (such as a particular edge weight) and
remove edges in an attempt to preserve something about this particular property.

A useful tool to study how we might want to go about sparsifying the network
is called the edge-weight distribution of our network sample, which is the distri-
bution of values that the edge weights of the network take. The most common
way to visualize the edge-weight distribution is an edge-weight histogram. This is
similar to the node-degree histogram we worked with in Section 3.6, but instead
of node degrees, we look at the edge-weights. Let’s take a look at the friendship
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network, and then take a look at its edge-weight distribution. Because the friend-
ship network is undirected, we need to remove its diagonal elements before we
visualize the edge-weight distribution. We also remove edges with zero-weights
for visualization purposes:

def discard_diagonal(A):

A function that discards the diagonal of a matrix,

and returns its non-diagonal edge-weights.

# create a mask that is True for the non-diagonal edges
non_diag_idx = np.where(~np.eye(A.shape[0], dtype=bool))
return A[non_diag_idx].flatten()

# obtain the non-diagonal edge-weights

friend_nondiag_ew = discard_diagonal(A_friend)

# get the non-zero, non-diagonal edge weights
friend_nondiag_nz_ew = friend_nondiag_ew[friend_nondiag_ew > 0]

# plot the histogram, as above
histplot(friend_nondiag_nz_ew, bins=20, binrange=(0, 1))

We show this plot in Figure 3.7.3(C).
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Figure 3.7.3 (A) The adjacency matrix before truncation. (B) The adjacency matrix
after truncation. (C) The non-zero, non-diagonal edge weights before truncation. (D)
The non-zero, non-diagonal edge weights after truncation.

Truncation removes the smallest edges

The simplest way to reduce the variance due to edge weight noise is called edge
truncation. Edge truncation is a process by which we choose some threshold
value 7, and remove all of the weights which are smaller than 7 but retain the
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weights that are bigger than 7. For edges that are equal to 7, what we will want
to do depends on the strategy we are employing. We’ll arbitrarily set nodes < 7
to zero in our case.

7 is typically chosen with one of the two strategies below:

1 Choose 7 arbitrarily: after looking at our network and doing some preliminary
visualizations, we might determine that our edge weights tend to be “multi-
modal”. This means that when we look at the edge-weight distribution, we see
multiple “clusters” of edge weight bins which are larger, or smaller. For a lot
of networks, these small edges might be very noise induced; that is, the small
edges might just spuriously be close to, but not quite, zero, due to errors in
the measuring process. We might just want to remove these edges entirely for
subsequent analysis.

2 Choose 7 using the quantile function: In this strategy, we start with a desired
fraction ¢. Then, we pick 7 such that a ¢ fraction of the edges have a weight
less than 7, and 1 — ¢ fraction of the edges have a weight exceeding 7. Such
a value 7 is picked through the quantile function, which we will learn more
about below. We then identify the edges whose edge-weights are below 7 and
then set these edge weights to 0, while the remaining edge weights are left
unchanged. For instance, if we use a fraction of 0.5, this means that we take
the smallest 50% of edges and set the weights to zero, while the largest 50%
of edges retain their initial weights. There are two potential major pitfalls to
this process, which we elaborate on below.

This is called truncation because we are taking the edge-weight distribution, and
truncating (cutting it off) below the value 7.

With respect to what to do with edges that are equal to 7, when we choose
a threshold arbitrarily, we can do whatever we want with them, as long as we
are consistent if we have multiple networks we are truncating. What we mean
by this is that we can select to remove edges less than or equal to this threshold,
or retain edge weights greater than or equal to the threshold. When we truncate
on the basis of a percentile, however, this is not quite the case. We will want to
remove all the edges below 7, and truncate away the remaining edges equal to 7
at random until we have truncated the desired fraction of edges in total.

Let’s see how this works in practice. In the edge-weight histogram, in Figure
3.7.3 we notice two “peaks” to the non-zero edge-weights.

If we think that the smaller peak edge-weights are spurious/noise, we might
want to threshold somewhere in between the smaller and the larger peaks, like
near 0.4, which is highlighted in 3.7.3(C).

def truncate_network(A, threshold):
A_cp = np.copy(A)
A_cp[A_cp <= threshold] = 0
return A_cp

tau = 0.4
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A_friend_trunc = truncate_network(A_friend, threshold=tau)

The next thing to look at is the adjacency matrix, before and after truncation.
We show these plots in Figure 3.7.3(A) and 3.7.3(B). Notice that the smallest
weight edges in the network (in this case, the ones with edge weights < 0.4) have
been replaced with zeros. As we can see, a lot of the edges in the upper right
and upper left, which were previously small, are now zero. This is reflected in
the edge-weight distribution:

friend_trunc_nondiag_ew = discard_diagonal(A_friend_trunc)

# get the non-zero, non-diagonal edge weights

friend_trunc_nondiag_nz_ew = friend_trunc_nondiag_ew[friend_trunc_nondiag_ew > 0]
histplot(friend_trunc_nondiag_nz_ew, bins=20, binrange=(0, 1))

which is shown in Figure 3.7.3(D). All of the edges with weights less than 7 = 0.4
have been truncated away.

A slight caveat to this procedure is that, if we use the percentile approach
and the network is undirected, we need to exclude one triangle of the network
to obtain the appropriate percentile. This is because when a;; = a;;, we would
otherwise count an edge twice if we just used the adjacency matrix to obtain
percentiles. We will see this more in the example on thresholding below.

Thresholding converts weighted networks to unweighted
networks

Closely related to truncation is the process of thresholding. Like truncation, we
begin with a threshold 7, which is usually chosen arbitrarily or based on a quan-
tile, like for truncation. However, there is one key difference: when we threshold
a network, we set the edges below 7 to zero, and the edges greater than 7 to one.
This has the effect of taking a weighted network, and effectively transforming it
into an unweighted network.

We will show how to use the quantile approach to thresholding with the ac-
tivity /hobby network. A quantile is a value where ¢ fraction of the data is less
than a value, and 1 — ¢ fraction of the data exceeds a value. For instance, the
0.5 quantile of a set of data would correspond to the median, where 50% of the
numbers are smaller than the median and 50% are larger than the median.

We will threshold by choosing 7 such that 7 is the median (0.5 quantile, or 50"
percentile) of the edge-weight distribution. Remember as we learned in Section
3.1, that if the network itself is loopless, the diagonal entries simply do not exist;
0 is simply a commonly used placeholder. For this reason, when we compute
quantiles of edge-weights, we need to exclude the diagonal if the network is
loopless.

Since this network is undirected, we also need to restrict our attention to
one triangle of the corresponding adjacency matrix. We choose the upper-right
triangle arbitrarily, as the adjacency matrix’s symmetry means the upper-right
triangle and lower-right triangle have identical edge-weight distributions. We can
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Box 3.7.4 Why is thresholding with the quantile function desirable?

Remember that in Section 3.3.1, we defined the network density for a simple
network as:

Zj>i Qij
—_— .
(3)
If we threshold this network at a percentile of p, this corresponds to using

the quantiling approach with a fraction of ¢ = 1%0. Ideally, we will set 1 — ¢

fraction of the edges to 1, and a ¢ fraction of the edges to zero. We will use
a placeholder ¢ = 155 to denote the fraction of edges that we are setting to
zero through a percentile.

If we are able to do this perfectly, then >, ; a;; = (1—¢q) (). Stated another

way, 1 — g fraction of all possible edges in the resulting unweighted network

density(A) =

will (ideally) exist.

Therefore:

(1-9)()
(2)

So when we threshold the network at a percentile p, and we are actually able

to set a ¢ = £~ fraction of the edges to zero and a 1 — q fraction of the edges

100
to one, we end with a network of density equal to 1 —¢g. We will see conditions

density(A) = =1-gq

as to when this will, and will not, be possible to do later on.

do this using numpy. This network is loopless and undirected, so we will want to
exclude both the diagonal and only perform our analysis on a single triangle of
the matrix:

# find the indices which are in the upper triangle and not in the diagonal
upper_tri_non_diag_idx = np.where(np.triu(np.ones(A_activity.shape), k=1).astype(bool))
q = 0.5 # desired percentile is 50, or a fraction of 0.5
histplot(A_activity[upper_tri_non_diag_idx].flatten())

# use the quantile function with the desired fraction q

tau = np.quantile(A_activity[upper_tri_non_diag_idx], g=q)

So, let’s see what happens when we just compute 7 using the ¢ fraction of the
non-diagonal, upper triangular entries of A, and then threshold A using 7. To
do this, we will just check the number of edges greater than 7, and the number
less than or equal to 7. Since we used ¢ = 0.5 as our desired quantile, we should
anticipate that these numbers should be very close to equal:

n_lteg_tau = np.sum(A_activity[upper_tri_non_diag_idx] <= tau)

n_gt_tau = np.sum(A_activity[upper_tri_non_diag_idx] > tau)

print("Number of edges less than or equal to tau: {}".format(n_lteq tau))
print("Number of edges greater than to tau: {}".format(n_gt_tau))
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The number of edges < 7 are likely not close to equal the number of edges
> 7: they should be about 50% larger than the number of edges > 7. So what
happened?

The duplicate value pitfall

Let’s imagine an array that was [1,2,3,4] and [1,2,2,4], and we chose to thresh-
old at the 50" percentile (the 0.5 quantile). The first array would give a 0.5
quantile of 2.5. If we thresholded with this value, we would get [0,0,1,1], and
the number of elements retained after thresholding would be 50% ones and 50%
zeros, like we expected. On the other hand, the 0.5 quantile of the second array
is 2, and if we used the thresholding approach above we would get [0,0,0,11,
which has 75% of the values taking 0 and 25% of the values taking one.

This means that if we pass in a quantile ¢ and we expect that ¢ fraction of
the points will have a value of 0 after truncation/thresholding, we are going to
need to be very careful with our data to handle points that are equal to the
corresponding value of 7. To do this, one way is to assign edges less than 7 to
zero, and the edges greater than 7 to one. Then, for edges equal to 7, we can
to randomly assign them to a zero or one, until we obtain the desired threshold.
This can be done with the pseudocode in Algorithm 1. We could write a similar
utility for truncating with the quantile function.

Algorithm 1: Thresholding an adjcency matrix with random tiebreaking.

Data: A: an adjacency matrix
q: a fraction between 0 and 1
Result: an adjacency matrix thresholded at the ¢ fraction.

1 Let d be the minimum non-zero difference between any two elements of A.
2 foriinl:ndo
3 for j in1 :n do
4 if i =3 and A is hollow then
5 ‘ €;; = 0 for all 4.
6 else
7 ‘ Let ¢;; be a random number between 0 and %
8 end
9 end
10 end
11 if A is symmetric then
12 €= 6+26T, which makes € a symmetric matrix.
13 end

14 Compute the augmented adjacency matrix, A" = A + 5.

15 Compute the appropriate threshold 7 using A’.

16 Threshold A’ by setting elements where a}; > 7 to one, and a}; < 7 to
ZEero.
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This algorithm adds a very small amount of noise to the matrix A that we
are thresholding. Note that we take care to ensure that if A is hollow and the
network is loopless, we do not add random noise to the diagonal. Otherwise, we
might end up setting some diagonal elements to 1 when we threshold. Further,
if A is symmetric and the network is undirected, we must add the same amount
of noise to both entries a;; and aj; by symmetrizing the “noise matrix” e. This
noise is small enough that it is an order of magnitude (a factor of 10) smaller
than the smallest appreciable difference in any two non-zero elements of A.

After we add this matrix to A, there is a probability of zero that any two
elements of A will have the same value. Further, since we added noise that was
an order of magnitude smaller than any non-zero differences of elements of A, it
is impossible for an item that was originally greater than 7 to now be less than
the desired 7, and vice-versa. This strategy is called a random tiebreaking, since
we broke ties that occur at exactly 7 randomly.

This can be implemented in python as follows:

from numpy import copy

def min_difference(arr)
b = np.diff(np.sort(arr))
return b[b>0].min()

def quantile_threshold_network(A, directed=False, loops=False, q=0.5):
# a function to threshold a network on the basis of the
# fraction q
A_cp = np.copy(A)
n = A.shape[0]
E = np.random.uniform(low=0, high=min_difference(A)/10, size=(n, n))
if not directed:
# make E symmetric
E = (E + E.transpose())/2
mask = np.ones((n, n))
if not loops:
# remove diagonal from E
E = E - np.diag(np.diag(E))
# exclude diagonal from the mask
mask = mask - np.diag(np.diag(mask))
Ap = A_cp + E
tau = np.quantile(Ap[np.where(mask)].flatten(), g=q)
A_cp[Ap <= tau] = 0; A_cp[Ap > tau] =1
return A_cp

A_activity_thresholded03 = quantile_threshold_network(A_activity, g=0.3)
A_activity_thresholded07 = quantile_threshold_network(A_activity, g=0.7)

We visualize these two thresholded adjacency matrices along with the unweighted
adjacency matrix in Figure 3.7.4.

Now, we confirm that we didn’t run into the duplicate value pitfall. We will do
this by writing a utility which computes the network density from an adjacency
matrix for a simple network, and then illustrate that the fraction ¢ that we
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Figure 3.7.4 (A) the weighted adjacency matrix of the activity/hobby network. (B)
the weighted adjacency matrix of the activity /hobby network after thresholding at a
fraction of 0.3. (C) the weighted adjacency matrix of the activity /hobby network
after thresholding at a fraction of 0.7.

indicated ends up being 1— the network’s density, based on Remark 3.7.4. Since
q = 0.3 for the network we are checking below, we should obtain a network
density of 1 — ¢ =0.7:

from graspologic.utils import is_unweighted, is_loopless, is_symmetric

def simple_network_dens(X):
# make sure the network is simple
if (not is_unweighted(X)) or (not is loopless(X)) or (not is_symmetric(X)):
raise TypeError("Network is not simple!")
# count the non-zero entries in the upper-right triangle
# for a simple network X
nnz = np.triu(X, k=1).sum()
# number of nodes
n = X.shape[0]
# number of possible edges is 1/2*nx(n-1)
poss_edges = 0.5*nx(n-1)
return nnz/poss_edges

print("Network Density: {:.3f}".format(simple_network_dens(A_activity_thresholded03)))
# Network Density: 0.700

So our solution achieved the desired network density.
We call this the duplicate value pitfall because we can only run into it if our
adjacency matrix has the same value duplicated multiple times.

The “underly ambitious” pitfall
The next pitfall of using a fraction ¢ is actually a special case of the duplicate
value pitfall listed above: we might choose an underly ambitious fraction to
truncate/threshold with. By underly ambitious, we mean that the adjacency
matrix does not even have a 1 — ¢ fraction of non-zero edges. When we threshold
A with a fraction of ¢, we can spot this pitfall fairly easily by simply checking
the fraction of O-weight edges ahead of time.

For an example, let’s consider a network where 50% of the possible edges are
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0, and the other 50% are 1 (the network density is 0.5). If we were to choose a
quantile of 0.3, quantiling will still only give us a network density of 0.5, and not
0.7 like we might have expected from Remark 3.7.4.

Unfortunately, there is no quick fix like there was for the duplicate value pitfall;
if we run into the underly ambitious pitfall and tried to use the randomization
procedure, the “solution” would end up setting edges with a value of zero in the
adjacency matrix to one, which does not make much sense. To avoid this pitfall,
we need to analyze our densities ahead of time if we want to use quantiling, and
ensure that the fraction we choose is not underly ambitious.

If we had a collection of weighted networks that we wanted to threshold or
truncate en masse using a fraction ¢, we could do this by plotting a histogram
of the unweighted network densities(e.g., the ratio of edges to potential edges,
ignoring weightedness), and ensuring that 1 — g is less than all of the unweighted
network densities in our collection.

Box 3.7.5 With all these pitfalls, why would we quantile?

When we analyze networks using summary statistics, it is often the case that
we want to argue that our network summary statistic captures some sort of
property of the networks that will subsequently be informative. Let’s imagine
that we have a collection of networks that are in one of two groups (such as
brain networks from male worms and female worms), and we want to argue
that the brains of female worms tend to be more clustered than the brains of
male worms.

Many network summary statistics that we might be interested in tend to
be correlated with the network density. This means that when the network
density is high, other summary statistics that we could use (such as the corre-
lation coefficient) might be artificially higher or lower simply as a product of
the network having more (or less) edges, rather. For this reason, if we want to
analyze a collection of networks using summary statistics, it might make sense
to analyze a collection of networks with the same network density. This is be-
cause in some sense, analyzing the networks with a similar network density
will “decouple” this correlation with the network density, since the network
density will no longer be changing across the networks.

When can we ignore these pitfalls entirely?

If our network fulfills two properties, we are guaranteed that we will not run
into the quantiling pitfalls. First, if the network is dense (a network where all
possible entries a;; are non-zero, with arbitrarily small or large edge-weights),
we cannot possibly run into the underly ambitious pitfall, since that will only
arise when there are zero-weight edges in the adjacency matrix. Second, if the
adjacency matrix does not have any duplicate values, we cannot run into the
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duplicate value pitfall either, because we cannot have ties at the desired fraction
if there are no duplicated values in the edge weights.

When considering when a network might run into these pitfalls using the
adjacency matrix, be sure to only consider appropriate entries of the adjacency
matrix. This means restricting analysis to the upper triangle or the lower triangle
if the network is undirected, and removing the diagonal if the network is loopless.
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Edge-weight global rescaling

Sections 3.6 and 3.7 explored techniques for regularization. Building on this
foundation, we now turn our attention to methods for rescaling edge weights in
weighted networks. This section covers:

1 Z-score standardization of edge weights,
2 Ranking-based approaches for edge weight normalization, and
3 Logarithmic transformation of edge weights.

Edge-weight rescaling helps compare networks with different edge weight dis-
tributions or scales. These techniques serve to normalize network data, making it
more suitable for comparative analyses and certain machine learning algorithms.

With weighted networks, it is often the case that we might want to reshape
the distributions of edge-weights to highlight particular properties. Notice that
the edge-weights for the friendship network takes values between 0 and 1, but
the activity network takes values between 0 and almost 15. How can we possibly
compare between these two networks where the edge-weights take such different
ranges of values? We might turn to standardization, which allows us to place
values from different networks on the same scale.

z-scoring standardizes edge weights using the normal distribution

The first approach to edge-weight standardization is known commonly as z-
scoring. Suppose that A is the adjacency matrix, with entries a;;. With a z-score,
we will rescale the weights of the adjacency matrix, such that the new edge-
weights (called z-scores) are approximately normally distributed. The reason this
can be useful is that the normal distribution is pretty ubiquitous across many
branches of science, and therefore, a z-score is relatively easy to communicate
with other scientists. Further, many things that exist in nature can be well-
approximated by a normal distribution, so it seems like a reasonable place to
start to use a z-score for edge-weights. To use the z-score, we will construct the
z-scored adjacency matrix Z, whose entries z;; are the corresponding z-scores of
the adjacency matrix’s entries a;;. For a weighted, loopless network, we use an
estimate of the mean, fi, and the unbiased estimate of the variance, 62, which
can be computed as follows:

. 1
= ——— Qi
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The z-score for the (i, 7) entry is simply the quantity:
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Since our network is loopless, notice that these sums are for all non-diagonal
entries where i # j. If the network were not loopless, we would include diagonal
entries in the calculation, and instead would sum over all possible combinations of
¢ and j. The interpretation of the z-score z;; is the number of stadard deviations
that the entry a;; is from the mean, f.

We will demonstrate on the directed friendship network. We can implement
z-scoring for a loopless directed network as follows:

from graspologic.utils import is_loopless, is_symmetric
from scipy.stats import zscore

def z_score_directed_loopless(X, undirected=False):
if not is_loopless(X):
raise TypeError("The network has loops!")
if is_symmetric(X):
raise TypeError("The network is undirected!")
# the entries of the adjacency matrix that are not on the diagonal
non_diag_idx = np.where(~np.eye(X.shape[0], dtype=bool))
Z = np.zeros(X.shape)
Z[non_diag_idx] = zscore(X[non_diag_idx])
return Z

ZA_friend = z_score_directed_loopless(A_friend)

Note that in the above code snippet, we throw an error if the network is
undirected (and the adjacency matrix is symmetric): remember that we want
to be careful to restrict our analysis to the upper triangle if the network is
undirected and loopless. This won’t really change the estimate of the mean, but
the variance will be slightly different. The sums would be over j > ¢, and the
normalizing factors would be (}) instead of n(n — 1).

The theory for when, and why, to use z-scoring for network machine learning
tends to go something like this: many things tend to be normally distributed, so
perhaps that is a reasonable expectation for our network, too. Unfortunately, we
find this often to not be the case for network data. In fact, we often find that
the specific distribution of edge weights itself often might be almost infeasible to
identify in a population of networks, and therefore often irrelevant for subsequent
analyses. In this case, we turn to ranking the edges.

Ranking edges preserves ordinal relationships

The idea behind ranking is as follows. We often don’t know how the distribution
of edge weights varies between a given set of networks. For this reason, we may
want to virtually eliminate the impact of that distribution almost entirely. How-
ever, we know that if one edge-weight is larger than another edge-weight, we do
in fact trust that relationship. What this means is that we want something which
preserves ordinal relationships in our edge-weights, but ignores other properties
of the edge-weights. An ordinal relationship just means that we have a natural
ordering to the edge-weights. This means that we can identify a largest edge-
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weight, a smallest edge-weight, and every position in between. When we want to
preserve ordinal relationships in our network, we pass the non-zero edge-weights
to ranks. We will often use the abbreviation ptr to define this function because
it is so useful for weighted networks. We pass non-zero edge-weights to ranks as
in Algorithm 2.

Algorithm 2: Passing an adjacency matrix to ranks

Data: A is an adjacency matrix.
Result: The adjacency matrix, after passing to ranks.
1 Identify all of the non-zero entries of the adjacency matrix A.
Let n,. be the number of non-zero entries of the adjacency matrix A.

N

Rank all of the non-zero edges in the adjacency matrix A, where for a

w

non-zero entry a;;, rank(a;;) = 1 if a;; is the smallest non-zero
edge-weight, and rank(a;;) = nn, if a;; is the largest edge-weight. Ties
are settled by using the average rank of the tied entries.

4 Report the weight of each non-zero entry (¢,7) as r;; = M, and for

Npz+1
eachh zero entry as r;; = 0.

Below, we pass-to-ranks the directed friendship network using graspologic:

from graspologic.utils import pass_to_ranks

RA_friend = pass_to_ranks(A_friend)

A plot of the adjacency matrices before and after passing to ranks, as well as
the edge-weight histograms before and after passing to ranks, is shown in Figure
3.8.1.

The edge-weights for the adjacency matrix R after ptr has the interpretation
that each entry r;; which is non-zero is the fraction of non-zero edge weights
that a;; exceeds. This is unique in that it is completely distribution-free, which
means that we do not need to assume anything about the distribution of the
edge-weights to have an interpretable quantity. On the other hand, the z-score
had the interpretation of the number of standard deviations from the mean,
which is only a sensible quantity to compare if the population of edge-weights
are normally distributed.

Another useful quantity related to pass-to-ranks is known as the zero-boosted
pass-to-ranks. Zero-boosted pass-to-ranks is conducted as in Algorithm 3.

The edge-weights for the adjacency matrix R’ after zero-boosted ptr have the
interpretation that each entry r} ; 1s the quantile of that entry amongst all of the
entries. Let’s instead use zero-boosted ptr on our network:

RA_friend_zb = pass_to_ranks(A_friend, method="zero-boost")

We show the adjacency matrix after zero-boosted ptr, along with the edge-weight
histogram (including zero-weight edges), in Figure 3.8.2.
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Figure 3.8.1 (A) the adjacency matrix before passing to ranks for the friendship
network. (B) the adjacency matrix after passing to ranks. (C) the edge-weight
histogram (including zero-weight edges) before passing to ranks. (D) the edge-weight
histogram (including zero-weight edges) after passing to ranks.

Algorithm 3: Zero-boosted pass to ranks

Data: A is an adjacency matrix.
Result: The adjacency matrix, after passing to ranks.

1 Identify all of the non-zero entries of the adjacency matrix A and the
zero-weighted entries of the adjacency matrix A.

2 Let n,, be the number of non-zero entries of the adjacency matrix A, and
n, be the number of zero-weighted entries of the adjacency matrix A.
Note that n,, + n, = n?, since A has n? entries.

3 Rank all of the non-zero edges in the adjacency matrix A, where for a
non-zero entry a;;, rank(a;;) =1 if a,; is the smallest non-zero
edge-weight, and rank(a;j) = ny. if a;; is the largest edge-weight. Ties
are settled by using the average rank of the two entries.

4 Report the weight of each non-zero entry (i,7) as rj; = nstrank(ai;)

1 and
for each zero entry as rgj =0.

Thresholding as a decimation of ranking

The thresholding approach we learned in Section 3.7.5 can be thought of as a
decimation of ranking, assuming that the ranking implementation handles ties
randomly (the implementation in graspologic does not, as ties are settled by
the average rank, but we would encourage you to implement one that does as an
exercise). This means that we are reducing the number of potential values that
the resulting network weights can take (here, from normalized ranks to binary
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Figure 3.8.2 (A) the adjacency matrix, after zero-boosted ptr. (B) the edge-weight
histogram, after zero-boosted ptr. Compare this to Figure 3.8.1(B) and 3.8.1(D),
respectively.

values). For instance, if we picked a threshold of 0.5, there is some corresponding
rank (or value in between two ranks), where all of the elements of the adjacency
matrix with a rank lower than a given threshold 7. have corresponding weights
lower than 7 and all of the elements of the adjacency matrix with a rank higher
than a given threshold 7. have corresponding weights higher than 7. Then, we
can simply threshold the ranked adjacency matrix using 7.

Logging reduces magnitudinal differences between edges

When we look at the distribution of upper-triangle edge-weights for the activi-
ty/hobby network or the friendship network, we notice a strange pattern, known
as a right-skew. This is shown in Figure 3.8.3(A). Informally, a distribution is
right-skewed if a large fraction of the points take relatively small values, and then
a small portion of the points take relatively large values. Notice in this figure,
for instance, that most points have an edge weight between 0 and 2, but and
a small portion of points have an edge-weight between 2 and 10. This is called
a “right-skew” because the histogram “tails off” as the values go to the right
(increase).

What if we want to make these large values more similar in relation to the
smaller values, but we simultaneously want to preserve properties of the underly-
ing distribution of the edge-weights? Well, we can’t useptr‘, because ‘ptr will
throw away all of the information about the edge-weight distribution other than
the ordinal relationship between pairs of edges. To interpret what this means, we
might think that there is a big difference between sharing no interests compared
to three interests in common, but there is not as much of a difference in sharing
ten interests compared to thirteen interests in common.

To do this, we instead turn to the logarithm function. The logarithm function
log1o(z) is defined for positive values x as the value ¢, where z = 10°. In this
sense, it is the “number of powers of ten” to obtain the value x. The logarithm
function is shown in Figure 3.8.3(B).
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Figure 3.8.3 (A) The upper-triangle edge-weight histogram for the activity /hobby
network. Notice that the histogram “tails off” towards the right. (B) The value for
the base-10 logarithm function for given values of x.

As x increases, the log of z increases by a decreasing amount. Let’s imagine
we have three values, z = .001, y = .1, and z = 10. A calculator will give us that
logio(x) = —3,10g10(y) = —1, and log1p(z) = 1. Even though y is only .099 units
bigger than x, its logarithm log10(y) exceeds log1o(x) by two units. on the other
hand, z is 9.9 units bigger than y, but yet its logarithm log1¢(z) is still the same
two units bigger than logio(y). This is because the logarithm is instead looking
at the fact that z is one power of ten, y is —1 powers of ten, and z is —3 powers
of ten. The logarithm has collapsed the huge size difference between z and the
other two values x and y by using exponentiation with base ten.

We can use the logarithm function to reduce the huge size difference between
the values in our activity/hobby network. However, because logy(0) is not de-
fined, we need to augment the entries of the adjacency matrix if it contains zeros.
To do this, we will “inflate” these values by a negligibly small magnitude. We
show how to implement this in Algorithm 4.

Algorithm 4: Log transforming a network with zero-weight edges.

Data: A is an adjacency matrix.
b the base to log transform with.

Result: The adjacency matrix, after log transformation.

Identify the entries of A which take a value of zero.

Identify the smallest entry of A which is not-zero, and call it a,,.

Compute a value € which is an order of magnitude smaller than a,,. Since
we are taking powers of b, a single order of magnitude would give us
that e = .

4 Take the augmented adjacency matrix A’ to be defined with entries
aj; = aij + .

Log transform A’ with a base of b.

W N =

%]
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The first process of this procedure is called a zero augmentation. We can code
up the log transformation as follows:

def augment_zeros(X, base=10):
if np.any(X < 0):
raise TypeError("The logarithm is not defined for negative values!")
am = np.min(X[np.where(X > 0)]) # the smallest non-zero entry of X
eps = am/base # epsilon is one order of magnitude smaller than the smallest non-zero
entry
return X + eps # augment all entries of X by epsilon

def log_transform(X, base=10):

A function to log transform an adjacency matrix X, which may
have zero-weight edges.

X_aug = augment_zeros(X, base=base)
return np.log(X_aug)/np.log(base)

A_activity_log = log_transform(A_activity)

We plot the untransformed and log-transformed activity /hobby network in
Figure 3.8.4.
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Figure 3.8.4 (A) The weighted adjacency matrix for the activity /hobby network.
There are many small entries, and it is hard to discern which entries are zero from the
entries that are just small. (B) The activity /hobby network, after log transformation.
The edges which are zero are readily apparent in the plot, and we have a better sense
of the range of non-zero elements visually (they tend to fall between 0 and 1, so are
different by approximately a power of 10).

When we plot the augmented and log-transformed data, we see that many of
the edge-weights we originally might have thought were zero if we only looked
at a plot were, in fact, not zero (they were just small). In this sense, for non-
negative weighted networks, log transforming after zero-augmentation is often
very useful for visualization to get a sense of the magnitudinal differences that
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might be present between edges, since we can get a better feel for how different
the big weights are from the smaller weights.
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Statistical Models of Random
Networks

In Chapter 3, we explored ways to describe observed networks through both their
representations (Section 3.4) and properties like density and degree distributions
(Section 3.1). Unraveling this system’s dynamics involves three steps: first, we
make assumptions about the system (Chapter 4); second, we learn useful repre-
sentations of the observed network(s) (Chapter 5); finally, we interpret how that
representation informs our assumptions about the system (Part III).

We make assumptions about the system by assuming statistical models for our
networks. A statistical model in network machine learning provides a mathemat-
ical framework describing how the underlying system generates the network we
see.

We call the statistical model of a network, rather than its observation, a ran-
dom network. The random network does not have edges, but edge probabilities.
The rest of the book will either explicitly or implicitly assume a particular ran-
dom network when we create representations in Chapter 5 and explore applica-
tions in Part III. These representations provide a framework from which we can
interpret the results we obtain when using later techniques.

This chapter covers:

1 Section 4.1 covers the Inhomogeneous Erdés Rényi (IER) random network,
the most general independent-edge network model.

2 Section 4.2 covers the Erdds-Rényi (ER) random network, the simplest network
model.

3 Section 4.3 covers the Stochastic Block Model (SBM), a model describing node
community structure.

4 Section 4.4 covers the Random Dot Product Graph (RDPG), which we use in
Part III to learn network representations.

5 Section 4.5 further explores the block matrix for SBMs, and when SBMs can
be represented by RDPGs.

6 Section 4.6 discusses statistical properties of random networks.

7 Section 4.7 covers the degree-corrected SBM (DCSBM), an augmented SBM
allowing for varying node connectivity.

8 Section 4.5 covers different types of block matrices for SBMs, and when these
can be conceptualized using an RDPG.

9 Section 4.8 covers the structured independent-edge model (SIEM), which will
later be used for investigating differences between groups of edges in a network.
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10 Section 4.9 covers models for more than one network.
11 Section 4.10 covers the signal subnetwork (SSN) model for network-specific
covariates.

We provide further technical discussion for statistical models in Appendix A.
Figure 4.0.1 illustrates the role of statistical models in the network learning
process. After data preprocessing, network machine learning methods compute
properties of the networks. Make assumptions about the network sample using
network models allows us to answer more specific questions about the network.

Network Population

Network Machine Learning

Choose Suitable Representation Apply Machine Learning System

Network Population
Assumption /

Learn property about network population assumption

Figure 4.0.1 This chapter constructs assumptions about the random network
governing a network sample.

Defining statistical models

We will often explain statistical models through analogies with coin-flipping. A
biased coin lands on heads with a probability different from 0.5, meaning that
over many flips, it might show heads more often than tails, or vice versa. When
we flip a coin once, we don’t know beforehand whether it will land on heads or
tails, only the probability of each outcome.

By conceptualizing the coin as having a probability of heads, we assume a
statistical model. We then use properties of this model to learn things about our
underlying system. For instance, if we flip a coin 100 times and see 70 heads, we
might have high confidence that the coin does not land on heads with probability
0.5. However, what if landed on heads 7 times out of 107 Without having a
statistical model, it is difficult to ascribe meaning to things that we learn about
our data and confidence to conclusions we draw.

Network modeling follows a similar principle, especially for simple networks.
Throughout this chapter, we will think of each edge of the network as a weighted
coin. In a simple, unweighted network, edges either exist or don’t exist, analogous
to a coin landing on heads or tails. The probability of an edge existing might
differ from 0.5; there could be a 0.7 chance that one edge exists, and a 0.4 chance
for another.
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When we construct models for networks, we prescribe sets of assumptions
about how the "coin" for each edge behaves. We might ask: Do all edges in the
network have equal probabilities of existing? Are there groups of nodes whose
connecting edges share the same probabilities? What other ways can we describe
the existence probabilities of edges?

We begin with conceptually simple models by allowing each edge to have its
own probability. We then move into more complex models which can be used to
build the representations we see in Chapter 5.
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Inhomogeneous Erdds-Rényi Random Networks

This section introduces statistical models for random networks, beginning with
the Inhomogeneous Erdgs-Rényi (IER) model. The IER model generalizes sim-
pler network models by allowing each potential edge to have its own probability
of existing, defined by a probability matrix.

We cover:

1 The Bernoulli model and its application to edge existence,
2 Probability matrices for describing edge probabilities,

3 Formal definition and properties of the IER model,

4 Simulating samples from IER random networks, and

5 Limitations of IER for practical modeling.

The IER model provides a foundation for understanding more structured net-
work models introduced in subsequent sections. Its flexibility in specifying edge
probabilities makes it a useful theoretical tool, though often impractical for real-
world network modeling.

The Bernoulli Model

The “coin flip” model will be a foundational tool that will prove useful for con-
ceptualizing networks. When we flip a coin, it will land on heads with some
probability p, and on tails with a probability 1 — p. Basic rules of probability tell
us that the sum of the probabilities of all possible outcomes of a flip must be 1;
therefore, if the coin lands on heads with probability p (so P(heads) = p):

1 = P(heads) + P(tails)
= p + P(tails),

which implies that P(tails) = 1 — p. The idea is that the flipped coins are either
heads or tails (they are outcomes, or realizations, which means that they have a
fixed value), but the coin itself can land on either of these outcomes with a given
probability. Unless p =1 or p = 0, there is a non-zero chance of seeing either of
the possible outcomes (heads or tails) in a given coin flip.

This simple example is known as the Bernoulli model, which describes two
possible outcomes (1 or 0, which could be placeholders for heads and tails in our
coin flip experiment), either of which occur randomly with a fixed probability. In
this case, we would call the probability term the parameter, which is a value or
set of values that defines specific behaviors of the model. Therefore, we say that a
coin which lands on heads or tails with a fixed probability p is a Bernoulli random
variable with parameter p. This is typically denoted in shorthand in statistics
books by saying that the coin is Bernoulli(p), or Bern(p). This shorthand will
typically include the model name (in this case, Bernoulli) and the parameters
that govern the model (in this case, a probability, p).
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A note about statistical independence

Imagine that we have two random quantities; say, whether (or not) it is raining
outside, and whether (or not) the grass is wet. If we have not looked outside
(or checked the weather forecast), we might think that these things are random.
We could imagine a statistical model, like coin flips, describing what is going on.
However, these two random quantities are related. There are many reasons why
the grass could be wet; perhaps there is a sprinkler in the yard, or there could
be a pipe leak. Another reason is that it rained. If it did rain, the probability
that we see wet grass rises dramatically.

Because rain raises the probability of wet grass, these two random quantities
are related. In statistical terms, we would say that they are statistically depen-
dent, which informally means that the probability of one event (here, whether or
not the grass is wet) is related to the outcome of another event (here, whether
or not it rained).

On the other hand, let’s imagine that we have two coins (like above), which
each land on heads/tails with fixed probabilities. The two coins are different, so
whether one coin lands on heads or tails has no probabilistic implications for
whether the other coin lands on heads or tails. This gives us some intuition for
the concept of statistical independence.

Details and conventions for random quantities

When working with random quantities, it is important to clarify some conven-
tions so that we have a good working idea of what is going on. In our coin flip
example, we would use x to denote a random coin which has a scalar (univariate)
value.

First, x is bold-faced and has non-italic typesetting. Bold-face and non-italic
will be the convention that we use in this book to denote random quantities.
This departs from the convention of many introductory statistics books such as
[1], which often use capital letters (such as X) to denote random variables. We
have adopted this alternative convention since we will often work with matrices
or even random matrices, which are typically denoted with capital letters, so the
boldface gives us the flexibility to express random variables and matrices alike
without overloading notation. In the coin flip example, we would say that x (the
random process generating the result of the flip) is a Bernoulli(p) random vari-
able. This random variable has realizations x (note the lack of bold-face) which
take values of 0 (tails) or 1 (heads). By realizations, we mean specific, determin-
istic outcomes of the random variable: what we observe after the randomness is
gone. Realizations may also be referred to as samples or observations of random
variables.

Second, note that x is lower-case. Throughout this book, we will come across
univariate quantities (such as integers or decimals) and multivariate quantities
(such as matrices or vectors). That x is lower-case denotes that its realizations x
are univariate quantities (they are integers or decimals; in this case, Os and 1s).
If we write that © = 0 (we flipped the coin, and it landed on tails), this means
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that the realization x of x has the value of 0 (tails); there is nothing random
about x since we already flipped the coin.

Vectors, matrices, and random matrices

Throughout many sections of this book, we will see matrices whose elements can
be random. While this might seem like it should be considerably more compli-
cated, the idea is simple. If X is an m x n matrix, it can be written down like
this:

11 ... Tim

Ipnt -+ Tpm

where each entry x;; is univariate (note the lower case). All the same, we can
have random matrices X, which have m x n realizations. Therefore, the easiest
thing to do would be to “denote” this random matrix the same way:

X11 oo Xim
X =
Xn1 oo Xpm
where each entry x;; is a univariate random variable.
Analogously, we will often come across vectors. To denote vectors, we will

adopt the convention of an arrow over top of a lower-case letter; for instance, an
n-element vector might look like this:

Ty

8
Il

I'Il

with random vectors defined analogously to random matrices. For simplicity, we
will always assume that vectors behave like single-column matrices. For instance,
in the above example, we would say that ¥ is a n-element vector, and has the
properties of a n x 1 matrix.

Probability matrices

In Section 3.1.1, we developed our intuition for the adjacency matrix of a network
with n nodes, which was an n X n matrix A. In the case of simple networks, each
entry a;; had a value of 1 (the edge exists) or 0 (the edge does not exist). In
Section 1.3, we saw a number of reasons to think of A as imperfect. Like the
coin, one approach would be to model some level of randomness to our network.
Under this framework, we view an observed network A as a particular realization
of a random network A, just like the outcome of a coin (heads or tails) z is the
realization of some underlying random process x (which is heads or tails with a
probability).
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Remark 4.1.1 Naming conventions for IER random networks

Sometimes, Inhomogeneous Erdés-Rényi Random Networks are referred to as
“Independent-Edge Random Networks”. This alternative name calls attention
to the fact that the only restriction placed by the model is the independent-
edge assumption. Conveniently, these two possible names for the same concept
both have the same first three letters for an abbreviation.

This feels like our basic coin flip setup, in that we have two outcomes for each
possible edge: it either exists, or it does not exist. We will commonly describe
this using the probability matrix P, where the probability of an edge between
two nodes ¢ and j is described by p;;.

If a network has n nodes, there are n x n possible potential edges. Therefore,
we will want to keep track of n x n possible probabilities. A probability matriz is
any matrix which has values between 0 and 1. Stated another way, a probability
matrix is just a matrix whose entries are probabilities.

Throughout this book, we will most often be concerned with probability ma-
trices for random networks. As there are m X m possible potential edges, the
probability matrix P for a random network with n nodes is therefore the n x n
matrix:

nl -+ Pnn

where each entry p;; is a probability. An example probability matrix for a network
with n nodes is illustrated in Figure 4.1.1(A).

Now that we know about Bernoulli random variables and probability matrices,
we are ready to describe our first random network model.

The Inhomogeneous Erés-Rényi (IER) Random Network Model

The IER random network is parametrized by a matrix of edge-probabilities. In
an IER random network, a probability matrix P with n rows and n columns
defines each of the edge-existence probabilities for pairs of nodes in the network.
For each pair of nodes i and j, we conceptualize the edge existence (or not) as a
Bernoulli random variable, or coin flip, where the coin has a p;; chance of landing
on heads and a 1 — p;; chance of landing on tails. For each pair of nodes in the
network, we think of flipping the coin, and if it lands on heads (with probability
pij), an edge exists. Each coin flip is performed independently of the coin flips for
all of the other edges. If A has independent Bernoulli edges with a probability
matrix P, we say that A is an IER,,(P) random network.
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Conventions for directedness and looplessness

In a loopless network, a;; = 0 for all nodes. Recall from Section 3.1.1 that this
value of 0 is a symbolic placeholder, and is different from the use of 0 to denote
the lack of existence of an edge. The edges on the diagonal do not “not exist”;
they are impossible. For this reason, if a network is loopless, we typically define
the network as such and ignore the diagonal of the probability matrix entirely.

In an undirected network, a;; = a;;. Likewise, random network models can
also be undirected. If our network model specifies explicitly that the network
is undirected, then a;; = aj;. If we assume that a;; has a probability of p;,
this means that a;; will also have a probability of p;;. Therefore, if we want the
random network to produce undirected realizations, the probability matrix must
be symmetric.

It is important to clarify that a symmetric probability matrix does not nec-
essarily imply undirected network samples. To understand why this is the case,
imagine if we have two coins which land on heads with the same probability.
When we flip them, just because the probability is the same does not necessarily
imply that they will both land on heads or both land on tails. Therefore, we need
to explicitly specify in the model if the network is undirected that the probability
matrix is symmetric and that a;; = a;; for all nodes ¢ and j.

In Remark 4.1.2, we discuss the statistical model for a simple IER network.
A statistical model is a set of assumptions about how our data arose from a
random process. For a random network A following the IER, (P) model, the
model specifies the general assumptions (independent edges and the existence
of edge probabilities), whereas the probability matrix P itself defines a specific
random network. If we have another network A’ following IER, (P’) with a
different probability matrix, it adheres to the same IER model assumptions but
results in a distinct network due to the different P’.

Statistical network models provide a framework (assumptions), while param-
eters (the probability matrix) determine specific instances of the model within
that framework.

Remark 4.1.2 What does a fully specified statistical model for a simple
IER random network look like?

For all pairs of nodes ¢ and j where ¢ > j, a;; is a Bernoulli(p;;) random
variable, which is independent of (does not depend on) the other potential
edges of the random network.

For all pairs of nodes ¢ and j where i > j, a;; = a;;. This ensures that the
upper and lower triangles of the random adjacency matrix A are symmetric,
so the random network is undirected.

For all nodes i, a;; = 0. This ensures that the diagonal of the random adja-
cency matrix A is 0, so the random network is loopless.

Notice that the only thing that has really changed is that we explicitly specify
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that the upper and lower triangles of the random adjacency matrix are symmet-
ric, and that the diagonal is by default 0.

Generating a realization from a simple I/ER,(P) random
network

The approach we use to describe random networks is called a generative model,
which means that we have described a random object (the random network A)
in terms of the parameters of A. In the case of IER random networks, we have
described A in terms of a probability matrix, P.

Generative models for random objects are convenient in that we can easily
adapt them to tell us how to simulate realizations. For instance, take a coin that
lands on heads with some unknown probability p (the Bernoulli model). All that
we know about the coin is that it has a probability of landing on heads, but not
what that probability is. If we wanted to learn about this coin, how could we do
it?

The easiest answer is to flip it a bunch of times, and analyze the outcomes that
we observe. By flipping the coin, we are generating realizations: we generate some
set of outcomes (heads or tails) of the random object, and then we can use the
outcomes to estimate information about the generating process, the probability
of landing on heads.

Likewise, we can use the generating model that underlies a random network
A to generate a realization of A, which is an actual network A. The procedure
in Algorithm 5 will sample a network A from an IER, (P) random network.

Algorithm 5: Simulating a sample from an IER,,(P) random network

Data: n a number of nodes
P a probability matrix with n rows and n columns
Result: The adjacency matrix of a sample from the random network.
for 2 in 1:n do
2 for j > i do

=

3 Obtain a weighted coin (4, j) which has a probability p;; of landing
on heads, and a 1 — p;; probability of landing on tails.
4 Flip the (4, 7) coin, and if it lands on heads, the corresponding

entry a;; in the adjacency matrix is 1. If the coin lands on tails,
the corresponding entry a;; is 0.
Set aj; = ag;.

end

end

o N o w

return A

Let’s create an example. We will generate an unnecessarily complicated prob-
ability matrix to illustrate the flexibility of the IER model:
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import numpy as np
from graphbook_code import heatmap

def generate_unit_circle(radius):
diameter = 2*radius + 1
rx = ry = diameter/2
X, y = np.indices((diameter, diameter))

circle_dist = np.hypot(rx - x, ry - y)
diff_from_radius = np.abs(circle_dist - radius)
less_than_half = diff_from_radius < 0.5

return less_than_half.astype(int)

def add_smile():
canvas = np.zeros((51, 51))
canvas[2:45, 2:45] = generate_unit_circle(21)
mask = np.zeros((51, 51), dtype=bool)
mask[np.triu_indices_from(mask)] = True
upper_left = np.rot90(mask)
canvas[upper_left] = 0
return canvas

def smile_probability(upper_p, lower_p):
smiley = add_smile()
P = generate_unit_circle(25)
P[5:16, 25:36] = generate_unit_circle(5)
P[smiley != 0] = smiley[smiley != 0]

mask = np.zeros((51, 51), dtype=bool)
mask[np.triu_indices_from(mask)] = True

P[~mask] = 0

# symmetrize the probability matrix

P = (P + P.T - np.diag(np.diag(P))).astype(float)
P[P == 1] = lower_p

P[P == 0] = upper_p

return P

P = smile_probability(.95, 0.05)
heatmap (P, vmin=0, vmax=1, title="Probability matrix $P$")

The probability matrix is plotted in Figure 4.1.1(A). Next, we can generate a
random sample of the ITER,,(P) random network, using the sample_edges func-
tion from graspologic:

from graspologic.simulations import sample_edges

A = sample_edges(P, directed=False, loops=False)
heatmap(A.astype(int), title="$IER n(P)$ sample")

The heatmap is shown in Figure 4.1.1(B). We used this example to show that
the key idea behind the IER Network’s probability matrix is simple: the entries
can really be anything as long as they are probabilities (between 0 and 1) and
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Figure 4.1.1 (A) the probability matrix for the IER,, (P) random network. (B) an
adjacency matrix sampled from the IER,(P) random network.

the resulting matrix is symmetric in the case of undirected networks. There are
no additional requirements nor parameters to add structure to the network.

The Independent-Edge Random Network Models

How many unique realizations are possible for a random
network with n nodes?

For one coin, there are two possible outcomes: heads or tails. If we have two
coins, the first coin could be heads or tails, and the second coin could be heads
or tails. If the first coin were heads, there are two possible outcomes for the
second coin. If the first coin were tails, there are two possible outcomes for the
second coin. The total number of possible outcomes is the sum of the number of
possible outcomes if the first coin is heads with the number of possible outcomes
if the first coin were tails. With two coins, this gives us four possible outcomes.
When we add a third coin, we repeat this calculation. If the first coin were heads,
the second two coins could take any of four possible outcomes. if the first coin
were tails, the second two coins could also take any of four possible outcomes.
Therefore, with three coins, there are eight possible outcomes. Inductively, we
see that with z coins, we have 2% possible outcomes.

In Section 3.3.1, we determined that there are %n(n — 1) possible edges in a
simple network, which we could represent using the notation (Z) In a realized
network, each of these edges could exist or not exist, so, as in coin flips, there
are two possibilities. The number of possible networks with n nodes is 2 to the
power of the number of coin flips that are performed in the network.

Here, this is 92(3) . This quantity grows extremely quickly. In the code below,
we calculate the number of possible networks for a given number of nodes in a
network, but in a log scale, as powers of 10.

import numpy as np
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Figure 4.1.2 A log-scale plot of the number of possible networks for a given number of
nodes.
from math import comb

node_count = np.arange(2, 51)
log_unique_network_count = np.array([comb(n, 2) for n in node_count])#np.log10(2)

Figure 4.1.2 illustrates how quickly the number of unique networks grows.
When n, the node count, is just 6, the number of possible networks is 2(8) = 96
which is over 32,000. When n is 15, the number of possible networks balloons up
to 2(2) = 2105 which is over 10%°. A naive approach to network learning might
be to describe each possible network that could be observed. However, this is

heavily impractical, as explained on Concept 4.1.3.

Why aren’t IER,(P) random networks used in practice?

Instead of having 2(3) parameters to estimate, the IER,,(P) random networks
reduce this to an n x n probability matrix with (g) informative entries. This is
because if the network is simple, the diagonal of the probability matrix contains
no information (meaning n entries are not relevant), and the probability matrix
is symmetric (so, of the remaining n? — n entries, half of them are redundant).
However, even this formulation is not particularly useful in practice, which is
discussed in Concept 4.1.4.

Throughout the remaining sections of this chapter, we will cover a family of
networks known as the independent-edge random network models [2]. These are
the random network models that can be specified with a probability matrix and
the independent-edge assumption; that is, that the existence or not existence of
edges does not impact the existence or not existence of other edges in the net-
works. Each network model, however, will place restrictions on the probability
matrix P to simplify the learning task ahead of us. The goal is that these restric-

tions will simplify the network such that there are fewer parameters than (%)
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Concept 4.1.3 Why not just ascribe probabilities to each possible
network?

The reason that we need a statistical model in the first place is that if we want
to describe properties of the network, we need a framework in which we can
analyze it. For Bernoulli(p) coins, we affixed a probability to each possible
outcome: heads occurred with some probability (p) and tails occurred with
some probability (1 — p).

All the same, we could repeat this for networks with n nodes: we could affix
a probability to each of the 2(3) possible networks we could observe.
Describing each possible observable network for a given number of nodes is
impossible, for the two reasons that we have given:

1 We could not possibly use a network with n nodes that we obtain to learn
things about every possible network with n nodes, because our network is
just one of many. If we flipped a coin once and obtained a result of heads,
would we say we are extremely confident that the coin will never land on
tails? This is the same problem we have with have with network data
when we do not have a sufficiently straightforward model.

2 Even if we had more network samples, we could not possibly analyze nor
even store this many possibilities, because for even modest choices of n, it
is simply too many elements to keep track of. 2(5) is a really big number
when n is just 15; many of the real networks you will want to analyze

might have hundreds, or thousands, of nodes.

These aspects are detailed at length in Appendix A.2.

to estimate, so that we can actually use observed networks to gain meaningful
insights about the probability matrix.

More technical details on Inhomogeneous Erdos Rényi Random Networks are

in Appendix A.2.
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Concept 4.1.4 Why not use I ER,,(P) random networks for everything?

Ultimately, we want a network model wherein, for observed simple networks
A, we can use estimates of the parameters and properties of the network
model to learn something about the observed simple network. As-per the
above, remember that the probability matrix for an n-node simple random
network has (72’) informative entries. However, the observed simple network
with n nodes also has (Z) informative entries.

Therefore, if we wanted to learn about a probability p;;, we would only have
a single observed edge a;; to learn from. This presents a similar issue to that
of Concept 4.1.3: with one network observation, we would be attempting to
learn about the probability a coin lands on heads or tails from the outcome
of a single coin flip. We would need to use many network observations to
estimate p;; reasonably.

Erd6s-Rényi Random Networks

Building on the Inhomogeneous Erdos-Rényi (IER) model introduced in Section
4.1, we now examine the simpler Erdés-Rényi (ER) random network model. The
ER model simplifies the IER by using a single probability parameter for all edges.
We cover:

1 Definition and properties of the ER model,

2 Relationship between ER and TER models,

3 Simulating samples from ER random networks,
4 Limitations and use cases for ER models, and

5 Concept of model generalization in network theory.

The ER model serves as a foundational concept in random graph theory, pro-
viding a baseline for understanding more complex network structures. Its sim-
plicity makes it useful for developing intuition about random networks, though
it often fails to capture the complexity of real-world networks.

To motivate new network models, we begin with a simple example, related
to the friendship network which we learned about in Example 3.7.2. Consider a
social network, with 50 students. The network has 50 nodes, where each node
represents a single student in the network. Edges in the social network represent
whether or not a pair of students are friends. What is the simplest way we can
describe whether two people are friends?

Using the tools from Section 3.1, we represent this simple network as an ad-
jacency matrix A whose entries a;; are one if the students ¢ and j are friends on
the social networking site, and 0 if the students ¢ and j are not friends on the
social networking site. With 50 students the adjacency matrix A is going to be
50 x 50.
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The Erdés Rényi random network

The simplest random network model is called the Erdoés Rényi (ER) model,
which was first described by [3] and [4]. In an ER random network, the edges
depend only on a single shared probability, p, and each edge is independent of all
other edges. For every edge a;;, a coin has a probability p of landing on heads,
and 1 — p of landing on tails. Stated another way, every a;; is a Bernoulli(p)
random variable; i.e., the same probability for all edges. If A has n nodes and
independent edges with a single common probability p, we will say that A is an
ER, (p) random network.

How do we simulate samples of E'R,,(p) random networks?

The procedure in Algorithm 6 will generate a simple network A, where the un-
derlying random network A is a simple ER,(p) random network.

Algorithm 6: Simulating a sample from a simple ER,,(p) random net-
work
Data: n a number of nodes

p a probability of an edge existing
Result: The adjacency matrix of a sample from the random network.

1 Obtain a weighted coin which has a probability p of landing on heads,
and a probability 1 — p of landing on tails. Note this probability p might
differ from the “traditional” coin with a probability of landing on heads
of approximately 0.5.

for i in 1:n do

N

3 for j > i do

4 Flip the coin once. If the coin lands on heads, let a;; = 1. If the
coin lands on tails, let a;; = 0.

5 Let Qi = Qg

6 end

7 end

8 return A

When do we use an ER,,(p) Network?

In practice, the ER,,(p) model seems a little too simple to be useful. Why would
it ever be useful to think that the best we can do to describe our network is
to say that all connections exist with some shared probability? Does this not
miss a lot of useful questions we might want to answer? Fortunately, there are
a number of ways in which the simplicity of the ER, (p) model is useful. Given
a probability and a number of nodes, we can easily describe the properties we
would expect to see in a network if that network were ER. For instance, we can
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(A) ER50(0.3) sample (B) ERsq(D.7) sample
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Figure 4.2.1 (A) a sample with p = 0.3. (B) a sample with p = 0.7. Notice that with
higher probabilities, the samples from the random network have more edges.

use statistical reasoning to describe the approximate degree for each node of an
ER,,(p) random network, and we can easily characterize mathematical properties
of its adjacency matrix.

We can reverse this idea, too: given a network we think might not be ER, we
could check whether it’s different in some way from an ER,,(p) random network.
It is often useful to start with the simplest random network models when analyz-
ing network data, and only turning to more complicated network models when
the need arises, because the types of network models we choose will directly de-
termine the types of questions we can answer later on. For instance, if half the
nodes have a high degree (lots of edges), and half don’t, the network is likely
poorly described by an EFR,,(p) random network. In this case, we might look for
more complex models that could describe our network.

In the next code block, we are going to sample a single FR,,(p) network with
50 nodes and an edge probability p of 0.3:

from graphbook _code import draw_multiplot
from graspologic.simulations import er_np

50 # network with 50 nodes
0.3 # probability of an edge existing is .3

n
p

# sample a single simple adjacency matrix from ER(50, .3)
A = er_np(n=n, p=p, directed=False, loops=False)

# and plot it
draw_multiplot(A.astype(int), title="$ER {50}(0.3)$ Simulation")

Our visualization is a heatmap and layout plot as in Section 3.4. The heatmap
is shown in Figure 4.2.1(A).
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Concept 4.2.1 Determining stochastic equivalence in independent-edge
random networks

When dealing with independent-edge random networks, we can make deter-
minations about stochastic equivalence most by estimating the probability
matrix. Two independent-edge random networks A" and A(® are stochas-
tically equivalent if their underlying probability matrices P™") and P are
equal.

Next, let’s see what happens when we use a higher edge probability, like p =
0.7:

p = 0.7 # network has an edge probability of 0.7

# sample a single adjacency matrix from ER(50, 0.7)
A = er_np(n=n, p=p, directed=False, loops=False)

We show the same plot for p = 0.7 in Figure 4.2.1(B). As the edge probability
increases, the sampled adjacency matrix indicates that there are more connec-
tions in the network. This is because there is a higher chance of an edge existing
when p is larger. Correspondingly, the network density (Section 3.3.1) increases.

Generalizing network models

We have discussed two random network models: the FR,,(p) random networks,
which have a probability parameter p, and the IER,, (P) random networks, which
have a probability matrix P. Take an ER,,(p) random network A™), for some
fixed probability p. Remember that this means that for every pair of nodes ¢ and
7, ag;) is Bernoulli(p): each edge is a coin-flip with probability p.

Next, take a second I ERn(P(Q)) random network A(?). What happens if every
entry of P(?) is just p (that is, for all 4 and j, pg-) = p)? For every pair of nodes 4

(2)

and j, a;;" is Bernoulli(p), which is exactly what we saw above for the ER,,(p)

random network.

The word stochastic just means random, so ag;) and al(?
stochastically equivalent: they have exactly the same governing rules (specified
by a Bernoulli(p) random variable) for all nodes i and j. Because both models
make the same independence assumption (that the edges existing/not existing do
not effect the existence/not existence of other edges), the random networks A (1)
and A themselves are also stochastically equivalent. We discuss more about
how to identify stochastic equivalence in independent-edge random networks in
Concept 4.2.1.

We could repeat this argument for any possible choice of p for the random
network A(M: it does not matter if the probability is 0, 1, or any number in

between, we could always find a stochastically equivalent TER,,(P(?) random

) can be said to be
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network A(?). This motivates additional terminology: we say that a random net-
work model is contained in another random network model if for every network
in the first model, we can find a stochastically equivalent random network in the
second model. In the above example, for instance, we would say that the ER,,(p)
random networks are contained in the I ER,,(P) random networks.

Conversely, we say that a random network model generalizes another random
network model if for every network in the second model, we can find a stochas-
tically equivalent random network in the first model. In the above example, we
would say that the TER,(P) random networks from Section 4.1 generalize the
ER,(p) random networks. More broadly, the ITER, (P) random networks will
generalize every random network model that we will learn in the upcoming sec-
tions.
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Stochastic Block Models

Building on the Erdgs-Rényi (ER) model from Section 4.2, we introduce the
Stochastic Block Model (SBM), which incorporates community structure into
random networks. We cover:

1 Definition and components of the SBM,

2 Community assignment vectors and block matrices,
3 Simulating samples from SBM random networks,

4 Probability matrices for SBMs, and

5 Relationship between SBMs and ER models.

The SBM provides a more flexible framework for modeling networks with
distinct node groups, or communities, addressing a number of limitations of
simpler models like ER.

Let’s imagine that we have 100 students, each of whom can go to one of two
possible schools: school one or school two. We define a 100-node network, and
each node represents a single student. The edges represent whether a pair of
students are friends. It seems likely that if two students go to the same school,
they have a higher chance of being friends than if they do not go to the same
school. If we were to try to characterize this using an ER random network, we
would run into a problem: we have no way to capture the impact that school
has on friendships. To do this, we modify our ER,(p) model to include this
complication.

The Stochastic Block Model, or SBM, was first introduced by [5]. It captures
the idea that edges are more likely to form within certain groups of nodes by
assigning each of the n nodes in the network to one of K communities. A commu-
nity is a group of nodes within a network which have similar properties. In our
example, the communities would represent the two schools that students are able
to attend. K here is a natural number which is typically greater than 1 (in the
school example, K is 2). In general, communities are often nominal categories,
which is detailed in Concept 4.3.1.

In an SBM, instead of describing all pairs of nodes with a fixed probability
like with the ER model, we describe properties that hold for edges between pairs
of communities.

The community assignment vector

To describe an SBM random network, we proceed similarly to an ER random
network, but with some extra information. An SBM random network has a pa-
rameter Z, a vector with a single element for each of the nodes. We call Z' the
community assignment vector. For each node of our random network, z; tells us
which community the node is in. Specifically, ' is a nominal categorical vector
where each element z; can take one of K possible values, where K is the total
number of communities in the network.
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Concept 4.3.1 Categorical values

In machine learning, we will often come across categorical values: variables
which can take on any one of K possible values. One example might be the
primary colors (red, yellow, and blue). It is practically useful to denote each
category with a number; e.g., red=1, yellow=2, and blue=3.

These numbers are often placeholders: their numerical value holds no meaning.
For instance, blue is not “two units” bigger than red; it is simply a different
group. In this case, the set of possible categories is called nominal, which
means that the only important feature of the categorical labels is that they
are different.

In other settings, the numbers might be meaningful. For instance, we could
imagine asking people to rank preferred electoral candidates on a scale of un-
favorable, neutral, and favorable. We can denote unfavorable=1, neutral=2,
and favorable=3. In this case, the numerical value holds meaning: these cat-
egories preserve favorability. Neutral (2) is greater than unfavorable (1), and
neutral indicates that someone likes the candidate more than if they were
unfavorable. These types of categories are referred to as ordinal, which means
“order matters”.

In network machine learning, we often come across categorical values when
dealing with communities of nodes. These are usually nominal categories, in
that the main thing we convey via the community label is that the groups of
nodes are different.

For example, if we had an SBM random network with four nodes in total and

two total communities, each element z; can be either 1 or 2. If the first two nodes
were in community 1, and the second two in community 2, we would say that
z1 =1, 20 =1, z3 = 2, and z4 = 2, which means that Z looks like:

Y
Il
N DN = =

The block matrix

The other parameter for an SBM random network is called the block matrix,
for which we will use the capital letter B. This matrix defines edge existence
probabilities between communities in the random network, and is therefore also
a probability matrix. However, we will use the term block matriz to specifically
mean a probability matrix which defines edge-existence probabilities between
communities.

If there are K communities in the SBM random network, then B is a K x K
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Box 4.3.2 Simple SBMs have symmetric block matrices

In the case of the simple networks, remember from Section 4.1 that since
the adjacency matrix of a simple random network A is symmetric, that the
probability matrix must also be symmetric; that is, p;; = p;; for all ¢ and j.
For SBMs, notice that p;; = b,,.;, and pj; = b.,.,. Therefore, if the network
is simple, b,,., = b, ., for all i and j, and the block matrix B is symmetric.

matrix, with one entry for each pair of communities. For instance, if K were 2,
B would be a 2 x 2 matrix, and would look like this:

b1 bu]
B =
{521 baa

Each of the entries of B, which we denote as by, is the probability of an edge
existing between a node in community £ and a node in community .

Conceptualizing the SBM

We can also think about the SBM using coin flips. In our 2 x 2 example, if node
1 is in community 1 (since z; = 1) and node 2 is in community 1 (since z5 = 1),
we have a weighted coin which has a probability b1y (the first row, first column
of the block matrix) of landing on heads, and a 1 —b;; chance of landing on tails.
An edge between nodes one and two exists if the weighted coin lands on heads,
and does not exist if that weighted coin lands on tails. If we wanted to describe
an edge between nodes one and three instead, note that z3 = 2. Therefore, the
entry bis is the probability of obtaining a heads for the weighted coin we flip this
time.

The probability that an edge exists between nodes 7 and j is given by the block
matrix entry b,,... We will say that the random network has Bernoulli(bzizj)
adjacency matrix entries a;;, where z; is the community assignment for the "
node and z; is the community assignment for the j** node. Therefore, the en-
tries a;; in the random network depend on both the block matrix B, as well as
the communities of each node, given by z; and z;. As before, these entries are
independent of all of the other entries in the random adjacency matrix. If A has
n nodes with independent edges, a community vector Z, and a block matrix B,
we say that A is an SBM,(Z, B) random network.

Simulating samples of SBM,,(Z, B) random networks

The procedure in Algorithm 7 will generate a simple network A, where the un-
derlying random network A is a simple SBM,,(Z, B) random network.

Let’s work through the school example from the beginning of this section. We
have 100 students, and each student goes to one of two possible schools. We
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Algorithm 7: Simulating a sample from a simple SBM,,(Z, B) random

network
Data: n a number of nodes

Z a community assignment vector for each of the n nodes to one of

K communities

B a K x K probability matrix for each pair of the K communities
Result: The adjacency matrix of a sample from the random network.

1 For each pair of communities k and [, obtain a weighted coin (which we
will call the (k,!) coin). This coin should have a by, chance of landing on
heads, and a 1 — by; chance of landing on tails.

2 foriinl:ndo

for j > i do
4 Flip the (z;, z;) coin, and if it lands on heads, the corresponding
entry a;; in the adjacency matrix is 1. If it lands on tails, the
corresponding entry a;; in the adjacency matrix is 0.

5 Let Aj; = Qqj-

6 end

7 end

8 return A

already know the community assignment vector zZ. We can assign node indices
to students arbitrarily, so we assume that the first 50 students all go to the first
school, and the second 50 students all go to the second school.

Let’s plot what the community assignment vector looks like for the network:

from graphbook_code import plot_vector
import numpy as np

n = 100 # number of students

# z is a column vector of 50 1s followed by 50 2s

# this vector gives the school each of the 100 students are from

z = np.repeat([1, 2], repeats=n//2)

plot_vector(z, title="$\\vec z$, Node Assignment Vector",
legend_title="School", color="qualitative",
ticks=[0.5, 49.5, 99.5], ticklabels=[1, 50, 100],
ticktitle="Student")

The community assignment vector is shown in Figure 4.3.1(A).

Let’s assume that the students from the first school are more friendly than the
students from the second school, so we’ll say that the probability of two students
who both go to the first school being friends is 0.6, and the probability of two
students who both go to school 2 being friends is 0.4. Finally, let’s assume that
if one student goes to the first school and the other student goes to school 2,
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Figure 4.3.1 (A) the community assignment vector for each node (students). (B) the
block matrix, which defines the probabilities of a pair nodes (students) from a given
community having an edge.

the probability that they are friends is 0.1. This gives us the ingredients that we
need to define the block matrix B.

We can make a block matrix and plot it using our heatmap() utility. When
working with probabilities or probability matrices, we usually want to visualize
these on a [0, 1] scale, which we can accomplish with the vmin, vmax arguments:

from graphbook_code import heatmap

K = 2 # community count
# construct the block matrix B as described above
B = np.array([[0.6, 0.1],

[0.1, 0.4]])

heatmap(B, xticklabels=[1, 2], yticklabels=[1,2], vmin=0,
vmax=1, annot=True, xtitle="School",
ytitle="School", title="Block Matrix $B$")

Figure 4.3.1(B) shows that the matrix B is a symmetric block matrix, since
our network is undirected.

Finally, let’s sample and plot a single network from the SBM,,(Z, B) with
parameters z and B:

from graspologic.simulations import sbm
from graphbook_code import draw_multiplot

# sample a graph from SBM_{100}(tau, B)
A, labels = sbm(n=[n//2, n//2], p=B, directed=False, loops=False, return_labels=True)
draw_multiplot (A, labels=labels, title="$SBM n(z, B)$ Simulation");

The adjacency matrix is shown in Figure 4.3.2(A).
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The students in the network are ordered by the school they are in (first school
and the second school, respectively). People from the first school are more con-
nected than people from the second. This heatmap is modular: it has clear
and apparent community structure. Connections between people from different
schools appear to be less frequent than connections between people from the
same school.

When the nodes are ordered by community, we will often observe a “patchy”
structure. These visually-salient subnetworks (see Section 3.5) are known as mod-
ularity!community subnetworks. The (k,l) community subnetwork of the adja-
cency matrix corresponds to the connections between nodes in community k
with nodes in community {. For instance, the (1,1) community subnetwork cor-
responds to the upper-left subnetwork of the adjacency matrix, induced by the
nodes from community 1. The (1,2) community subnetwork of the adjacency
matrix corresponds to the upper-right subnetwork, which consists of nodes in
communities 1 and 2, but only the edges from nodes in community 1 to nodes in
community 2. The blocks (k, k) will be referred to as the on-diagonal community
subnetworks, in that they are blocks occuring along the diagonal of the adjacency
matrix. The community subnetworks (k, 1) where k # [ will be referred to as the
off-diagonal community subnetworks, in that they do not fall right along the di-
agonal of the adjacency matrix. Here, the on-diagonal community subnetworks
have far more connections than the off-diagonal community subnetworks.

Modularity is not a pre-requisite for SBM,,(Z, B) random networks

Something easy to mistake about a sample of an SBM is that it will not always
have the obvious modular structure we can see in Figure 4.3.2(A) when we look at
a heatmap. Rather, this modular structure is only obvious because the students
are ordered according to the school they are in. What will happen if we look at
the students in a random order? Will the structure in this network be obvious?
The answer is: No! Let’s see what happens when we reorder the nodes ran-
domly, and pretend we don’t know the true community labels ahead of time:

import numpy as np

# generate a reordering of the n nodes
permutation = np.random.choice(n, size=n, replace=False)

Aperm = A[permutation][:,permutation]
yperm = labels[permutation]
heatmap (Aperm, title="Nodes randomly reordered")

In Figure 4.3.2(B), the students are not organized according to school, because
they have been randomly reordered. It becomes difficult to figure out whether
there are communities just by looking at the adjacency matrix, unless we are
looking at a network in which the nodes are already arranged in an order which
respects the community structure. By an order that respects the community
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(A) SBM100(2, B) sample (B) Same network, but
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Figure 4.3.2 (A) the adjacency matrix for an SBM, (Z, B) simulation. The
parameters are shown in Figure 4.3.1. (A) the same adjacency matrix, but with the
nodes randomly reordered.

structure, we mean that all of the nodes in the first community come first,
followed by all of the nodes in the second community, followed by all of the nodes
in the third community, so on and so forth up to the nodes of the community K.

In practice, this means that if we know ahead of time natural groupings of
the nodes (such as knowing which school each student goes to) by way of node
attributes, we can visualize our data according to that grouping. This property
is covered more in depth by [6]. If we don’t know anything about natural group-
ings of nodes, however, we are left with the problem of estimating community
structure. A method called the spectral embedding which we will discuss in Sec-
tion 5.3 can be paired with clustering techniques to allow us to estimate node
assignment vectors. If we want, we can then use these estimates to reorganize
the adjacency matrix into a more visually discernible modular structure.

Probability matrix for SBM random networks

We can use the probability matrix to determine whether networks are stochasti-
cally equivalent (Concept 4.2.1). We want a procedure which takes a community
assignment vector z'and a block matrix B, and produces a probability matrix P
where each entry p;; = b.,.,. We could do this by brute force, checking over each

pair of nodes in an extremely lengthy for-loop. However, remember that in a
n
2

even modest choices of n. When n = 1000, for instance, this would be a for-loop
with 499,500 iterations.

In practice, this can be accomplished more rapidly by exploiting the fact that
the communities are nominal categories. We will begin by introducing the idea

simple network there are ( ) possible pairs of nodes, which is a large number for
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Concept 4.3.3 One-hot encodings

When dealing with nominal categorical vectors such as a community assign-
ment vector Z, remember that the vector has values z; which take one-of-K
possible values. While this defines the categories (which, here, are communi-
ties of nodes), we often cannot directly use the vector Z mathematically since
it is nominal (and therefore, the actual numbers themselves are not relevant).
For this reason, we will typically resort to what is known as the one-hot
encoding. A one-hot encoding of a nominal value z; which takes one-of-K
possible values is a length-K vector (one element for each category) ¢, and
has a value of 1 in the position corresponding to the category of z;.

For instance, let’s imagine an SBM with two communities, where the first
node is in community 1, so z; = 1. The one-hot encoding of z; will be a
length-two vector, and will have the value:

L=

Likewise, if zo = 2, the one-hot encoding of z; would be:

—

Cy =

R
0_
-
1_

In general, the vector ¢; will be such that ¢;,, = 1, and ¢;; = 0 for all other
entries.

of the one-hot encoding, in Concept 4.3.3. Then, we will use this idea to express
the probability matrix as a matrix product, which allows us to take advantage of
accelerated libraries for matrix multiplication featured in modern programming
languages.

We can leverage one-hot encodings to produce an interesting result. Using the
rules of matrix multiplication, if ¢; is a length-K vector and B is a K x K block
matrix, then the product E’ZTB is a 1 x K-dimensional matrix, consisting of the
element-wise sum of the products of the rows of ¢; with the columns of B:

b1 ... bhig
=T _
C; B = [C“ - CZ‘K}
b1 ... bik
- |:ZkK:1 Cikbkl e Zi(:l Cikka] .

Let’s take a look at this first value. The first entry is Zle c;kbr1. However,
remember that the community assignment vector ¢; takes a value of zero every-
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where except at ¢;,,, where it has a value of 1. Therefore:

K
E Cikbr1r = Cizba1 + g Cikbr1
k=1

k;ézi
=1b,1 + Z 0br1
k:;ézi
= bzi1~

If you duplicate this argument over every entry of EZTB , it will become apparent
that the result is:

& B=[b.1 ... bkl (4.1)

In effect, the product ¢; B has simply “pulled out” the appropriate row of B
corresponding to the community of the node i. The product E;TB can therefore
be thought of as the “the block probabilities between the community of node i
and any of the K possible communities”.

What happens if we repeat the same procedure, but in reverse? This time, we
will post-multiply ¢ B by the one-hot encoded community assignment vector
¢; for some other node j. Remember that this one-hot encoding vector has K
elements, so the product will just be a 1 x 1 matrix (it is just a scalar). When
we do this multiplication, we obtain:

Cj1
¢l B = [bs1 ... buk]

CiK
K
= E bz kCjk-
k=1

Again, remember that the community assignment vector ¢; takes a value of zero
everywhere except at c;.;, where it has a value of 1. Therefore, we get that:

K
szlkc]k = chijiZj + Z c]kbzbk
k=1 ]{I#Zj
=1b.., + > Ob.
]C#Zj
= bZiZj’
So:
EiTng = b2,z (4.2)

This gives us a mathematical procedure that we can use to take an arbitrary
pair of nodes in our network, and extract the appropriate block matrix entry
from B corresponding to the communities 7 and j of these nodes.



4.3 Stochastic Block Models 137

The elegance of this result becomes apparent when we instead “stack” the one-
hot encoded community assignment vectors for each node into a one-hot encoded
community assignment matriz C, which is the n x K matrix:

Foel A
c=|
el A
When we pre-multiply the block matrix B by C, the resulting product is a n x K
matrix, where:

Foe A

CB = : B.

el A

Remember that matrix multiplication is performed by multiplying across the

rows of the first matrix and down the columns of the second. Therefore, this
product will be:

¢, B

Which means that the K-element rows of this matrix are given by Equation 4.1.
Post-multiplication by C'T gives us:

ci B] 17 T
cBCT = | i Cn
c'B 1 L

n

Again, going across the rows of the first matrix and down the columns of the
second gives us:

¢ Bey, ... & B¢,

CBCT=| : , :

é'Bey ... ElBec,
Note that the (i, j)'" entry of this matrix has the form & B¢;, which we learned
in Equation (4.2) was just b..-,- This corresponds exactly to the probability of
an edge between nodes ¢ and j, from Section 4.3.3.

This gives us a procedure to construct a probability matrix for an SBM, using
the result:

P=CBCT,

where C is the one-hot encoding matrix of the community-assignment vector Z,
and B is the corresponding block matrix.
Pseudocode is outlined in Algorithm 8 to perform this algorithmically.
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Algorithm 8: Generating a probability matrix for a SBM,,(Z, B) random
network
Data: Z a community assignment vector for each of the n nodes to one of

K communities
B a block matrix with K rows and K columns
Result: The probability matrix associated with the SBM,(Z, B).
1 Construct a matrix C with n rows and K columns; one row for each
node, and one column for each community.
2 for ¢ in 1:n do
3 for k in 1:K do

4 Ifz; =k let ¢, = 1. If z; # k, let ¢, = 0.
5 end
6 end

7 Let P =CBC". return A

Let’s work through this using our school example, because it comes up a few
times over the course of the book. We have 50 students attending school one (the
first community), and 50 students attending school two (the second community).
First, we need the code to produce the one-hot encoded community assignment
matrix:

def ohe_comm_vec(z):

A function to generate the one-hot-encoded community
assignment matrix from a community assignment vector

K = len(np.unique(z))

n = len(z)

C = np.zeros((n, K))

for i, zi in enumerate(z):
C[i, zi - 1] =1

return C

And then we can use this to generate the probability matrix:

def generate_sbm_pmtx(z, B):

A function to generate the probability matrix for an SBM.
C = ohe_comm_vec(z)
return C @ B @ C.T

# the community assignment vector
z = np.repeat([1, 2], 50)
# block matrix
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Figure 4.3.3 (A) the community assignment vector z and (B) the community
assignment matrix C. Notice that each node has a value of 1 in the corresponding
column in which the node is a community. The first 25 nodes have a value of 1 in
column 1, and the second 25 nodes have a value of 1 in column 2. (C) the block
matrix. (D) the probability matrix for each node pair.

B = np.array([[0.6, 0.11,
[0.1, 0.4]1])

# probability matrix

P = generate_sbm_pmtx(z, B)

The relationship between the community assignment vector, the one-hot en-
coded community assignment matrix, the block matrix, and the probability ma-
trix is illustrated in Figure 4.3.3.

SBMs generalize ER networks

To show that the SBMs generalize the ER networks from Section 4.2, we can
use the logic that we developed in Section 4.2.4. If the SBM random networks
generalize the ER random networks, this means that for any ER random network,
we could find a stochastically equivalent SBM.

Take an FR,,(p) random network A(1). The probability matrix P(") for A()
has entries pz(;) = p. Our goal is to find another network (an SBM) that is stochas-
tically equivalent to A for any choice of p. From Concept 4.2.1, we learned
that this means that we need to find another SBM,,(Z, B) random network A (),
where P2 = p(),

The simplest possible SBM would have a single community: z; = 1 for every
node i. Therefore, the one-hot encoded community assignment matrix C' is just
an n X 1 matrix (it is a column-vector with n elements):

The symbol “1,,” is used to denote a vector of n-ones repeated.



140

4.3.8

Statistical Models of Random Networks

With a single community, the block matrix B is just 1x 1, also called a number.
If we let B = by; = [p], applying the procedure from Section 4.3.6 gives us:

P® =cBCT
= 1”@]127
where C = 1,, and B = [p] is just a 1 x 1 matrix (it is a scalar number).

Remember that with matrix multiplication, scalar numbers can be brought to
the front, so:

P® =p1,1]

Notice that the product 1,1, is an n x n matrix, where:

1
Ly =[] [1 ... 1]
1
1 1
= : (4.3)
1 1

Putting this together means that:

pP@ —

s0 pg-) =p= pl(;) for all ¢ and j, and P(Y) = P2 This result can be applied

for any choice of p. Therefore, the ER,,(p) random networks are contained in
the SBM,(Z, B) random networks, and conversely, the SBM,(Z, B) random
networks generalize the ER,,(p) random networks.

SBMs can (uselessly) generalize IER random networks

By the above formulation, we can also characterize the ITER,,(P) random net-
works using an SBM,, (%, B) random network: choosing the number of communi-
ties to be equal to n (each node is in its own community) would yield the block
matrix B being a n x n matrix of block probabilities. In this case, the “block prob-
abilities” are probabilities for “blocks” of single nodes; it behaves identically to an
edge probability matrix P. Therefore, if B = P, then the SBM,,(Z, B) random
network with n communities is equivalent to an I ER,, (P) random network.
Such a random network is not particularly useful. The characterization of a
simple network as an SBM still leaves us with (%) probability terms to estimate,
from a network with (%) unique entries, which is the same problem from Concept
4.1.4. For this reason, later sections of this book will typically focus on SBMs
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where K < n, and we do not run into the problem of having a block matrix B
equally as complicated as the probability matrix P.
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Random Dot Product Graphs

Extending the concept of community structure from the SBM in Section 4.3,
we introduce the Random Dot Product Graph (RDPG) model. In an RDPG,
the manner in which a given node “behaves” in the greater network can be
succinetly summarized with a single vector (of which there will be one per node
in the network). Edge probabilities are defined using dot products between node-
vectors.

We cover:

1 Definition and properties of the RDPG model,

2 Latent position matrices and their interpretation,

3 Simulating samples from RDPG random networks,

4 Probability matrices for RDPGs, and

5 Relationship between RDPGs and other network models.

The RDPG model defines a framework for representing complex network struc-
tures and relationships between nodes in a continuous vector space. Whereas we
cannot use traditional machine learning techniques on sets of nodes and edges,
we can use traditional machine learning techniques with data represented in
continuous vector spaces. Because an RDPG expresses nodes as elements of this
space, this framework will dominate much of the discussion in later parts of this
book.

Take 100 people who live along a 100 mile long road, and each person is 1 mile
apart. We create a network with nodes representing the people who live along
this road, and the edges representing whether a given pair of people along the
street are friends. However, there’s a slight twist: the people at the ends of the
road are party hosts. If someone lives closer to one party host, they are going
to tend to more frequently go to that host’s parties than the other party host.
Consequently, when someone lives near a party host, they are going to tend to
be better friends with other people who go to that host’s parties more frequently.
How could we model such a situation?

For each person i, we could have a vector Z;, that looks like this:

= 50

We could model the probability of two people i and j being friends with the
inner product of the two vectors :E';ra_c’] This quantity is the element-wise sum of
the elements of each vector; that is:

d
f?fj = Za:ida:jd
u=1
. R 1 o 0
For instance, 1 = ol and T1g0 = 1l Note that:

pl,loozflTﬁoo:l-O—i-O-l:O
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What happens in between?
Let’s consider another person, person 30, who lives closer to person 1 than to

e
person 100. Here, ¥39 = {130} This gives:
10
7 3 7
- T- = — . —_— = —
Prso =T &0 = 35 14+0-95= 15
7 3 3
T
P30,100 = T307100 = 75 0+ 0 0

So this means that person 1 and person 30 have a 70% probability of being
friends, but person 30 and 100 have only a 30% probability of being friends.
The Random Dot Product Graph (RDPG), the formalization of this intuition,
was first introduced by [7]. With the RDPG, we can generalize ER,(p) and
certain SBM,, (%, B) random networks while retaining a discernable structure.

The latent position matrix

We parameterize the RDPG using a matrix X called the latent position matriz.
Each row z; will be called the latent position of the node i. In matrix form, X
looks like this:

-oE A
-o# A
X = ,
o A

We will call the columns of X the latent dimensions, and the total number of
columns the latent dimensionality. We will often use the letter d to denote the
latent dimensionality of X. X has n rows (one for each node) and d columns (one
for each latent dimension). The latent position of the node 4, #;, is therefore a
d-dimensional vector.

Conceptualizing the RDPG

We call this model the RDPG because the probabilities of edges existing are
based on dot products between pairs of latent positions for the different nodes in
the network. We will say that the random network has adjacency matrix entries
a;; which are Bernoulli(#] ¥;), where &; is the latent position for node i and &; is
the latent position for node j. Therefore, the entries a;; depend only on the latent
positions of the nodes i and j. As before, these entries are independent of all of
the other entries in the adjacency matrix. If A has n nodes with independent
edges and a latent position matrix X, we say that A is an RDPG,(X) random
network.
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443 How do we simulate samples of RDPG,,(X) random networks?

The procedure in Algorithm 9 will produce a simple network A, where the un-
derlying random network A is a simple RDPG,,(X) random network.

Algorithm 9: Simulating a sample from a simple RDPG,,(X) random
network
Data: n a number of nodes
X a latent position matrix whose rows indicate the d-dimensional
latent position vectors for each node
Result: The adjacency matrix of a sample from the random network.

for i in 1:n do

for j > i do

Obtain a weighted coin (4, j) which has a probability of # #; of
landing on heads, and a 1 — ¥ Z; probability of landing on tails.

4 Flip the (i,j) coin, and if it lands on heads, the corresponding

entry a;; in the adjacency matrix is 1. If the coin lands on tails,

[y

the corresponding entry a;; = 0.

Let Aj; = Qjj-

5
6 end

7 end

8 return A

Let’s return to the party example. We first must determine what our latent
position matrix looks like:

import numpy as np
from graphbook code import lpm_heatmap

n = 100 # the number of nodes in our network
# design the latent position matrix X according to
# the rules we laid out previously
X = np.zeros((n,2))
for i in range(0, n):
X[i,:1 = [(n - i)/n, i/n]

lpm_heatmap (X, ytitle="Person", xticks=[0.5, 1.5], xticklabels=[1, 2],
yticks=[0.5, 49.5, 99.5], yticklabels=[1, 50, 100],
xtitle="Latent Dimension", title="Latent Position Matrix, X")

This latent position matrix is shown in Figure 4.4.1(A). Next, we can use
graspologic with this latent position matrix to sample an RDPG,,(X) random
network:

from graspologic.simulations import rdpg
from graphbook code import heatmap

# sample an RDPG with the latent position matrix
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# created above
A = rdpg(X, loops=False, directed=False)

# and plot it
heatmap(A.astype(int), xtitle="Person", ytitle="Person",
title="$RDPG_{100}(X)$ Simulation")

A sample from the RDPG,,(X) random network is shown in Figure 4.4.1(B).

(A) Latent Position Matrix, X (B) RDPG1g0(X) Simulation
1 1 =, J.ln_'.:rk. s I |. r-;gr '..L-: |
1.0 e :
o PR 1
g g iy bk T o
@ 50 0.5 B 50 dEE et 5]
@ @ L B
o o
-0
-0.0
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O
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1 2 — 8 (=]
Latent Dimension S
Person

Figure 4.4.1 (A) the latent position matrix. (B) a sample of an RDPG,(X) random
network.

Probability matrix for RDPG random networks

In Concept 4.2.1, we learned that we can use the probability matrix to determine
whether networks are stochastically equivalent. We want a procedure which takes
a latent position matrix X whose rows are the latent positions Z; of each node 4,
and will produce a probability matrix P where each entry p;; = & #;. As before,
the brute force approach would work here, but we would strongly prefer to lever-
age matrix multiplication accelerations where possible due to the fact that most
modern programming languages have accelerated matrix multiplication routines.

Fortunately, this is much more obvious than it was for the SBMs in Section
4.3.6. Notice that our goal is a procedure where we obtain P where p;; = 7/ 7;.
Remember that the latent position matrix looks like this:

o# A
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When we multiply X with its transpose, X |, the product ends up being this:

& A

T T
Xx'T = : i z,
Foal 4] LE L

n

The elements after matrix multiplication produce the (i,7)*" value as the dot
product of the i*" row of the first matrix with the j** column of the second
matrix. This product is:

7] T 7| T,
XX = : :
AR 7 E,

The (i,7)" entry (XX ");; = &/ 7;, which was exactly our goal. Therefore:
P=XX",

which gives us our expression for the probability matrix of an RDPG.

RDPG,(X) random networks generalize a broad class of problems

To show when the RDPGs generalize the ER and SBM random networks, we
can turn to the logic that we developed in Section 4.2.4.

RDPG random networks generalize the ER random networks
If the RDPG random networks generalize the ER random networks, then for any
ER random network, we could find a stochastically equivalent RDPG.

Take an ER,,(p) random network A(1). The probability matrix P(*) for this
network has entries pgjl = p. Our goal is to find another network A®) (an
RDPG, with some latent position matrix X) that is stochastically equivalent to
this network, for any choice of p. That is, we want a choice of #; and &, such
that f;ri"j = p, for all 7 and j.

This is quite easy to do. If the latent dimensionality d = 1, we can take
#; = [/p] for all nodes. That is, each latent position is just a scalar (the square-
root of p), and the “latent position matrix” is the n x 1 matrix (a column-vector):

X =./ply,

where 1,, is the n-dimensional column-vector of 1s. Using the same logic that we
used in Section 4.3.7:

P® = xxT
= plav/pl,

=pl,1,,
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which works because /p is a scalar and therefore can be directly multiplied with
the other \/p. From Equation (4.3), we remember that:

SO pg) =p = pl(-;) for all i and j, and P = P®) . This result can be ap-

plied for any choice of p. Therefore, the ER,,(p) random networks are contained
in the RDPG,,(X) random networks, and conversely, the RDPG,,(X) random
networks generalize the ER,,(p) random networks.

RDPG random networks generalize some SBM random networks

In certain situations, the RDPG,(X) model can generalize the SBM, (Z, B)
model in Section 4.3. Imagine an SBM,,(Z, B) random network A(!) where C
is the n x K one-hot encoded community assignment matrix with rows corre-
sponding to nodes. Remember from Section 4.3.6 that the probability matrix
is:

PO =cBCT.

Likewise, if A is an RDPG,(X) random network, the probability matrix
would be:

P =xXxT,

If the matrix B was “somehow” a product of another matrix (called a square-root
matriz, written \/E) with its transpose; that is:

B=VBVB , (4.4)

Then finding an RDPG,(X) random network that is stochastically equivalent
to A would be possible. Notice that in this case:

.
PV =cvBVB CT.
If U and V are two matrices, then (UV)T = VTUT. Therefore, if we set X =

CV/B:
P® = xxT

N (C\/E)T

—ovVBVB CT
=CBCT =pW, (4.5)

and our job would be done. Stated another way, if the relationship in Equa-
tion (4.4) is true, and the block matrix B has a square root, then the RDPG
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Concept 4.4.1 The bigger picture of network generalization

The reason that we are discussing generalizations can be given most clearly
through example. Imagine that you are learning how to knit, and that you
want to knit a sweater. As you learn, you pick up many skills and abilities
that also apply to simpler things. After finishing the sweater, you might want
to knit a scarf, which is simpler than a sweater. The skills that you picked up
to knit the sweater will probably generalize to your attempt to knit the scarf.
Similarly, for many sections of this book the RDPG will be a foundational
model that we will build upon. In Chapter 5, we will focus most of our atten-
tion on developing machinery for estimating latent position matrices from net-
work observations. The idea is that, just like knitting a sweater will give skills
that generalize to knitting a scarf, developing machinery for one class of net-
works will generalize to other classes. If we develop machinery for the RDPGs
and the RDPGs generalize a second random network model, the machinery
we developed for the RDPGs generalizes to random networks described by the
second random network model. We are working towards developing intuition
that will give us a tool set that can deal with many problems, rather than a
tool set which only applies to one problem. Chapters 7 through 9 will explore
how to apply many of these techniques to real network learning problems and
refine them for more specific network models.

random networks would generalize the SBM random networks, and the SBM
random networks would be contained by the RDPG random networks. However,
the requirement that B has a square root is a bit more nuanced, and provides
motivation for discussion in Section 4.5.

Concept 4.4.1 roadmaps our discussions about network generalizations, and
describes how the RDPG fits in to that picture.




4.5

4.5 Positive semidefinite Matrices 149

Positive semidefinite Matrices

We now take a break from defining new statistical models to explore the prop-

erties of positive semidefinite (PSD) matrices, which are symmetric, have non-

negative eigenvalues, and importantly, have square roots.

W N

‘We cover:

Definition and properties of PSD matrices,

PSD block matrices in SBMs and their implications,

Relationship between PSD matrices and RDPGs,

Types of block matrices: homophilic, planted partition, kidney-egg, core-periphery,
and disassortative, and

Generating latent position matrices for SBMs with PSD block matrices.

Positive semidefiniteness is a key property because any model with a PSD

probability matrix can be thought of as an RDPG, motivating many of the
representations we will discuss in Chapter 5.

In Section 4.4, we said that the probability matrix P = XX " for RDPG,,(X)

random networks, where X was the latent position matrix. This means that P
must be positive semidefinite for an RDPG.

There are multiple equivalent ways to define positive semidefiniteness (typi-

cally abbreviated PSD). In this book, we will borrow two definitions:

1

if M is a real square symmetric matrix (that is, M has n rows and n columns,
and M = M"), we say that M is positive semidefinite if and only if there
exists another matrix v/ M where M = vVM~vM T. In this case, understanding
V/M to be the “square-root matrix” provides a reasonable level of intuition.
If M is a real square symmetric matrix, we say that M is positive semidefinite
if and only if all of the eigenvalues are non-negative.

The words “if and only if” can be taken to mean that the two statements are

“equivalent characterizations” of one another. We could characterize a matrix as

positive semidefinite either if it has a square-root matrix, or if all of its eigen-

values are non-negative. Conversely, if we start by knowing that a real matrix is

positive semidefinite, we also know that it has a square root matrix and that its

eigenvalues are non-negative. Starting with /M is often a more useful approach

to construct positive semidefinite matrices, and checking for non-negative eigen-

values is useful for verifying whether M is positive semidefinite. Concept 4.5.1

introduces the concept of a matrix factorization (or decomposition), which will

be crucial for later sections.

To begin, we will work through a quick example. For RDPG,,(X) random

networks, if P = XX, X is a square-root matrix for P. Therefore, we could

say that the probability matrix P is positive semidefinite, and is factorized by

the latent position matrix X and its transpose. Equivalently, we could check this
with the following utility, which we will use in several sections of the book going
forward:
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Concept 4.5.1 Matrix factorizations/decompositions

If we have a matrix M, we say that M is factorized or decomposed if it can
be expressed as a product of other matrices. For instance, if M is positive
semidefinite, we can factorize or decompose it using the square-root matrix

VvV M:
M =MV

There are many approaches with which we can obtain factorizations or de-
compositions of matrices, several of which will be useful for network learning
problems.

import numpy as np
def block_mtx_psd(B):

A function which indicates whether a matrix
B is positive semidefinite.

return np.all(np.linalg.eigvals(B) >= 0)

Positive semidefiniteness and Block Matrices

SBM,,(Z, B) random networks can often share the positive semidefinite property,
particularly with respect to the block matrix B.

We will restrict ourselves to the 2 x 2 case, in which we have two communities,
so that we can build intuition for what a positive semidefinite block matrix looks
like. In this case, the block matrix is:

b11 b12}
B = ,
|:b21 baa

The existence of the square-root matrix v B (in other words, that B is positive
semidefinite) in the 2 x 2 case can be summarized succinctly with two conditions:

1 b11 > 0, and
2 the determinant of the block matrix is non-negative; that is, det(B) > 0.

Since the block matrix B is also a probability matrix, condition 1 applies au-
tomatically: a probability cannot be negative. The determinant of a 2 X 2 matrix
B is by1bos — ba1byo. For this section, we will consider only simple SBM,, (%, B)
random networks; from Remark 4.3.2, remember that this means that the block
matrix will be symmetric, so bjo = ba;. Therefore, the determinant of a 2 x 2
symmetric matrix B is by1bge — b%l. So, condition two gives us that the block
matrix will be positive semidefinite any time by1b99 > b%l. When a matrix has
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all positive entries but is not positive semidefinite, we refer to the matrix as
indefinite.

The power of RDPGs
When this block matrix is positive semidefinite, as we explained in Equation 4.5,
we could find a latent position matrix for the SBM:

P=XX",

which illustrates that the probability matrix for an SBM with a positive semidefi-
nite block matrix is also positive semidefinite. This is because it can be factorized
with a square-root matrix (here, the latent position matrix). So, to answer the
question we left “hanging” at the end of Section 4.4.5, the RDPGs generalize
SBMs with positive semidefinite block matrices (and conversely, the SBMs with
positive semidefinite block matrices are contained by the RDPGs).

More broadly, to determine stochastic equivalence, we always will use a proba-
bility matrix. Imagine we have A1) a random network with a probability matrix
PW_If PO is positive semidefinite, we can find v P(1) where:

PO — \/P(l)\/P(DT_

Now, imagine that we have some RDPG A(®)| where the latent position matrix
X =P, Then the probability matrix for A is:

.
P® = xxT =/Py/pl) —pW),

Since P = P2 AM and A are stochastically equivalent by Concept 4.2.1.
What this shows is that the RDPG random networks will generalize the entire
class of random networks with positive semidefinite probability matrices, which
is an extremely useful property and will be very handy later on. This further
solidifies the intuition that we developed in Concept 4.4.1, and is solidified by
Concept 4.5.2.

Concept 4.5.2 The importance of RDPGs

By now, you should be starting to see the picture of why positive semidef-
initeness matters, which we originally introduced in Concept 4.4.1: random
networks with positive semidefinite probability matrices are generalized by
RDPGs, which means that all machinery we will later develop for RDPGs
applies (for free) to any random network with a positive semidefinite proba-
bility matrix.

A more nuanced question: what is a random network with a positive semidef-
inite probability matrix? To conceptualize what this means intuitively, we’ll in-
troduce various types of SBMs with two communities. These are covered in more
technical depth in [8]. With the insight that we developed in Section 4.5.1, we
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will build intuition by classifying these block matrices as positive semidefinite
(or not).

Erdds-Rényi block matrix

An SBM’s block matrix is called Erdds-Rényi if all entries are equal. In the 2 x 2
symmetric case, this means that by = bas = b12 = p:

Bo [p p]
p p
If B has only one unique entry, and 2’ is any community assignment vector, the
resulting probability matrix will also have 1 unique entry. This is equivalent
to the probability matrix for an ER, (p) network: we technically still have two
communities, but they are completely indistinguishable.

Since we already showed that ER, (p) random networks are contained in the
RDPG@G,(X) random networks, and RDPG,,(X) can only have positive semidef-
inite probability matrices, this B matrix must be positive semidefinite.

To see this formally, notice that b1y = byo = b1 implies that by1bss = b%z, SO
the determinant of B is non-negative.

Homophilic block matrices

An SBM'’s block matrix is called homophilic when the diagonal entries, by for
all communities k are greater than the off-diagonal entries by; where k # [:

B_ {bn b12]

b21 b22

“dth.bll,bgg >'b127b21

“Homophilic” roughly means “tending to form relationships with objects similar
to oneself.” In the context of a network, the nodes of a SBM with a homophilic
block matrix are more probable to have connections with nodes from the same
community than with different communities.

Homophilic block matrices are positive semidefinite in general. We can see this
easily for the 2 x 2 case using the determinant condition for B. Notice that since
b11 and bos are each greater than bs; and are non-negative, their product will be
greater than b3,.

Next, let’s generate and plot a homophilic block matrix:

import numpy as np
from graphbook_code import heatmap

B = np.array([[0.6, 0.2],
[0.2, 0.4]])
heatmap (B, title="A homophilic block matrix", annot=True, vmin=0, vmax=1)
block_mtx_psd(B)
# True
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This block matrix is shown in Figure 4.5.1(A).

(A) Homophilic (B) PSD Kidney-Egg (C) PSD Core-Periphery

0.2 0.2 02

1
1
1

Community
Community
o
v

Community
1
o o
N w
w (=]
Block Probability

0.2 0.4 0.2 0.2 0.2 0.1

2
2
2

-0.00
1 2 1 2 1 2
Community Community Community

Figure 4.5.1 (A) a homophilic block matrix. (B) a positive semidefinite kidney-egg
block matrix. (C) a positive semidefinite core-periphery block matrix.

Planted partition block matrices

A planted partition block matrix has equal on-diagonal entries; that is, by; =

bag = ... = bigk for all K communities. Similarly, planted partition block ma-
trices have equal off-diagonal entries; that is, bjs = ...b1x = b1 = ...bog =
bKl = ... :bKK—1:
b1 512]
B fr—
[b21 bao

with b11 = bQQ, b12 = b21

In our case, since we already know B is symmetric, this just means that b1; = bas.

Using the determinant condition and the fact that by; = bos, this implies that
a planted partition is positive semidefinite when b3, > b3,. Since the entries
of B are probabilities and therefore non-negative, we can take square roots of
both sides, and a sufficient condition is that b1; > bio. When this condition
is satisfied, we further clarify that the planted partition is homophilic, since it
fulfills the homophily criterion given in Section 4.5.3.

We can generate an indefinite planted partition block matrix with an exam-
ple where the block matrix has off-diagonal entries that exceed the on-diagonal
entries:

B_indef = np.array([[.1, .2],
[.2, .111)

block_mtx_psd(B_indef)

# False

Which is shown in Figure 4.5.2(A).
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(A) Indefinite planted partition (B) Indefinite Kidney-Egg (C) Indefinite Core-Periphery (D) Disassortative
10
082
- 01 0.2 oo 01 0.2 - 02 - 8.2
= = = = a
c = c f=4 06T
=] ] ] = k]
£ £ £ £ £
£ £ £ £ -04%
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" o : . ] o ) -00
1 2 1 2 1 2 1 2
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Figure 4.5.2 (A) an indefinite planted partition block matrix. (B) an indefinite
kidney-egg block matrix. (C) an indefinite core-periphery block matrix. (D) a
disassortative block matrix.

Kidney-egg block matrices

A kidney-egg block matrix is a 2 x 2 block matrix where b1 = by = bos:

b1 b12]
B =
[521 bao

with b12 = b21 = b22

For this matrix to be positive semidefinite, the determinant condition along
with blg = b21 = b22 giV@S us that b11b12 Z b%Q DiVidiIlg through by blg, we
can see that the kidney-egg block matrices are positive semidefinite with the
same conditions as planted partition block matrices; that is, by; > bio. Next,

we generate two kidney-egg block matrices, one of which is indefinite and one of
which is positive semidefinite.

# a positive semidefinite kidney-egg block matrix
B_psd = np.array([[.6, .2],
[.2, .21
block_mtx_psd(B_psd)
# True

# an indefinite kidney-egg block matrix
B_indef = np.array([[.1, .21,

[.2, .211)
block_mtx_psd(B_indef)
#False

We plot the positive semidefinite block matrix in Figure 4.5.1(B), and the
indefinite block matrix in Figure 4.5.2(B).
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456 Core-periphery block matrices

Core-periphery block matrices have either by or bys which are greater than all
of the other entries of the block matrix:

b11 b12}
B =
{521 b2

with b1 > b22, b127 ba1

or by > by1,b12,b01

This is called the core-periphery model because there are a group of nodes from
a particular community (the core) that tend to be more strongly connected than
nodes that are not in that community (the periphery). For instance, if community
1 were the core community, b1 > bog and by; > bys, then the nodes of community
1 would tend to heavily associate with other core nodes. However, the nodes of
community 2 (the peripheral community) would have far fewer connections both
with other peripheral nodes and with core nodes.

Core-periphery block matrices are a little bit harder to tie directly to positive
semidefiniteness; the most precise that we can be is simply to say that by1b20 >
b12b21, which isn’t particularly informative since that’s just the criterion for
positive semidefiniteness.

Let’s show how this condition works with some more examples:

# a positive semidefinite core-periphery block matrix
B_psd = np.array([[.6, .2],
[.2, .111)
block_mtx_psd(B_psd)
# True

# an indefinite core-periphery block matrix
B_indef = np.array([[.6, .2],

[.2, .05]1)
block_mtx_psd(B_indef)
# False

The positive semidefinite core-periphery block matrix is shown in Figure 4.5.1(C),
and the indefinite core-periphery block matrix is shown in Figure 4.5.2(C).

457 Disassortative block matrices

A block matrix is disassortative if by and byy are greater than by; and bas:
b11 512}
B =
{bm ba2

with b11, bao < b1g, bay

By definition, disassortative block matrices are not positive semidefinite. This
is because by1bos < biobo1, since all of the entries of B are positive. There is
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no possible way that we could use a disassortative block matrix to construct an
equivalent RDPG,,(X).

Imagine that we have a simple network where the nodes are businesses, and
each node is either a producer or a retailer (the two communities). An edge
exists in the network if a relationship exists between two businesses. In general,
producers will have business relationships with retailers, so the cross-community
block probability bi5 is high. However, producers will not tend to have business
relationships with their competitor producers, and retailers will not tend to have
business relationships with their competitor retailers, so the within-community
block probabilities b11 and by are comparatively low.

We can generate a disassortative block probability matrix like this:

# an indefinite disassortative block matrix
B = np.array([[.1, .5],
[.5, .2]1)
block_mtx_psd(B)
# False

A plot of an indefinite block matrix is shown in Figure 4.5.2(D), and another
example of a disassortative block matrix would be the indefinite planted partition
block matrix shown in Figure 4.5.2(B).

How do we generate latent position matrices for SBM,,(Z, B) random
networks with positive semidefinite block matrices?

When a real matrix M is positive semidefinite, we can obtain a square-root
matrix M where M = VMM T. This matrix can be generated through a
process known as the Cholesky Decomposition [9]. This matrix /M is also a
square matrix; that is, it has K rows and K columns. This process will come in
handy over the next few sections when we are dealing with positive semidefinite
SBM block matrices and probability matrices, and we want to obtain a latent
position matrix. We can do this with numpy, like so:

# homophilic, and hence positive semidefinite, block matrix
B = np.array([[0.6, 0.2],
[0.2, 0.4]])

# generate square root matrix
sqrtB = np.linalg.cholesky(B)

# verify that the process worked through by equality element-wise
# use allclose instead of array_equal because of tiny

# numerical precision errors

np.allclose(sqrtB @ sqrtB.T, B)

# True

Next, we’ll generate a community-assignment vector, and then use the code
that we first produced in Section 4.3.6 to obtain a omne-hot-encoding of the
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community-assignment vector. We can then use that to produce a latent po-
sition matrix, using the instructions from Equation (4.5), by taking X = CVB:

from graphbook_code import ohe_comm_vec
def lpm_from_sbm(z, B):

A function to produce a latent position matrix from a
community assignment vector and a block matrix.
if not block mtx_psd(B):
raise ValueError("Latent position matrices require PSD block matrices!")
# one-hot encode the community assignment vector
C = ohe_comm_vec(z)
# compute square root matrix
sqrtB = np.linalg.cholesky(B)
# X = Cxsqrt(B)
return C @ sqrtB

# make a community assignment vector for 25 nodes / community
nk = 25
z = np.repeat([1, 2], nk)

# latent position matrix for an equivalent RDPG
X = lpm_from_sbm(z, B)

The resulting latent position matrix is shown along with the community as-
signment vector and the block matrix in Figure 4.5.3. Note that nodes with
the same community have the same latent positions (rows of the latent position
matrix X in Figure 4.5.3(C)).

(a) 2 (B) Block matrix, B ) x=cvB
1- 1
1.00
o 0.2 Z 10
}2 2 B 0.753
[} < = 8 o
825, 2 2 0508 E25 0.5
=z -1 E = T Z
8 o -0.257¢
O - 0.2 0.4 2 -0.0
-0.00
50 . ; 50-
1 2 1 2
Community Latent Dimension

Figure 4.5.3 (A) the community-assignment vector. (B) a homophilic block matrix,
which is positive semidefinite. (C) the latent positions for an equivalent RDPG.

Finally, we can verify that the latent position matrix and the process described
in Section 4.3.6 to generate the probability matrix for an SBM produce the same
probability matrix:
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from graphbook_code import generate_sbm_pmtx

# generate the probability matrices for an RDPG using X and SBM
P_rdpg = X @ X.T
P_sbm = generate_sbm_pmtx(z, B)

# verify equality element-wise
np.allclose(P_rdpg, P_sbm)
# True

By Concept 4.2.1, this implies that the RDPG,,(X) random network and the
SBM,,(Z, B) random network are the same.

The latent positions of nodes in SBMs with positive semidefinite block
matrices

In Figure 4.5.3(C), we made a particular note: the nodes in the same community
of the network that we designed above appear to have the same latent positions.
This is no fluke, and is more broadly a characteristic of nodes in the same com-
munity of any SBM random network with a positive semidefinite block matrix.

Suppose that we have an SBM, (%, B) random network A, where the block
matrix B is positive semidefinite, and the SBM has K communities. Since B
is positive semidefinite, A has a positive semidefinite probability matrix, which
means that there is a stochastically equivalent RDPG, (X) random network.
This is the conclusion that we reached in Section 4.5.1.

If C is the one-hot encoded community assignment matrix of A, and VB is
the square-root matrix of B (which exists because B is positive semidefinite), a
latent position matrix for such an RDPG would be:

X =CVB.
When we write out the rows of X and C, it looks like this:

g A FoE A

AN F &l oA

n n

where &/ is the d-dimensional latent position for the node i, and ¢; is the one-hot
encoding of the community assignment for node 1.

Matrix multiplication is performed by multiplying across the rows of the first
matrix and down the columns of the second. Therefore, this product will be:

FoE A F & vVB A
E = : : (4.6)
AN ARV I
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Looking at each row of the left and right, this gives us that:
il =&/ VB,
which we can transpose to obtain:
.
7, =VB ¢&.

Remember that ¢; is the one-hot encoding of the community-assignment z;;
stated another way, c¢;;, = 1, and 0 otherwise. This means that for any other
node j where z; = z; (the nodes ¢ and j are in the same community), & = ¢,
because the community assignments are the same. Therefore:

fi = \/ETE;
— BTE]-
=
which is because ¢; = ¢;. Therefore, ¥; = ¥; when z; = z;. Stated another way,
nodes in the same community also share the same latent positions. This property
will be useful for us in many future sections. In particular, this intuition will allow
us to learn community labels for nodes (when we do not know community labels
ahead of time) through community detection in Section 6.1, and will allow us to
“untangle” the community structure from networks like those in Figure 4.3.2.
We show an example of a homophilic block matrix in Figure 4.5.3(A); the
fact that it is homophilic also means that it is positive semidefinite. When we
apply the conversion utility lpm_from_sbm(), we produce a latent position matrix

in Figure 4.5.3(C). Notice that the rows for all of the nodes each of the two
communities are equal.

Not all RDPGSs can be represented as SBMs, and vice-versa

Section 4.5.9 provides us with insights into which situations SBMs can generalize
RDPGs. The street example from the introduction of Section 4.4 provides a
counter example indicating that not all RDPG, (X) random networks can be
represented as SBM,, (%, B) random networks with fewer communities than nodes
(that is, K < m communities): in this example, all of the latent positions are
different for each node. If it were possible to represent the street example as an
SBM,,(Z, B) random network with K < n communities, a group of nodes with
the same latent position vector would need to exist.

Likewise, as discussed earlier, RDPGs only generalize positive semidefinite
RDPGs. This means that if we were to have an SBM with any of the indefinite
block matrices from Figure 4.5.2, we would not be able to identify a latent
position matrix for a corresponding RDPG such that the SBM with an indefinite
block matrix and the RDPG have the same probability matrix. For the remainder
of this book, when dealing with positive semidefinite matrices, we will abbreviate
them as “PSD.”
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Properties of random networks

We now continue our break from defining new random network models to ex-
plore useful properties of random networks, extending the concepts introduced
in Chapter 3 in the context of observed networks to random networks.

As we have discussed, unlike observed networks, random networks have nodes
and random adjacency matrix entries a;;, which we describe using probability
models (such as the Bernoulli(p;;) random variable). In Sections 4.1, 4.2, 4.3,
and 4.4, we introduced fundamental network models. This section clarifies the
statistical properties of networks embodied by these assumptions. We cover:

1 Expected values for random quantities in networks,
2 Random node degree and expected degree,

3 Random network density and expected density, and
4 The population network Laplacian.

Understanding these properties helps with model selection and interpretation
for real-world networks. Furthermore, understanding how the properties of net-
works behave under typical or atypical settings is crucial for developing down-
stream statistical inference techniques.

Expected values

The principal result that we will use for this section is the expected value of
binary quantities. If x is a random quantity that has the value 1 with probability p
and 0 with probability 1—p, remember from Section 4.1.1 that x is a Bernoulli(p)
random variable. This is the equivalent of a coin flip experiment, where a value
of heads is recorded as a 1, and a value of tails is recorded as a 0. The coin may
or may not be fair, in that the probability that it lands on heads might differ
from 0.5.

In this Section, the outcome is not yet realized for the random quantity. In-
stead, we describe properties about the random quantity, which tell us informa-
tion about how we expect it to behave. The expected value, denoted as E[-], of
a binary (0 or 1)-valued quantity x is:

E[x] =0Pr(x=0)+1Pr(x=1)
= Pr(x=1). (4.7)

This can be informally thought of as the average value that the random quantity
takes over infinitely many trials.

So, if a coin lands on heads (a value of 1) with probability 0.75, its expected
value is 0.75.

Expected values behave linearly under finite sums. This means that if x and
y are two random quantities, that:

E[x +y]| = E[x] + E[y]. (4.8)
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So, if x is a coin flip that lands on heads with probability 0.75 and y is a flip of
a different coin that lands on heads with probability 0.25, the expected value of
their sum is 1.0.

Next up is the rescaling property of expected values. If « is a constant (a
non-random quantity), then:

Elax] = oE[x]. (4.9)

To make this more concrete, let’s imagine that x is a coin flip that lands on
heads with probability 0.75, and let’s say that we decide to play a game where,
if the coin lands on heads, we get $5, but if it lands on tails we get $0. Using
this rule, we could just multiply the value of the coin flip outcome by 5 (if the
coin lands on a 1, or heads, the outcome is 5, and if it lands on a 0, or tails, the
outcome is 5 -0 = 0). Stated another way, our profit from the game is 5x. Then
the expected profit is:
E[5x] = 5E[x]
15
=5-.75= R

and we are expected to make $3.75 from this game.

Edge probabilities as expected values

In a random network, the edge a;; is just a binary random variable, like x.
Furthermore, if A is a IER,(P) random network, the probability matrix P
has entries p;; for each pair of nodes 7 and j that describe the probability that
a;; has a value of 1. Remember from Section 4.1.3 that this meant that a;; was
a Bernoulli(p;;) random variable.
This means that we can compute the expected value of each adjacency in the
network using the formula, as:

Elay;] = pi;- (4.10)

Crucially, this gives us the insight that the probability matrix can also be
thought of as the expected value of the adjacency matrix for a random network:

E[au] E[aln]
EA]=| @ -~ 1 | =P
Elan] ... Elam]

Random node degree

In 3.2.2 we defined the degree of a node i as:

d; = degree(i) = Zaij'
J#i
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Similarly, we define the random node degree for a random network A as:
di = Z aij.
J#i
This quantity is random, in that it is not necessarily any particular value: it takes

a number of possible values with a probability. We can use (4.8) to compute the
expected degree:

Eldi] =E | Y ay
i
=> Elayl, (4.11)
J#i
Let’s imagine that there are n > 3 nodes in the network, and ¢ = 1. This means
that:

E[dl]ZE Zalj =E Zalj

J#1 j>2

=E[ai2] +E Z aj |,
j>3
which is a direct application of the result of Equation (4.8). Next, we can write
down E {ijs alj} as a sum of E[a;3] and E [2]24 alj:|, and we can continue
this pattern all the way up to n to get the result in Equation (4.11).

Finally, remember that E[a;;] = p;; by Equation (4.10). So, the expected node
degree is:

Eldi] = pij. (4.12)

J#i

Random network density
The density of a random network A is defined as:

Zj>i a4;

(3)

2
As before, this quantity is random, so it does not have any particular value.
However, its expected value can be computed using the rules that we described
above exactly.

First, notice that if the network has n nodes, (g) is simply a constant. From
Equation (4.9), this means that:

density(A) =

E[density(A)] =E lzﬁla”]

(3)
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Exercise 4.6.1 Degree homogeneity in an SBM,(Z, B) random network

Take an SBM, (%, B) random network A. Suppose that for n nodes, n/2 of
the nodes are in community 1, and n/2 of the nodes are in community 2.
Consider the block matrix:
. 2
B [0 50 } .

0.2 0.3

1 With n = 100, compute the degree of each node in the network.

2 Repeat the above simulation R = 100 times, keeping track of your results
in a data frame with the columns as the node index 4, the community that
the node i is in, the simulation replicate r, and the node degree dgr).

3 Compute the average degree for each node across all simulations. This
should reduce your data frame to node index ¢, community that the node
1 is in, and the average node degree over all simulations.

4 Explain what you observe about the average degrees for each node in a
particular community (the nodes of the same community have. .. average
node degrees, and nodes in different communities have ... average node
degrees).

5 Establish an equation for the expected node degree for a node i, for each
of the two communities. This should be a function of the entries of the
block matrix B, given above. Explain how this supports your answer that
you obtained in 4.

IR
“ B2

j>i

Next, we can use the linearity argument from Equation (4.8) to obtain:

1
Eldensity(A)] = -~ ZE[aij]
(2) i>i
1
= v D Pije (4.13)
(2) j>i
Using Equations (4.12) and (4.13), we can draw the same conclusions that we
did in Section 3.2.2:
, > i1 E[di]
Eld ty(A)] = ==——. 4.14
density(A)] = =10 (414)
Finally, from Section 3.2.2, remember that d = % >oi . d; is the average degree
of the nodes in a network A.
Likewise, d = % >, d; is the average degree of nodes in a random network
A. Again, since this quantity is random, it can be summarized using expected
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values. Since n is a fixed number of nodes, then using the rescaling property of
Equation (4.9):

E[d] = E iidi]
=1
_lglyoa,
777/ Pt 1 )

Finally, using the linearity of sums in Equation (4.8):

Combining this with Equation (4.14):
E[d]
n—1

E[density(A)] =

In the same way that the density of a network A could be conceptualized as the
average degree of each node in the network, the expected density of a random
network A can be conceptualized as the average expected degree of each node
in the random network.

Population network laplacian

In Section 3.4.4, we defined the DAD Laplacian as a function of the adjacency
matrix:

L=D 2AD: (4.15)

The population network Laplacian £ is to the random network A what the
DAD Laplacian L was to the adjacency matrix A.
The population network Laplacian is:

L=D 3PD 3. (4.16)

The matrices D here are what is known as the expected degree matriz.
In the case of simple TER, (P) random networks, this is the diagonal matrix
whose diagonal entries are:

Eld;] =) pij. (4.17)
J#i
The expected degree matrix looks like this:

E[d] Z_j;él P1j

E[d,) Zj;ﬁn Dnj
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D is a diagonal matrix and is a function of the probability matrix P, like the
degree matrix D was a function of the adjacency matrix A.
The diagonal entries of D, E[d;], give the expected number of edges for node

A natural choice for the inverted square-root matrix of D would be:

1
E[d1]

1
VE[d1]

Notice that as long as no node has a probability of zero of being connected

to any other nodes in the network, each quantity on the diagonal exists and is

finite. If any node ¢ had a probability of zero of being connected to all of the

other nodes of the network, then Z#ip,;j = Zj#() = 0, and hence, % = o0.

Therefore, for D2 to be defined, then for every node i, at least one other node j
must exist where p;; > 0. This fact serves as motivation for the degree trimming
preprocessing techniques we explored in Section 3.6.1.

With the restriction in mind, all of the entries along the diagonal of D will

be positive. This means that their reciprocals E[E] and the square roots of their

1

reciprocals will also be positive.

We can think of £ as the expected DAD Laplacian for a random network A.
It is defined equivalently to L in Equation (4.15), except instead of an observed
adjacency matrix A, we are thinking about the expected adjacency matrix (the
probability matrix, P) and the expected degree matrix D for the random network
A.

Performing the same multiplication as in Equation (4.15), we see that £ has

. L Pij . . . \th
entries ¢;; NN Rl Therefore, the interpretation of the (4, j)*" entry of the

population network Laplacian are that it is the probability p;;, but normalized
by the square-root of the corresponding expected degrees of the incident nodes
i and j.
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Degree-Corrected Stochastic Block Models

We now return to building new statistical machinery. In Section 4.3, we intro-
duced the SBM in order to model networks with simple community structure.
However, the SBM is limited: subnetworks of an SBM corresponding to commu-
nities are simply Erdds-Rényi random networks, with no way to distinguish be-
tween nodes. The Degree-Corrected Stochastic Block Model (DCSBM) addresses
these limitations by augmenting the SBM with the flexibility to model network
with varying node degrees within communities, called node degree heterogeneity.
We cover:

Motivation and definition of the DCSBM,
Degree-correction vectors and their interpretation,
Simulating samples from DCSBM random networks,
Probability matrices for DCSBMs, and

the relationship between DCSBMs, SBMs, and RDPGs.

[ N

We should use the DCSBM provides us with more flexibility for modeling net-
works with varying node degrees within communities, in exchange for a slightly
more complicated model.

Let’s return to the school example that we covered in Section 4.3. There are
100 students, who each attend one of two schools. The edges of the network
represent whether a pair of students are friends. If two students attend the same
school, they have a higher chance of being friends than if they attend different
schools.

In many real-world networks, using an SBM to model this network would work
effectively. It captures “community structure” in a very succinct way. However,
the SBM has a weakness. Within a given community, we have no way to represent
fundamental differences between nodes. If node i and node j are both in the same
community, they will have have the same expected node degree on average.

This means that, on average, students in the same school will all have the
same number of friends. This is referred to as degree homogeneity: the expected
degrees are the same for all nodes in the same community. This model often fails
to capture complexity in the real world, where nodes often have different degrees
and some are more “important” than others. Let’s define this more formally.

Degree homogeneity of the SBM

Let’s imagine that A is an SBM,,(Z, B) random network with two communities,
and the node i is in community 1, so z; = 1. The expected node degree from
Section 4.6.3 for a node i in community 1 can be written:

E[dl,zl = 1] = ZE[ai‘j;zi = 1] = Zpij.

i i
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The semicolon means that we are calculating the expected degree for a node
where z; = 1. For the stochastic block model, this relationship is simple. If node
1 is in community 1, this sum can be split into:

jizj=2 j:zj=1 and j#i

So we have split this into a sum over the nodes in community 2 (where z; = 2)
and the nodes that are not node ¢ but are also in community 1. For nodes in
community 2, p;; = bi2. For nodes in community 1, p;; = b11. Finally, we will let
ny be a simple “counter” of the number of nodes in community k. Putting these
facts together, we obtain:

E[d;; z; = 1] = nabiz + (ny — 1)b11.

Nothing in the result here depends on the node i, other than its community
assignment z;. When the random network A is an SBM,,(Z, B) with K commu-
nities, we obtain a more general result, found in Concept 4.7.2.

Together, this means that for a SBM,,(Z, B) random network with K com-
munities, the nodes all have the same expected degree if they are in the same
community. This is known as the degree-homogeneity within-community of the
stochastic block model: all nodes in the same community have the same expected
node degree. This was also the conclusion of Exercise 4.6.1.

The Degree-Corrected Stochastic Block Model (DCSBM) corrects this limita-
tion by incorporating a degree-correction vector, allowing us to convey the idea
of “node importance” some students may have more friends than others, beyond
differences in school placement.

The degree-correction vector

The first two parameters of the DCSBM are the same as the SBM, in that we
have a community assignment vector and a block matrix.

The degree heterogeneity is conveyed via the degree-correction vector 5, which
has n elements (one for each node). For each node 4, the degree-correction factor
0; “degree-corrects” the node i, by either “amplifying” its expected node degree
when 6; > 1 (meaning, on average, node i will have more edges than it would if
it were a node in a SBM,,(Z, B)), or “reducing” its expected node degree when
0; < 1 (meaning, on average, node 7 will have fewer edges than it would if it were
a node in a SBM,,(Z, B)). Degree correction factors are always > 0, so cannot
have a negative degree-correction factor.

Conceptualizing the DCSBM

The DCSBM random network has adjacency matrix entries a;;, each of which
is Bernoulli(0;0;b.,.;), where z; and z; are the community assignments for the
it" and j'" node, and ¢; and 6; the degree-correction factors for the i'" and j"
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nodes. The probability that an edge exists between nodes ¢ and j is given by the
block matrix entry 6;0;0., ... Therefore, the entries a;; in the random network
depends on both the block matrix B and the communities z; and z;, and are
altered by the degree-correction factors 6; and ¢;. As before, every value in A
is independent. With n nodes, the community vector z, the degree-correction
vector 5, and the block matrix B, we say that A is a DCSBM,,(Z, 6_?', B) random
network.

Probability matrix for DCSBM random networks

In Section 4.7.2 that the DCSBM can be easily tied to the IER random networks
from Section 4.1. Notice that above, we can take the probability p;; = 0;0b., ..
This relationship demonstrates that there is a slight condition on the vector g
in order to ensure that we create a valid random network model. For all pairs
of nodes i and j, applying the degree-correction vector must result in values
between 0 and 1, ensuring that it is a probability. We discuss methods to ensure
this in Concept 4.7.1. We will assume that each 6; is a value between 0 and 1,
and therefore, the product of 6;0; and a probability b.,.. will also be between 0
and 1.

Concept 4.7.1 When is a degree-correction vector g valid?

Not every choice of a degree-correction vector is valid: the probability matrix
P =0CBCTOT must have entries between 0 and 1.

If we are using DCSBM,,(Z, 5, B) for simulation, we can choose g such that
the maximum value is 1, and then adjust B accordingly. The product of a
degree-correction factor between 0 and 1 and a block probability also between
0 and 1 will always be a probability (between 0 and 1), so we are guaranteed
to produce degree-correction factors generating valid probability matrices.
We can also select  such that for every community, all of the degree-correction
factors within that community sum to 1 [10; 11]. This means that the entries 6;
will be strictly less than 1 if there are at least two nodes in a single community.
The block matrix can then be adjusted such that it is no longer a probability
matrix (taking values exceeding 0 or 1), so long as we can still end up with a
valid probability matrix using P = OCBCTOT.

We prefer the first method for the purposes of this book, simply because it
is easier to work with. When doing proofs with DCSBM,,(Z, g, B) random
networks, the second method is often useful.

To determine stochastic equivalences, we need an efficient procedure to pro-
duce probability matrices. We can develop a method for generating P similar to
the one for SBMs in Section 4.3.6, then verify that all entries of P are between
0 and 1. Matrix multiplications can accomplish this task.
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We first define the n x n degree-correction matrix ©, a diagonal matrix con-
taining the degree-correction factors. We use the uppercase 6, since O is a matrix:

01 O 0

o—|0 % (4.18)
: . .0
0o --- 0 6,

We recall from 4.3.6 that for an SBM,(Z, B) random network A’, we can
write the probability matrix as P’ = CBC'T, where C is the one-hot encoded
community-assignment matrix, and P’ has entries p;; = b,,»;:

byyzy oo buyz,
P =
bapzy - bznzn

Our goal is to “augment” P’ by multiplying each row i of P’ by the correspond-
ing degree-correction factor 6;, and each column j of P’ by the corresponding
degree-correction factor ¢;. This yields 6;0;b.,.,, which is our desired result.

Pre-multiplying by © yields:

01bz2, ... O1bs.,
@Pl — . . . ;

Onbz 2 . Onbs, 2,

Pre-multiplication by the diagonal matrix © has resulted in each row i of P’
being multiplied by the degree-correction factor of the corresponding entry ;.
Similarly, post-multiplying by ©T yields:

N A .
ore’ = : :
Onb1beyzy o 02D,

Post-multiplication by the diagonal matrix © has resulted in each column j of

P’ being multiplied by the degree-correction factor of the corresponding entry
0;.
This means that:

bij = (@P/@T)ij = Gﬂjbzizj.

The entries of this matrix are exactly the probability of an edge existing in
a DCSBM,,(Z,0, B) random network. The degree-correction factor 6 thus “in-
flates” or “deflates” the block probabilities of an SBM,,(Z, B) based on each
node’s popularity ¢; or 8;, relative other nodes in the same community.

Algorithm 10 can be used to generate a probability matrix for a DC'SBM,,(Z, 5, B)
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—

Algorithm 10: Generating a probability matrix for a DCSBM,(Z, 60, B)

Data: n a number of nodes
7 a community-assignment vector of each node to one of K
communities
g a degree-correction factor
B a block matrix with K rows and K columns
Result: A probability matrix for a DCSBM,,(Z,0, B).
1 Let P' = CBC'T, as-per Algorithm 8, where C' is the one-hot encoding of
Z.
2 Let © be the degree-correction matrix, defined as-per Equation 4.18.
3 Let P=0POT.
4 return P

network. First, we generate a probability matrix for an SBM,(Z, B) random
network as the “uncorrected probability matrix”. We then apply the degree-
correction by pre- and post-multiplying by © and ©T.

Simulating samples of DCSBMn(Z,g, B) random networks

While graspologic and networkx do not have utilities built-in to simulate sam-
ples of a DCSBM directly, we can build our own tools. Algorithm 11 produces
a network A, where the underlying random network A is a DCSBM random
network.

—

Algorithm 11: Simulating a sample from a DCSBM, (7,0, B) random
network
Data: n a number of nodes
7 a community assignment vector of each of the n nodes to K

communities
0 a valid degree-correction vector for each of the n nodes
B a block matrix with K rows and K columns
Result: The adjacency matrix of a sample from the random network.
1 Define P = ©CBCTO" as-per Algorithm 10.
2 Generate a sample A from an IER,,(P) network, using Algorithm 5.
3 return A

Taking the students example from Section 4.3, we order students by their
popularity using a degree-correction vector that declines from 1 to 0.5 in both the
first and second community. Using the generate_sbm_pmtx() utility from Section
4.3.6, we use the logic developed in Algorithm 10 to augment the probability
matrix with the degree-correction factor. We then write a function that generates



4.7 Degree-Corrected Stochastic Block Models 171

samples from DCSBM random networks using the sample_edges() utility from
graspologic:

import numpy as np

from graspologic.simulations import sample_edges

from graphbook_code import heatmap, plot_vector, \
generate_sbm_pmtx

def dcsbm(z, theta, B, directed=False, loops=False, return_prob=False):

A function to sample a DCSBM.
# uncorrected probability matrix
Pp = generate_sbm_pmtx(z, B)
theta = theta.reshape(-1)
# apply the degree correction
Theta = np.diag(theta)
P = Theta @ Pp @ Theta.transpose()
network = sample_edges(P, directed=directed, loops=loops)
if return_prob:

network = (network, P)
return network

Next, we can use this function to generate and plot samples of our DCSBM
random network:

# Observe a network from a DCSBM

nk = 50 # students per school

z = np.repeat([1, 2], 50)

B = np.array([[0.6, 0.2], [0.2, 0.4]]) # same probabilities as from SBM section
theta = np.tile(np.linspace(1l, 0.5, nk), 2)

A, P = dcsbm(z, theta, B, return_prob=True)

# Visualize

plot_vector(z, title="$\\vec z$", legend_title="School", color="qualitative",
ticks=[0.5, 49.5, 99.5], ticklabels=[1, 50, 100],
ticktitle="Student")

plot_vector(theta, title="$\\vec \\thetas",
legend_title="Degree-Correction Factor"
ticks=[0.5, 49.5, 99.5], ticklabels=[1, 50, 100],
ticktitle="Student")

heatmap (P, title="$P = \\Theta C B C™\\top \\Theta™\\tops$", vmin=0, vmax=1)

heatmap(A.astype(int), title="Sample of $DCSBM_n(\\vec z, \\vec \\theta, B)$")

Figure 4.7.1 visualizes the parameters for our sampled DCSBM,,(Z, 6_’: B) ran-
dom network. Note that the degree-correction factors in Figure 4.7.1(B) are
higher for the first nodes in each community. This is reflected in the probability
matrix in Figure 4.7.1(D), where the probabilities are highest in the upper-
left corners of each diagonal block, as these edges are between nodes with high
degree-correction factors. In this sense, edges between pairs of nodes with high
degree-correction factors will tend to exist more often than edges between pairs
of nodes with lower degree-correction factors.
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Figure 4.7.1 (A) the community assignment vector, (B) the degree-correction vector,
and (C) the block probability matrix. (D) the probability matrix, calculated from the
community assignment vector, the degree-correction vector, and the degree-correction
factor. (E) a sample from a DCSBM,(Z, 5, B) random network, using the probability
matrix from (D) coupled with an IER,,(P) network sampler from graspologic.

4.7.6 Why is it called a degree-corrected stochastic block model?

To illustrate why this model is known as a “degree-corrected” SBM, we can use
the two-community SBM example from Section 4.7.1.

Working through the first step to compute the expected degree of a node 4 for
a DCSBM,(Z, 1‘7, B) random network, we get:

]E[di; zZ; = 1] = Z]E[a”] = Zﬁzejbzlz]
J#i J#i

Using a similar derivation as in Section 4.7.1, we obtain:

E[di;zi = 1] = 92 n2b12 Z Hj + (n1 — 1)b11 Z Hj

jiz;=2 jizj=1 and j#i

The expected degree of the node i is thus “degree-corrected” by its degree-
correction factor #;. For an arbitrary DCSBM,(Z, g, B) random network with
K communities, the expected node degree for a node in an arbitrary community
k is shown in Concept 4.7.2.
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Concept 4.7.2 The expected node degree for block models

If A is a SBM,(Z, B) random network with n nodes and K communities,
then the expected degree of a node i in community k is:

Eldi; 2 = k| =) mibik + (g — 1)bgs.
1#£k

If A is a DCSBM,(Z,0, B) random network with n nodes and K communi-
ties, then the expected degree of a node ¢ in community k is:

Eldi;zi =k =0; | Y (b > 0|+ —Dbee Y. 0

l#k jizi=l j:zj=k and j#i

The degree-correction factor ; therefore “corrects” the expected degree of the
node i. That is, when 6; is smaller (relative to the degree correction factors of
other nodes in the same community z; as node ), the expected node degree is
smaller. Similarly, when 6; is larger, the expected node degree is larger.

The DCSBM,,(Z,6, B) random networks therefore allow us to incorporate our
notion of node importance. Less important nodes can be equipped with smaller
degree-correction factors, and will tend to have lower degrees. Conversely, more
important nodes can be equipped with larger degree-correction factors, and will
tend to have higher degrees.

Generalization and DCSBMs

Take an SBM,, (Z, B) random network A™). To illustrate that the DCSBMs
generalize the SBMs, we need to find a DCSBM equivalent to this SBM for
any choice of Z and B. In other words, we seek a random network A with
corresponding community-assignment vector z’, degree-correction vector 0’ , and
a block matrix B’ where P() = P®); that is, A and A®?) are stochastically
equivalent, by Concept 4.2.1.

Because A1) is an SBM, we can use the procedure of Section 4.3.6:

PY =CBCT,

where C' is the one-hot encoding matrix of the community assignment vector Zz.
We can also write this as:

pPY =1, . CBCTI

nxn?

(4.19)

where I, is the n x n identity matrix.
If we choose the community assignment vector and block matrix of A to be
equal to those of A1), then:

P® =@ CcBCTOT, (4.20)
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This is because the one-hot encoding matrix and the block matrix of A are
the same as for A1), Equation (4.19) and Equation (4.20) are almost the same,
and would be identical if ® = I, y,. This occurs when the degree-correction
vector 0/ = 1,; that is, when the degree-correction factors are just 1 for all of
the nodes in the network.

Therefore, choosing g = 1, gives us P = P?) 50 AM and A? are stochas-
tically equivalent. Our choices did not depend on the specific community assign-
ment vector Z nor the block matrix B of A(),

Therefore, for any SBM, we can always find a stochastically equivalent DCSBM
by choosing the same community assignment vector and block matrix, and
degree-correction factors of 1. Therefore, the DCSBMs generalize the SBMs,
and conversely, the SBMs are contained in the DCSBMs.

Since SBMs generalize ER random networks, we can conclude by transitivity
that the DCSBMs also generalize the ER random networks.

RDPGs generalize PSD DCSBM random networks

From Algorithm 10, the probability matrix for a DCSBM,,(Z, g, B) random net-
work A is P() = @P’'OT, where P’ is the uncorrected probability matrix for
an SBM,(Z, B) random network. With P’ = CBC'T:

PY —ecBCcTer.

In Section 4.5.1, we concluded that we could produce a latent position matrix X
for any positive semidefinite probability matrix. As it turns out, the condition for
the probability matrix P of a DCSBM,(Z, g, B) random network to be positive
semidefinite is identical to that of an SBM,,(Z, B) random network: the block
matrix B must be positive semidefinite.

If the block matrix B is positive semidefinite, it has a matrix v/ B where

B = \/E\/ET, so the probability matrix for A can be written:
PO —0CVBVEB CTOT
-
~0CVB (6CVB)

using rules for the transpose of a product of matrices.
If X = ©CVB were a latent position matrix for some RDPG,,(X) random
network A(?)| then:

.

P® = xXT =0CVB (@c\/E)
—ecvBVB cTeT
=0CBCTeT =pPW,

Where we used the fact that \/E\/ET = B when B is PSD. So P and P®
are equal, and therefore A" and A2 are stochastically equivalent.
We can conclude that the RDPG random networks generalize the DCSBM
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random networks whenever the block matrix of the DCSBM is positive semidef-
inite.

We can design a utility for generating latent position matrices for DCSBM
random networks with positive semidefinite block matrices:

from graphbook code import lpm_from_sbm

def lpm_from_dcsbm(z, theta, B):
A function to produce a latent position matrix from a
community assignment vector, a degree-correction vector,
and a block matrix.
# X' = Cxsqrt(B)
Xp = lpm_from_sbm(z, B)
# X = Theta*X' = Theta * C * sqrt(B)
return np.diag(theta) @ Xp

# make a degree-correction vector
theta = np.tile(np.linspace(1l, 0.5, 50), 2)
X_dcsbm = lpm_from_dcsbm(z, theta, B)

Figure 4.7.2 shows the resulting latent position matrix, along with the com-
munity assignment vector, the degree-correction vector, and the block matrix.
Nodes with the same community have similar latent positions, but have large
magnitudes for the first few nodes in each community, and smaller magnitudes
for the last few nodes in each community.

1 (A) Z 1 (B) 6 (C) B, Block matrix . (D) X=0CvB
| s
B 100
1.00 - — 0.2 = 1.0
- S 5§ _ 0.753
5 R T 8 3
-g 50 2 -g 50 0.75 © E 0500 50. 05
= [=%
? 18§ IIII g 0259 IIII
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Figure 4.7.2 (A) the community-assignment vector. (B) the degree-correction vector.
(C) a homophilic block matrix, which is positive semidefinite. This block matrix is
the same example shown in Figure 4.5.1(A). (D) the latent positions for an
equivalent RDPG.
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4.7.8 Nodes in the same community have the same latent position (up to a
rescaling)

Section 4.5.9 showed that if A is an SBM, (7, B) random network, we identify a
stochastically equivalent RD PG, (X ) random network by letting X = C V/B. For

a given node ¢, we found that the latent position was Z; = \/ETEi, where ¢; was
the one-hot encoding for the community of node 7, z;. This has the implication
that latent positions for nodes in the same community are the same (since they
have the same one-hot encoding, and /B is fixed).

We learned in Section 4.7.7 that the latent position matrix for a DC'SBM,,(Z, 6_‘: B),

with a positive semidefinite block matrix (and hence probability matrix), was:

X = 0CVB.

This can be interpreted similarly to the result we obtained for the SBM, (%, B)
random networks.
The result from Equation (4.6) gives:
Foal A @ VvB A
SRR - &lvB

for an SBM,,(Z, B) random network, where ¢ is the one-hot encoding of the
community for the i** node. In the DCSBM,,(Z,0, B) random network, using
X = ©CV/B, we instead obtain:

SN 0, F &VvB A

SRCAR 0.] - & vB H
Multiplying by the diagonal matrix ©:
AN F 6.6 vVB A

AR F 0.6'vVB A

Looking at each row, we obtain Z = 6;¢, v/B. Since 6; is just a scalar, we can
apply the transpose to find:

.
Z; = 0,VB G,.

Section 4.5.9 showed that if nodes 7 and j had the same community assignments
and z; = zj, then ¢; = ¢}, since they will also have the same one-hot encodings.
Therefore, if j is another node where z; = z;, it follows that:

.

7 =0,VB ¢
.

=0,VB &,



4.7 Degree-Corrected Stochastic Block Models 177

T T
since ¢; = ¢;. Notice that since &; = 0;,v/B &, that VB & = Gifz Using this

i

fact, we obtain that:

L
Z; 5, Zi.

This illustrates that if a pair of nodes ¢ and j are in the same communities,
their latent positions will be almost equal. In particular, they will be constant
multiples of one another. These constant multiples are given by the ratio of their
respective degree-correction factors, Z—Z. Further, if nodes i and j from the same
community have the same degree-correction factor, so that ; = 6;, this argument
shows that ¥; = ;.

Figure 4.7.2(D) illustrates the latent positions for a DCSBM with a PSD block
matrix. The rows of the latent position matrix, the latent positions for each node,
follow the same pattern of the degree-correction vector in Figure 4.7.2(B), though
for nodes with higher degree correction factors, the magnitudes are greater. This
is because the degree-correction vector is rescaling the latent positions between
nodes in the same community.

This shows us that some RDPG,,(X) random networks cannot be represented
as DCSBM,,(Z,0, B) random networks with K < n. We can see this from the
street example: there is no choice of degree-correction factors 6 which would
allow us to rescale the latent position associated with a community and obtain
the latent positions. The values of the latent dimensions from Figure 4.4.1 for
the street example have a pattern of taking opposites: as the value in latent
dimension one increases, the value in latent dimension two decreases, and vice-
versa (where all values of the latent position matrix were positive). Accounting
for this with a degree-correction factor would require at least that the pattern is
the same; both would have to be simultaneously increasing or decreasing due to
the fact that the latent position matrix has only positive entries. Likewise, due
to the same reasoning as with SBMs, RDPGs do not generalize DCSBMs with
indefinite block probability matrices.

There are two takeaways:

1 When the underlying random network is an SBM,,(Z, B) and the block matrix
is PSD, all nodes within the same community have the same latent position
vector.

2 When the underlying random network is an DC'SBM,,(Z, 5, B) and the block
matrix is PSD, all nodes within the same community have the same latent
position vector up to a rescaling by their degree-correction factor. If the nodes
are in the same community and the degree-correction factor is the same, the
nodes have the same latent position.

These findings can be summarized succinctly: as long as the block matrix of
a block model is positive semidefinite, we can find a stochastically equivalent
latent position matrix for an RDPG. Therefore, any procedure that can be used
on RDPGs can also be applied to block models with positive semidefinite block
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matrices. We suggest revisiting Concept 4.4.1 in this light to appreciate its im-
portance.

479 Exercises

Section 4.5 gives intuition on which block matrices are positive semidefinite in
simple 2 x 2 cases. To solidify these concepts, we would recommend going through
the following exercises:

Exercise 4.7.3 Core-periphery SBM and planted partition DCSBM
equivalence

Imagine that we have a DCSBM,,(Z,6, B) with a planted partition block
matrix B, with degree-correction vector 0 containing two unique values u and
v. These unique values are chosen such that whenever z; = 1, 6, = u, and
whenever z; = 2, 0; = v.

1 Generate a visualization of the probability matrix.

2 Use this visualization to show that there exists a core-periphery block
matrix B’ where SBM,,(Z, B") and DCSBM,(Z, g, B) have the same
probability matrix.

3 Find a function of u,v, and B such that B’ = f(u,v, B).

Conclude that planted-partition DCSBMs with the degree-correction vector
having one unique value for each community are equivalent to core-periphery
SBMs with a suitably chosen block matrix.
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Exercise 4.7.4 Degree-correction factors “stretch” latent positions

Take a positive semidefinite block matrix B associated with a 2-community
SBM,(Z, B) random network (for instance, a homophilic block matrix, with
n taken to be any number of nodes). Compute the latent position matrix for
the SBM,,(Z, B) random network. This results in a n x 2-dimensional latent
position matrix.

Next, take a range of values for 6 (you can pick these however you like).
Compute a latent position matrix for the corresponding DCSBM,,(Z, g, B)
random network.

1 Take the latent position associated with community 1 from the SBM. Plot
it as a point.

2 Overlay the latent positions associated with community 1 in the
corresponding DCSBM in a different color.

3 Conclude that 6 is “stretching” the latent positions of the corresponding
SBM in a straight line.

4 Repeat for the latent position 3 associated with community 2.

Conclude that degree-correction factors for DCSBM,,(Z, 5: B) random net-
works “stretch” the latent positions of SBM,,(Z, B) random networks along a
straight line, depending on the value of 6.

Structured Independent-Edge Random Networks

In Sections 4.3, 4.4, and 4.7, the behaviors of the random network were directly
tied to properties of the nodes (node attributes), such as communities, degree-
corrections, and latent positions. However, networks can also be defined using
properties of the edges, known as edge attributes. To this end, we introduce
the Structured Independent-Edge Model (SIEM), which creates edge probability
structure. We cover:

1 Definition and components of the STEM,

2 Cluster-Assignment Matrices and probability vectors,

3 Simulating samples from SIEM random networks,

4 Relationship between SIEM and other network models, and
5 Applications and use cases for STEM.

The SIEM can be used whenever we direct our focus on the relationships
between objects, rather than the objects themselves. We later use this model
later in Section 6.3, where we build hypothesis tests to investigate differences in
edges.

We now cover a statistical model for networks that generalizes the SBM from
Section 4.3 a little differently than the IER network from Section 4.1. We will
use the brain network from Section 2. Suppose n = 100 nodes are located in
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different areas of the brain, where each node is either on the left or right side
(hemisphere). An edge exists if the two areas of the brain tend to be active
together while a person interacts with the world. In general, nodes tend to be
more active with other nodes from the same hemisphere. However, even though
the left and right sides of the brain tend to have different functions, their nodes
might still be active together, especially in the same region on both sides.

For instance, even though the motor cortex in the left hemisphere has a slightly
different function than the motor cortex in the right hemisphere, the two hemi-
spheres tend to activate concurrently. The right motor cortex provides movement
for the left side of the body, and the left motor cortex provides movement for the
right side of the body. When someone is moving around, many tasks will require
them to use both sides of the body. This pattern, known as bilateral homotopy,
also applies to many other areas in the brain. We ask: Do bilateral node pairs
have higher connectivity than non-bilateral node pairs?

To answer this question, we need statistical models that capture what we
understand about the system. Perhaps it is more likely that there will be edges
between bilaterally symmetric node-pairs. Based on what we know so far, we
could achieve this property with an IER,,(P) random network: allow every pair
of nodes in the network to have their own edge probability.

It is difficult to describe this system. On the one hand, we would like a simpler
model than ascribing probabilities to every possible network configuration of an
n-node simple network (of which there are 2(;), as-per Remark 4.1.3). On the
other hand, this model still has (’2’) parameters (the entries of the probability
matrix P), one for each edge in the network, and this cannot be simplified fur-
ther. This is dissimilar from the preceding models in this Chapter, where we
used objects like block matrices and latent position matrices to summarize P
more succinctly. This is, in a sense, still equivalent to the coin flipping problem
from Remark 4.1.3: to learn about a probability p;;, we have only one edge a;;.
Learning about p;; from a single edge a;; is as impossible as trying to learn about
the probability that a coin lands on heads from the outcome of a single coin toss.

In many cases, our data may only provide one network. Borrowing from pre-
vious techniques, we can “simplify” the network by using groupings of the edges,
much like we did with the nodes of the network for SBMs.

The Structured Independent Edge Model

The Structured Independent Edge Model (STEM) is parameterized by a Cluster-
Assignment Matrix and a probability vector.

The Cluster-Assignment Matriz
The n x n cluster assignment matrix Z assigns potential edges in the random
network to clusters.

The n x n adjacency matrix A for a random network has entries a;;. The

2

cluster assignment matrix takes each of these n* random variables, and uses a
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parameter z;; to indicate which of K possible clusters this edge is part of. In the
brain example, for instance, we could take z;; = 1 when the nodes 7 and j are
bilateral pairs, and z;; = 2 when the nodes i and j are not bilateral pairs. For
simple networks, we’ll also add the restriction that z;; = z;; for all node pairs
¢ and j. Since the networks are loopless, it doesn’t matter what we do for the
diagonal entries. We will typically arbitrarily set them to their own cluster 0 or
NA.

The Probability vector

The second parameter for the SIEM is a probability vector, p. If there are K
edge clusters in the STEM, then p'is a length-K vector. Each entry p; indicates
the probablity of an edge in the [*"
p1 indicates the probability of an edge in the first edge cluster, ps indicates the
probability of an edge in the second edge cluster, and so on. In the brain example,
for instance, p; would represent the probability of an edge between a pair of nodes
that represent the same brain area in opposite hemispheres (bilateral pairs), and
p2 would represent the probability of an edge between a pair of nodes that are
not bilateral pairs.

cluster existing in the network. For example,

Conceptualizing the SIEM

The random network has Bernoulli(p.,;) adjacency matrix entries a;;, where
2ij is the cluster assignment for edge (i,j), and p.,; is the edge probability in
cluster z;;. Therefore, the entries a;; in the random network depend on both the
probability vector p, and the clusters of each edge, given by z;;. The entries in A
are otherwise independent from each other. If A has n nodes, the cluster assign-
ment matrix Z, and the probability vector p, we say that A is an SIEM,,(Z,p)
random network.

How do we simulate samples from an SIEM,(Z,p) random
network?

The procedure in Algorithm 12 will generate an observation from an SIEM,,(Z, p)
random network A.

In our brain example, let the first fifty nodes be the areas in the left hemisphere
of the brain, and let the second fifty nodes be the areas of the right hemisphere
of the brain. The nodes will be sequentially ordered, so that the first node of the
left is a bilateral pair with the first node on the right, and so on for all 50 pairs
of nodes. Further, it is much easier to encode NA as 0, so we fill the diagonal
with Os. These entries won’t matter for the sample that we generate, since the
networks will be loopless (and therefore, the diagonals ignored). We can generate
a cluster assignment matrix like this:

import numpy as np

n = 100
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Algorithm 12: Simulating a sample from an STEM, (Z, p) random net-
work
Data: n the number of nodes
Z a matrix which assigns one of K edge clusters to each of the n?
edges
p a K-dimensional probability vector for each edge cluster

Result: The adjacency matrix of a sample from the random network.
1 For each of the K clusters, obtain K total weighted coins, where the k"
coin lands on heads with probability p; and tails with probability 1 — py.

2 for i in 1:n do
for j > i do
4 Flip the z;; coin, and if it lands on heads, the corresponding entry

in the adjacency matrix a;; is 1. If it lands on tails, the
coresponding entry in the adjacency matrix a;; is 0.
Let Qi = Qgj.

end
end

® N o w

return A

Z = np.ones((n, n))
for i in range(0, int(n / 2)):
Z[int(i + n / 2), il 3
Z[i, int(i + n / 2)] = 3
Z[0:50, 0:50] = Z[50:100, 50:100] = 2
np.fill_diagonal(Zz, 0)

We also visualize the cluster assignment matrix Z along with the hemisphere
of each brain node:

from graphbook_code import heatmap

labels = np.repeat(["L", "R"], repeats=n/2)
heatmap(Z.astype(int), title="Cluster assignment matrix",
inner_hier_labels=labels)

Figure 4.8.1(A) shows Z. Nodes in opposite hemispheres are in general assigned
to cluster 1, and nodes that are in the same hemisphere to cluster 2. The white
band across the diagonal corresponds to the self-loop edges, which are set to 0
arbitrarily.

In the super- and sub-diagonal entries, we see additional bands. These bands
consist of the bilateral pairs of nodes; that is, pairs where the left hemisphere node
and the right hemisphere node are in the same functional areas in each brain
hemisphere. These edges are assigned to cluster 3. This pattern will manifest
as an “offset” band, where the “offset” amount is simply the number of nodes
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between area u in the left hemisphere and area u in the right hemisphere (which,
in this case, is 50).

The remaining off-diagonal entries are not bilateral pairs of nodes. These en-
tries are assigned to cluster 1.

We will arbitrarily say that there is a 0.1 probability that an edge adjoining
two non-bilateral pairs of nodes that are not in the same hemisphere (edge cluster
1) is connected, a 0.3 probability that an edge adjoining two nodes in the same
hemisphere (edge cluster 2) is connected, and a 0.8 probability that an edge
adjoining two bilateral pairs of nodes (cluster 3) is connected. The probability
vector is shown in Figure 4.8.1(B). Then, we sample a network:

from graphbook_code import siem, plot_vector

p = np.array([0.1, 0.3, 0.8])

A = siem(n, p, Z)

plot_vector(p, title="probability vector", vmin=0, vmax=1l, annot=True)

heatmap(A.astype(int), title="$SIEM n(Z, \\vec p)$ sample",
inner_hier_labels=1labels)

Figure 4.8.1(C) shows the resulting adjacency matrix. Notice that the adja-
cency matrix reflects the same banding pattern as the cluster assignment matrix.

(B) p (C) SIEM,(Z, p) sample

Edge cluster
Edge cluster
2
o
W

|
o =
w o
Probability
Edge?

Node Node

Figure 4.8.1 (A) the cluster assignment matrix Z, (B) the probability vector p, and
(C) a sample of an adjacency matrix from an SITEM,(Z,p) random network.

Exercise 4.8.1 Relationship between SIEMs and IERs

Explain why an SIEM,(Z,p) random network with (Z) edge clusters is
stochastically equivalent to any I ER,,(P) random network. Use this and sim-
ilar logic to Concept 4.3.8 to deduce why we focus on STEM,,(Z, p) random

networks with fewer than (g) edge clusters.
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What is the relationship between SIEMs and SBMs?

In the preceding sections, we spent a lot of effort determining which networks
generalize other networks. We can also do this for the SIEM,(Z,p) random
networks.

Every simple SBM, (7, B) random network with K < n communities can
be represented as a simple SIEM,(Z,p) random network with L < (}) edge
clusters. For each pair of communities k£ and k’, we define a unique edge cluster
I corresponding to the (k, k) community pairing. Next, for each pair of nodes ¢
and j, we check which communities they are part of, and then define z;; to be
the edge cluster that corresponds to that pair of communities.

Finally, for the probability vector, we just take p; for a given edge cluster [ to
be the entry of B corresponding to the communities mapped to edge cluster [.
For instance, if communities k and ¥’ mapped to edge cluster [, we take p; = bgyr.
The resulting SIEM, (Z,p) random network has the same probability matrix as
the SBM,(Z, B) random network, so all SBMs with K < n have a stochastically
equivalent STEM with L < (3).

The reverse is not true; consider, for instance, the smile face from Section 4.1
and Figure 4.1.1. We could have equivalently described this network by assigning
the high probability edges to cluster 1 (the dark portions), and the eyes, mouth,
and head outline to cluster 2, with the corresponding probability vector suitably
chosen. The face example cannot be represented using an SBM,,(Z, B) random
network with a number of communities K < n.

For this reason, the SIEM random networks with L < (g) edge clusters gen-
eralize the SBM random networks with K < n communities, but the reverse is
not true. In later sections such as Section 6.3, we will develop statistical tools
for SIEM random networks. Since the SBM random networks are contained in
the SIEM random networks, these techniques will generalize to the SBM random
networks. The SIEM will let us find differences between pairs of groups of edges,
rather than just looking for differences between pairs of groups of nodes, since
there can be complicated arrangements of edges which are not easily captured
with the SBM.
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Multiple Network Models

Up to this point, we have exclusively studied single-network models. However,
we are often in situations where we don’t have just one network, but many.
In this section, we explore two models for these situations: the Joint Random
Dot Product Graph (JRDPG), and the Common Subspace Independent Edge
(COSIE) models. JRDPG is used in simple cases where we believe the collection
of networks shares the same underlying structure, and we want to find a single
latent space representation for all the networks. COSIE is used when the networks
share a common structure, but there are network-specific variations.
We cover:

1 Joint Random Dot Product Graphs (JRDPG),

2 The Common Subspace Independent Edge (COSIE) Model,
3 Correlated Network Models,

4 Simulating samples from multiple network models, and

5 Applications and use cases for multiple network models.

In Section 5.5 and Chapter 9, we will use these models to build network rep-
resentations and explore their applications.

Imagine that we have a company with 100 total employees. 50 of these employ-
ees are network machine learning experts (ML), 25 are company administrative
executives (AD), and 25 are marketing experts (MA). We study the social media
habits of the employees on Facebook, Instagram, and Linkedin. For a given social
networking site, an edge is said to exist between a pair of employees if they are
connected on the social media site (by being friends, following one another, or
being connected, respectively). Individuals tend to most closely associate with
the colleagues whom they work most closely: network machine learning experts
are more connected with network machine learning experts, marketing experts
are more connected with marketing experts, and so on and so forth. We will see
below that all of the networks appear to have the same community organization,
though on Linkedin, we see that the administrative executives tend to be a little
more connected than the other team members. This is reflected in the fact that
there are more connections between admin members on Linkedin and other team
members.

We will use a homophilic stochastic block model from Section 4.5 for the
Facebook and Instagram networks, and a homophilic degree-corrected stochastic
block model (with slightly fewer connections for non-admin team members, § =
1, and slightly more, § = /2, for admin team members) for the Linkedin network.
We will borrow the dcsbm function from Section 4.7, and the LabelEncoder from
sklearn to encode our labels:

from graspologic.simulations import sbm

import numpy as np

from graphbook_code import dcsbm

from sklearn.preprocessing import LabelEncoder
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# Create block probability matrix B

K=3

B np.full(shape=(K, K), fill_value=0.15)
np.fill_diagonal(B, 0.4)

# degree-correct the different groups for linkedin
ml, admin, marketing = nks = [50, 25, 25]

theta = np.ones((np.sum(nks), 1))

theta[(ml):(ml + admin), :] = np.sqrt(2)

# our dcsbm function only works with communities encoded 1,2,...,K
# so we’ll use a LabelEncoder to map labels to natural numbers
labels = np.repeat(["ML", "AD", "MA"], nks)

le = LabelEncoder().fit(labels)

z = le.transform(labels) + 1

# sample the random networks

A_facebook = sbm(n=nks, p=B)

A_insta = sbm(n=nks, p=B)

A_linkedin, P_linkedin = dcsbm(z, theta, B, return_prob=True)

Figure 4.9.1 illustrates heatmaps from each of the three networks. While the
Facebook and Instagram networks do not look particularly different, the Linkedin
network appears to show that administrative members tend to have higher num-
bers of connections with other members.

(A) Facebook network, A'fcebook) (B) Instagram network, A ‘"sta) (C) Linkedin network, A'/nkedin)
ML ADMA ML ADMA
—— —_——

z

Ths

ML { e
AD
: MA
o n o
" ~ g
Employee Employee Employee

Figure 4.9.1 (A) Facebook social network. (B) Instagram social network. (C)
Linkedin social network. Notice that on Linkedin, the administrators tend to have
more edges.

As usual, the random network has an adjacency matrix denoted by A, and has
network samples A. When we have multiple networks, we will need to be able to
index them individually. For this reason, this section will use the convention that
a random network’s adjacency matrix is denoted by A(™, where m defines an
index in our collection. The capital letter M defines the total number of random
networks in the collection. In this case, M denotes a scalar number, rather than
the usual matrix for capital letter notation.

Because we have connection networks for 3 sites, M is 3. When we use the



49.1

4.9.1.1

4.9 Multiple Network Models 187

letter m itself, we refer to an arbitrary random network among the collection
of random networks, where m is between 1 and M. When we have M total
networks, we will write down the entire collection of random networks using
the notation {A(l), - A(M)}. With what we already know, we could describe a
random network A (™) with a single network model. For instance, if we thought
that each social network could be represented by a different RDPG, we could
have a different latent position matrix X (™ to define each of the 3 networks.

This setup, however, would neglect to describe the common structure shared
by the three networks. In our example, for instance, each random network uses
the same block matrix, despite the fact that the Linkedin network used a degree-
correction factor for the administrative team.

However, since we used a unique latent position matrix X ("™ for each random
network A(™ | we have inherently ignored shared common structure. If we were
to perform a task downstream, such as identifying which employees are in which
community, we would have to analyze each latent position matrix individually.

In this section we will build ideas from the Random Dot Product Graph
(RDPG) and its close variations. This is because the RDPG,(X) random net-
works can be used to describe all positive semidefinite I ER,,(P) networks. Using
the RDPG gives us inherently flexible multiple random network models. One of
our new models will use a “generalized” RDPG, which will allow us to generalize
to arbitrary IER,, (P) networks [12; 13].

The Joint Random Dot Product Graphs (JRDPG) Model

The Facebook and Instagram connections look qualitatively similar in our social
network example. They seem to exhibit similar connectivity patterns between
the different employee working groups, and we might even think that the two
underlying random networks generating these two social networks are identical.
In statistical science, we use the term homogeneity to describe a collection of M
random networks with the same underlying random process. Let’s put what this
means into context using coin flips. If a pair of coins are homogeneous, then the
probability that they land on heads is identical. The intuition we gain viewing
edges as coinflips extends directly to collections of random networks.

Homogeneous and heterogeneous collections of random
networks

A homogeneous collection of independent-edge random networks {A(l), oy AWM )}
has the same probability matrix P for each of the M random networks. Conse-
quently, these random networks all have the same distribution. The probability
matrix is the fundamental unit which can be used to describe independent-edge
random networks, as we learned in Section 4.1. A heterogeneous collection of
independent-edge random networks {A(l),...,A(M )} has differing probability
matrices for at least one of the M random networks; hence, they do not have the
same distribution.
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As we saw in Algorithm 8, the probability matrix P for an SBM,(Z,B)
random network is a function of 2’ and B. Therefore, the probability matri-
ces P(facebook) anq plinsta) for the Facebook and Instagram random networks
A(facebook) and Alinsta) are jdentical, because they share the same community
assignment vector z and block matrix B.

Conceptualizing the JRDPG,, )/(X) model

The JRDPG is the simplest way to extend the RDPG random network model
to multiple random networks. For each of our M total random networks, the
edges depend on a single latent position matrix X. We say that a collection
of random networks {A(M, ..., A} with n nodes is JRDPG, y(X) if each
random network A" is RDPG,,(X) and if the M networks are independent.
The joint random dot product graph model is formally described by [2], and is
related to the omnibus embedding [14], which we will learn about in Section 5.5.

The JRDPG model does not allow heterogeneity
Under the JRDPG model, each of the M random networks share the same la-
tent position matrix. For an RDPG, the probability matrix P = XX . So
for all of the M networks, P = XX under the JRDPG model. hence,
PL = p®@ = = P(M) and all of the probability matrices are identical.
This means that the M random networks are a homogeneous collection of ran-
dom networks. Consequently, the JRDPG can be thought of as M homogeneous
and independent RDPGs.

From Section 4.3.6, we learned how to construct probability matrices from
homophilic block matrices. Let’s try this for the SBMs for Instagram and Face-
book:

from graphbook_code import generate_sbm_pmtx, heatmap

# we already returned P_linkedin for the linkedin
# probability matrix from dcsbm() function
P_facebook_insta = generate_sbm_pmtx(z, B)

# when plotting for comparison purposes, make sure you are
# using the same scale from 0 to 1

heatmap (P_facebook_insta, vmin=0, vmax=1)

heatmap (P_linkedin, vmin=0, vmax=1)

heatmap (P_linkedin - P_facebook_insta, vmin=0, vmax=1)

Figure 4.9.2 illustrates heatmaps of the probability matrices. Because the prob-
ability matrices for Facebook and Instagram in 4.9.2(B) are exactly identical
(they are both functions of the same block matrix B), the collection of random
networks {A(f acebook) A(msm)} are homogeneous. We could model this pair of
networks using the JRDPG due to their homogeneity and the fact that the
underlying block matrices are homophilic (and hence, have a PSD matrix and
probability matrix).

On the other hand, A(Ffacebook) an A(insta) qo not have the same probability
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Figure 4.9.2 (A) the probability matrix for the random networks underlying linkedin,
(B) the probability matrix for the random networks underlying Instagram and
facebook, A and A® | and (C) the difference between the probability matrices for
linkedin and Instagram/facebook.

matrix as A(nkedin) - ag shown in Figure 4.9.2(C). This means that the collec-
tions of random networks {A(facebo"k), A(“"“dm)}, {A(insta)’ A(“”kedm)}, and
{A(facebo"k),A(i”St“)7A(link6di")} are heterogeneous, because their probability
matrices are different.

So, unfortunately, the JRDPG cannot handle the heterogeneity between the
random networks of Facebook and Instagram with the random network for
Linkedin. To avoid this restrictive homogeneity property of the JRDPG, we turn
to a variation of the IER,, (P) random network.

Common Subspace Independent Edge (COSIE) Model

We want a multiple-network model which allows us to convey some shared struc-
ture, but which also lets us convey unique structure within different networks.
In this Section we describe the COSIE model, defined by a collection of score
matrices and a shared low-rank subspace. In Section 5.5.3, we will learn about
Multiple Adjacency Spectral Embedding (MASE), a technique which uses the
COSIE model to conceptualize multiple network representations.

In our social network example, the employees on the administrative team had
far more connections than usual among one another on Linkedin. Figure 4.9.2
shows that the independent-edge random networks A (facebook) and A (linkedin)
underlying the social networks A(facebook) and Allinkedin) are also different: The
probability matrices P(facebook) gand pllinkedin) and hence the generative model
itself, are different.

Because of these extra connections in the Linkedin network, we have het-
erogeneity (by way of the degree-correction factors for Linkedin). This is de-
spite the fact that there was shared structure (the block matrices underlying the
DCSBM,,(Z,0, B) random network for Linkedin and the SBM,,(Z, B) random
networks for Facebook/Instagram were the same).

Even though P(facebook) apq pllinkedin) are not identical, we can see they still
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share some structure: the employee teams are the same between the two social
networks, and much of the probability matrix is unchanged. COSIE allows us
to model this using a shared latent position matrix to describe the similarities,
and unique score matrices to describe the differences, for each of the random
networks.

The Shared Latent Position Matrix

The shared latent position matriz S for the COSIE model is quite similar to the
latent position matrix X for an RDPG. As in an RDPG, S is a matrix with n
rows (one for each node) and d columns. The columns of S behave similarly to
the columns of X, and d is referred to as the latent dimensionality of the COSIE
random networks. Each row of the shared latent position matrix s; denotes the
shared latent position vector for node 1.

We will add an additional restriction to S: it must have orthonormal columns.
This means that for each column of S, the dot product of the column with itself
is 1, and the dot product of the column with any other column is 0; the geometric
interpretation is that the column-vectors are all at right angles to each other.
This has the implication that STS = I, the identity matrix. This gives a sense
of uniform scale for all of the columns (scale 1) of the latent position matrix.

The shared latent position matrix conveys the common structure between
the COSIE random networks, and will be a parameter for each of the neworks.
With the JRDPG model, we were able to express the homogeneity of the social
networks on Facebook and Instagram, but not the heterogeneity of the social net-
work on Linkedin. The shared latent position matrix .S conveys the commonality
among the three social networks.

Unfortunately, obtaining shared latent positions analytically is difficult. We
will use the probability matrices P(™ combined with MASE, the technique we
mentioned earlier described in Section 5.5 to obtain them:

from graspologic.embed import MultipleASE as mase
from graphbook_code import lpm_heatmap

embedder = mase(n_components=3, svd_seed=0)
# obtain shared latent positions

S = embedder.fit_transform([P_facebook_insta, P_facebook_insta, P_linkedin])

1pm_heatmap(S)

Figure 4.9.3(A) shows the shared latent position matrix S. This matrix is
arranged as in the figures in Section 4.4 on the RDPG, (X) random network,
and can be interpreted similarly: the rows indicate nodes (employees), and the
columns indicate latent dimensions. Each row §; of S indicates the latent position
of a given node 1.

One thing immediately jumps out: the latent positions are the same for all
employees across a given community assignment (their role in the company).
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This makes sense given what we learned in Section 4.7.8 about nodes in the
same community having the same latent position up to a rescaling.

The Facebook and Instagram networks are just SBM,,(Z, B) random net-
works with a homophilic block matrix, so the latent positions should be identical
across all nodes from a given community. For the Linkedin network, the degree-
correction factors are identical within each community, so it also makes sense that
the latent positions should be identical across all nodes from a given community
there, too.

In our example, the homophilic (and hence, positive semidefinite) block matrix
B itself is identical across all of the networks. This means that for each network,
using the results from Section 4.5.9, a node 4 in community 1 would have the
latent position:

fgfacebook)—r _ fginsta)T _ [1 0 0] \/E
for both Facebook and Instagram. For Linkedin, the latent position would be:
filinkedin)'r — 0 [1 0 O] \/E

q(linkedin) fgfacebook:) and f§i7Lsta)

In particular, ¥; , up to the rescal-
ing by 6; (the degree-correction factor). If we repeat this for all of the commu-

is equivalent to

nities, we would see that the shared latent positions for the Linkedin network
should just be a rescaling of the shared latent positions from the Facebook and
Instagram networks.

We see from the shared latent position matrix that the COSIE model can
capture what we already know: there is a strong degree of homogeneity across
the different networks; the latent positions are identical (up to a rescaling), and
we can represent them with the same shared latent position matrix.

Score Matrices
The shared latent position matrix for COSIE describes similarities; the score
matrices describe differences.

The score matrices tell us how to assemble the shared latent position matrix
to obtain a unique probability matrix for each network. The score matrix R(")
for a random network m has d columns and d rows. Therefore, it is a square
matrix whose number of dimensions is equal to the latent dimensionality of the
shared latent position matrix.

The probability matrix for each network under the COSIE model is:

Pm = SRM ST

Where, again, S is the shared latent position matrix. We can understand this
equation by focusing on the first term SR(™. This uses the scores to express
which latent position vectors in the shared latent position matrix are more or
less important in the probability matrix P("™). In this sense, the score matrix
tells us which combinations of latent positions determine the unique features of
heterogeneous probability matrices.
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Figure 4.9.3 (A) the shared latent position matrix across all of the networks. (B)
score matrix for the Facebook random network, (C) score matrix for the Instagram
random network, and (D) score matrix for the Linkedin random network.

In the social network example, we want the score matrices to indicate that
Facebook and Instagram share a probability matrix, but Facebook and Linkedin
do not. Consequently, we would expect that the score matrices from Facebook
and Instagram should be the same, but the score matrix for Linkedin will be
different. We can obtain these with the MASE object in graspologic:

import matplotlib.pyplot as plt

R_facebook = embedder.scores_[0]
R_insta = embedder.scores_[1]
R_linkedin = embedder.scores_[2]

# and plot them
smin = np.min(embedder.scores_)
smax = np.max(embedder.scores_)

fig, axs = plt.subplots(l, 3, figsize=(20, 7))

heatmap (R_facebook, vmin=smin, vmax=smax, ax=axs[@], annot=True, title="facebook score
matrix")

heatmap(R_insta, vmin=smin, vmax=smax, ax=axs[l], annot=True, title="Instagram score
matrix")

heatmap (R_linkedin, vmin=smin, vmax=smax, ax=axs[2], annot=True, title="LinkedIn score
matrix")

Figure 4.9.3 shows the score matrices. The score matrices for Facebook and
Instagram are identical, but the score matrix for Linkedin is distinct.

4.9.2.3 Conceptualizing the COSIE model
In the COSIE model, for each random network, the probability matrix P((")
depends on the shared latent position matrix S and the score matrix R(™. The
probability matrix P("™) for the m!" random network is defined so that P("™) =
SR(™ ST This means that each entry pl(?) =37 R(m)§j. We say that a collection
of random networks { A, .., A} with n nodes is COSIE, a (S, RW, ..., RMD)
if each random network A (™ is TER,, (P(™) and the networks are otherwise in-
dependent. Each of the M random networks share the same orthonormal latent
position matrix S, but a unique score matrix R("™). This allows the random net-
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works to share some underlying structure (which is conveyed by S) but with a
unique combination of this shared structure (conveyed by R(m)).

Since the probability matrix P(™) = SR(™ ST two random networks with the
same score matrix will be homogeneous (identically distributed), and two ran-
dom networks with different score matrices will be heterogeneous (not identically
distributed). In this way, we are able to capture the homogeneity between the
random networks for Facebook and Instagram connections, while also captur-
ing the heterogeneity between the random networks for Facebook and Linkedin
connections. The COSIE model is described by [13].

Exercise 4.9.1 Demonstrating properties of shared latent position
matrices and score matrices

Demonstrate that you are able to recover the true probability matrices us-
ing the shared latent position matrices S and the score matrices R_facebook,
R_insta, and R_linkedin.

Show that the true probability matrices P_facebook_insta and P_linkedin
are identical to the probability matrices that you obtain using the shared
latent positions and the score matrices by using np.allclose(), like we did in
Section 4.5.8.

Connections with the GRDPG

The initial formulation of the COSIE model in [13] describes generalized random
dot product graphs. These are equivalent to a broad class of models called IER
networks, which we will introduce briefly in Section 5.7.3).

Correlated Network Models

In this section we explore correlated network models. Let’s say that we have a
group of people in a city, and we know that each person in our group has both
a Facebook and a Instagram account. The nodes in the networks are the people
who possess both social media accounts. The first network consists of Facebook
connections, where an edge exists between two people if they are friends on
Facebook. The second network consists of Instagram connections, where an edge
exists between two people if they follow one another on Instagram. If two people
are friends on Facebook, then there is a good chance that they follow one another
on Instagram, and vice versa. How do we reflect this similarity through a multiple
network model?

Network correlation between a pair of networks describes the property that
the existence of edges in one network gives information about edges in the other
network, as in this Facebook/Instagram example. We will focus on p-correlated
network models. Given two random networks with the same number of nodes,
each edge has a correlation of p between the two networks. A pair of random
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networks A and A are called p-correlated if for all pairs of indices i and
Js corr(ag;),agf)) = p, where corr(x,y) is the Pearson correlation between two
random variables x and y. Otherwise, the edges are independent between the
two networks. In our example, this is how we will model whether two people are
friends on Facebook is correlated with whether they are following one another

on Instagram.

Concept 4.9.2 The Pearson Correlation

The Pearson correlation between two random variables x and y is defined as
the covariance of the two variables divided by the product of their standard
deviations, given by:

cov(x,y)
Ox0y

corr(x,y) =

where cov(x,y) is the covariance between x and y, and o, and o, are their
standard deviations. The symbol for correlation is typically “rho” (greek let-
ter p). Since the correlation p is the same for all edges in the network in
the formulations we are discussing, these models are typically referred to as
the p-correlated network models. More complicated models may have more
complicated correlation structures.

The Pearson correlation (defined in Concept 4.9.2) describes whether one vari-
able being large or small gives information that the other variable is large or
small. The correlation is positive and closer to 1 if one variable being large gives
information that the other variable might also be large, it is close to —1 if one
variable being large gives information that the might be small, and it is close to
0 if seeing the value of one variable does not provide much information about the
the other. Applying this to networks, we see that if the two networks are posi-

tively correlated and we know that one of the edges ag
(2)

i
zero. If the two networks are negatively correlated and we know that one of the

ed M 2
ges a;; i
and vice-versa. If the two networks are not correlated (p = 0) we do not learn

anything about edges of the second network by looking at edges from the first.

;) has a value of one, then

we have information that a;;” might also be one. Vice-versa for taking values of

has a value of one, then we have information that a;;” might be zero,

p-Correlated RDPG

The p-correlated RDPG is a relatively straightforward correlated network model,
and is described by [15] and [16]. Since ER, SBM, and DCSBM random net-
works are special cases of the RDPG (as long as the block matrix is positive
semidefinite), the p-correlated RDPG can be used to define a p-correlated ER,
p-correlated SBMs, and p-correlated DCSBMs. For the normal RDPG, a latent
position matrix X with n rows and a latent dimensionality of d is used to define
the edge-existence probabilities for the networks A(Y) and A®?). The difference
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with the p-correlated RDPG is that the probabilities in A?) now depend on the
outcome of observing an instance of A1),

Let’s take a coin-flip example. We begin by defining A as an RDPG,,(X)
random network. We define the second network A(2) as follows. We use a coin
for each edge (i, 7), which has a probability that depends on the value that the
corresponding edge in A1) takes. If the edge al(-jl-)

use a coin which has a probability of #] Z; 4+ p(1 — & #;) of landing on heads. If

takes the value of one, then we

the edge ag;) takes the value of zero, then we use a coin which has a probability of
(1—p)#] #; of landing on heads. We flip this coin, and if it lands on heads, then
the edge ag) takes the value of one. If it lands on tails, then the edge ag) takes
the value of zero. If A and A are p-correlated RDPGs with latent position

matrix X and n nodes each, we say that the pair {A(l), A(Q)} are pRDPG,(X).

How do we simulate samples of pRDPG,,(X) random networks?
The procedure in Algorithm 13 will produce a pair of networks A and A
where the underlying random networks A(") and A®) are pRDPG,,(X).

Fortunately, graspologic makes sampling p-correlated RDPGs relatively sim-
ple. Let’s use the Instagram/Facebook example from this section, and assert
that the networks are not only identical in probability, but that they are also
correlated.

Saying that the two networks are positively correlated is the same as saying
that if we knew that a pair of people were friends on Facebook, then they would
be more likely to be following one another on Instagram. We will start by gen-
erating latent position matrices for the Instagram/Facebook example using code
from Section 4.5.8:

from graphbook_code import lpm_from_sbm
X_facebook_insta = lpm_from_sbm(z, B)

Let’s see what happens when the underlying correlation is p = 0.7. To sum-
marize the differences between the two networks, we’ll count the total number
of edges that differ between the two networks, the absolute difference matrix:

from graspologic.simulations import rdpg_corr

# generate the network samples

rho = 0.7

facebook_correlated_network, insta_correlated_network = rdpg_corr(
X_facebook_insta, Y=None, r=rho

)

# the difference matrix

correlated_difference_matrix = np.abs(
facebook_correlated_network - insta_correlated_network

)

# the total number of differences

correlated_differences = correlated_difference_matrix.sum()
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Algorithm 13: Simulating a paired sample of pRDPG(X) random net-
works
Data: n a number of nodes

X a latent position matrix with n rows and d columns
p a correlation between the two networks that is between —1 and 1
Result: A pair of random networks which are p-correlated.
Simulate a sample A®") which is a sample of an RDPG,,(X) random
network, using Algorithm 9.

=

2 for i in 1:n do
3 for j > i do
4 if ag;) =1 then
5 Obtain a coin which has a probability of landing on heads of
# 7+ p(1 - 2 7).
6 end
7 else
Obtain a coin which has a probability of landing on heads of
1-p)7] 7).
9 end
10 Flip the coin, and if it lands on heads, the corresponding entry
ag) in the adjacency matrix is 1. If the coin lands on tails, the
corresponding entry az(?) is 0.
11 Set aﬁ) = az(?).
12 end
13 end

14 return A gnd A®

Figure 4.9.4(A), (B), and (C) show heatmaps of the two networks, along with
their difference matrix.

We also show the case where the underlying correlation is much lower, such
as p' = 0.0 (the networks are uncorrelated).

rho_nil = 0.0
facebook_uncorrelated_network, insta_uncorrelated_network = rdpg_corr(
X_facebook_insta, Y=None, r=rho_nil

)

# the difference matrix

uncorrelated_difference_matrix = np.abs(
facebook_uncorrelated_network - insta_uncorrelated_network

)

# the total number of differences

uncorrelated_differences = uncorrelated_difference_matrix.sum()

A heatmap of the two networks is shown in Figure 4.9.5(A) and Figure (B),
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Figure 4.9.4 (A) the Facebook network. (B) the Instagram network. (C) the edges
which differ between the two networks.
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Figure 4.9.5 (A) the Facebook network. (B) the Instagram network. (C) the edges
which differ between the two networks. Note that there are far more edges that differ
than in Figure 4.9.4.

along with the difference matrix in Figure 4.9.5(C). In both 4.9.4 and 4.9.5, the
Facebook and Instagram networks have identical latent position matrices, and
the latent position matrices are the same for both scenarios. However, when
the networks are correlated, the edges tend to be more similar between the two
networks. When the networks are uncorrelated, the edges tend to differ more
between the two networks.

Exercise 4.9.3 Negative p-correlated RDPGs

If we generated another simulation where the networks were anti-correlated,
we could arbitrarily increase the magnitude of this difference. Try the simula-
tion again with p having a negative value, and describe what you see. Repeat
it a few times, setting p as low as —1, and describe your result.

Next, do the simulation again with p = 1.0. What do you notice?
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Models with Covariates

We often have additional information for networks besides node or edge at-
tributes. For example, a network might be labeled into a category. In this section,
we explore network models that incorporate these network attributes.

We cover:

1 Definition and motivation for models with covariates,

2 The Signal Subnetwork Model,

3 Simulating samples from models with covariates,

4 Relationship between covariate models and other network models, and
5 Applications and use cases for models with covariates.

In Section 8.3 and Section 8.2, we will use these ideas to develop prediction
models classifying networks into different classes.

Say we have a collection of networks representing the brains of M = 200
individuals 500, 000 years into the future. These individuals are all either humans
who have persisted with life-as-normal on earth (earthlings), or astronauts who
left for a planet with a different set of prominent colors and light content from
Earth.

Let’s define the network attributes, which in this case are network labels. For
each individual m, a covariate y; indicates whether the individual is an earthling
(1) or an astronaut (2). y,, is a categorical variable: we have two categories 1
and 2, and we chose people to be 1 and astronauts to be 2. The total number of
categories, or classes, Y is 2. In the special case when categorical variables take
one of two levels, we call them binary or dichotomous variables (two possible
values).

Let’s define the nodes in our astronaut example. Each brain network has 5
nodes, representing the sensory functions and modalities of the brain: the area
respounsible for sight (SI), the area responsible for language (L), the area respon-
sible for hearing/emotional expression (H/E), the area responsible for thinking/-
movement (T/M), and the area responsible for basic survival functions such as
heartbeat and breathing (BS). Edges represent whether pairs of brain areas can
pass information to one another. There were evolutionary pressures on the astro-
nauts towards people whose eyes could better adapt to the different set of colors
and light on the new planet, so the vision node is expected to relate to the other
nodes differently.

Let’s say that we have observed pairs of data (A(m),ym)7 for m from 1 to
M = 200. Each adjacency matrix A is a 5 x 5 matrix, and the covariate v,
takes the value 1 if the m*" individual is an earthling, and 2 if the m*" individual
is an astronaut. We want to predict the class for each individual (earthling or
astronaut) using only their adjacency matrix A). We can see two example
networks for the earthlings and the astronauts below:

import numpy as np
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(A) Earthling adj. matrix (B) Astronaut adj. matrix
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Figure 4.10.1 (A) a brain network of an earthling. (B) a brain network of an
astronaut.

from graspologic.simulations import sample_edges

nodenames = [
"ST", "L", "H/E",
"T/M", "BS"

# generate probability matrices

n =5 # the number of nodes

P_earthling = 0.3*np.ones((n, n))

signal_subnetwork = np.zeros((n, n), dtype=bool)

signal_subnetwork[1l:n, 0] = True

signal_subnetwork[0, 1:n] = True

P_astronaut = np.copy(P_earthling)

P_astronaut[signal_subnetwork] = np.tile(np.linspace(0.4, 0.9, num=4), 2)

# sample two networks
A_earthling = sample_edges(P_earthling)
A_astronaut = sample_edges(P_astronaut)

Figure 4.10.1 compares the two adjacency matrices. By design, the edges in
the first column and the first row, responsible for “sight”, are different. However,
there are so few nodes that it would be impossible to make meaningful claims if
we didn’t know this in advance. Is there some way that we could “pool” across
many networks, and gain insight by thinking about properties shared by all of
the networks from a single class (astronaut vs. earthling)?

To devise a statistical model, we view each piece of data in our sample as
an observation of a corresponding random variable. When we were dealing with
multiple network models in Section 4.9, this meant that for each network A(™)
there was a random network A (™), and that this random network was the under-
lying process generating A(™). Now, for each data pair (A, y,,), there exists
a corresponding random network A(™ and a corresponding random covariate
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Ym, Where (A(m),ym) is a sample of the random tuple (A(m),ym). So, for our
multiple network model with covariates, we seek to describe both A(™ and y,,.

Signal Subnetwork Model

The astronauts are remarkably similar to the earthlings, except for the connec-
tions related to vision. In other words, the subnetwork comprised only of edges
incident the vision lobe carry the signal disparity between human and astronaut
brains. We explored the concept of a subnetwork in Section 3.5.

If we were to just compare the adjacency matrices themselves, we would end
up looking at a lot of extraneous information: edges that do not show any dif-
ference between the humans and the astronauts. In a fixed sample of earthlings
and astronauts, we might find disparities between these extraneous edges, but
these disparities are just because of the particular sample of humans and as-
tronauts that we chose and are not representative of actual differences. Instead,
we want to identify the subset of edges and corresponding nodes, called the sig-
nal subnetwork, which actually carry the signal, the set of edges which show
real differences between the earthlings and the astronauts. Below, we plot the
probability matrices for earthlings and astronauts:

# plot probability matrices and their differences on the same scale
heatmap (P_earthling, vmin=0, vmax=1)

heatmap(P_astronaut, vmin=0, vmax=1)

heatmap(np.abs(P_astronaut - P_earthling), vmin=0, vmax=1)

Figure 4.10.2 explores these results in more detail. Notice that the entirety of
the disparity between earthlings and astronauts (in terms of their probability
matrices) shown in Figure 4.10.3(C) is captured by the edges which include a
node involved in eyesight. We can observe this because only the first row and
column of the matrix (corresponding to the node for sight, SI) is different between
the two networks for all other pairs of nodes.

We explore this signal using the signal subnetwork (SSN) model, which models
adjacency matrices where we have per-network attributes. To decide whether a
network is from an earthling or an astronaut, we will look only at the signal
subnetwork, and ignore the rest of the network entirely.

The core idea in the SSN model is that for each edge in the network, the
probability of an edge existing (or not existing) depends on the class. There is a
set of edges for which the class changes the probability, and another set of edges
for which the class has no impact. For an edge (i,7) for classes y (in our case,
either 0 or 1), we will use the notation pi;’ to denote the probability of an edge
existing in class y.

The signal subnetwork [17] is a collection of edges S, with elements (i, ) where
i and j are nodes in the network between 1 and n, such that the following two
conditions hold:

1 For each edge in the signal subnetwork, class membership changes edge prob-
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Figure 4.10.2 (A) the probability matrix for brain networks of earthlings. (B) the
probability matrix for brain networks of astronauts. (C) the difference between the
probability matrices for astronauts and humans. Notice that the the area responsible
for sight, SI, has very different connection probabilities with all other brain areas.
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Figure 4.10.3 (A) the difference between the earthling and astronaut probability
matrices. (B) the signal subnetwork.

ability. That is, if an edge (4, 7) is in the signal subnetwork S, then there exist

"

ij

2 For each edge which is not in the signal subnetwork, class does not affect edge
probability. That is, if an edge (i,7) is not in the signal subnetwork S, then

pgg) = pgjy/). For this reason, if an edge is not in the signal subnetwork, we will

use the notation p;; = pgg) = pg;) =..= pg_l)

classes.

two classes y and y’ where pg) #0p

, where Y is the number of

The signal subnetwork tracks the edges which have different probabilities for
any pair of classes. For our earthlings versus astronauts example, this is the set
of edges for which at least one node is in the visual region of the brain:

# plot the signal subnetwork
ax = heatmap(signal_subnetwork)
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Figure 4.10.3(B) shows a plot of the signal subnetwork. It is compared to
the difference between the probability matrices for earthlings and astronauts
in Figure 4.10.3(A). The signal subnetwork includes all edges in which the two
probability matrices are different.

We can now formally define the signal subnetwork model. For each random
tuple (A(m), Ym), we first obtain a “class assignment” die with Y total sides. For
a given face of the dice y, the probability that the dice lands on side Y is 7.
We flip the class assignment die, and if it lands on side y, then y,, takes the
value y. Next, for each edge (4,j) which is not in the signal subnetwork S, we
obtain a “non-signal” coin which has a probability of p;; of landing on heads and
1 — p;; of landing on tails. The edge a;; exists if the coin lands on heads and
does not exist if the coin lands on tails. Finally, for every edge (i, j) which is in
S, we check which class y,, indicates. If y,, is class y, we obtain a “signal” coin
which has a probability of p%’) of landing on heads, and a probability of 1 — pl(»;’)
of landing on tails. The edge a;; exists if the coin lands on heads and does not
exist if the coin lands on tails.

In summary, we will say that a collection of random network/covariate pairs
{(AD y1), .o, (AMD [y )} with n nodes is SSN,, u (7, PWY, ..., PY) . S) if the
following three conditions hold:

1 For every edge (4,7) which is in the signal subnetwork S, there exists at least
two classes y and y’ where pgg) # pg/).

2 For all edges (7,4) not in the signal subnetwork S, edge probabilities are the
same: p;; :pijl» = ... :pij )

3 conditional on the class y,, being y, then A(™) is IER,,(P®¥)), where IER,,(P®))
is from Section 4.1.

Simulating samples of SSN random networks
Algorithm 14 generates a set of networks { A1), ..., A} and covariates § where
the underlying random networks { A, ..., A} and covariates § are SSN,, ar (7, PO, ..., PY) . S)
random networks.

We can implement this programmatically as follows, where we sample M = 200
network/covariate pairs:

# sample the classes of each sample

M = 200 # the number of training and testing samples

pi_astronaut = 0.45

pi_earthling = 0.55

np.random.seed(0)

yvec = np.random.choice(2, p=[pi_earthling, pi_astronaut], size=M)

# sample network realizations given the class of each sample
Ps = [P_earthling, P_astronaut]

As = np.stack([sample_edges(Ps[y]) for y in yvec], axis=2)
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Algorithm 14: Simulating samples from an
SSN,, M (T, PO . PY=D_8) random network

Data: n a number of nodes
M the total number of networks
w1, ..., Ty the probability of a network being from a given class
P .. PO the probability matrix associated with each class
S the signal subnetwork

Result: A collection of M networks with n nodes.

=

Obtain a dice with Y sides numbered from 1 to Y, that has a 7, chance
of landing on the y side.
for m in 1:M do
Flip the Y-sided die, and if it lands on side y, assign the item m to

w N

class y. Call this class yp,.

4 Simulate an adjacency matrix A(™) using the procedure for an
IER,,(PW) network, in Algorithm 5.

5 end

return { (AW, y1), ..., (A yp)}

[
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The Big Picture of Random Network Models

At this point, we have studied many random network models. In this section, we
take a birds-eye view to summarize our major conclusions.
We cover the following:

1 Key parameters, edge probabilities, and node degree characteristics for each
model,

2 Relationships between different models, including generalizations and special
cases,

3 The role of positive semidefiniteness in connecting block models to Random
Dot Product Graphs, and

4 A hierarchical framework for understanding the connections between different
network models.

We will use these statistical models both explicitly and implicitly for the re-
mainder of the book.

Parameters and intuition

Here, we provide brief snippets about each random network model, and some
basic intuition about how to think about them. To refresh us, the parameters
of a random network are the descriptors that are necessary to fully specify the
unique aspects of one random network under a given model. The edge probabil-
ities delineate the probability of an edge existing/not existing between a given
pair of nodes. The expected node degree is the expected number of edges for a
given node, and may or may not depend on other features of that node (such
as its community assignment, or its degree-correction factor). We will assume
that each network has m nodes. If a network has community structure, we will
use K to denote the number of communities. If the network has latent struc-
ture, we will use d to denote the latent dimensionality. if a network has edge
clusters, K will instead be used to denote the number of edge clusters. If there
are multiple networks, M will denote the number of networks. The collection of
random networks that can be described with the indicated parameters is known
as the random network model; e.g., the Erdos-Renyi random network model is
the collection of random networks that can be described with a single probability
p.

Further, these random network models describe independent-edge random net-
works; that is, the existence or non-existence of an edge does not provide infor-
mation about the existence or non-existence of another edge in the network
(beyond what is conveyed by the parameters of each network). We will assume
that all of the network models described below are for simple networks; that is,
the networks are unweighted (edges either exist or do not exist), undirected (all
edges are bi-directional; i.e., an edge from ¢ to j implies an edge from j to ),
and loopless (nodes cannot have edges to themselves).
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Erdés-Renyi Random Networks (ERs)

Parameters: p the edge probability

Edge probabilities: E[a;;] = p;; =p

Expected node degrees: All nodes have identical expected node degrees. E[d;] =
(n—1)p

Calculating the probability matrix: P = pl, «,, where 1, «,, is an n X n matrix
of ones

Specification: A is ER,(p)
Intuition: The existence/non-existence of edges in the network is random with
the same probability.

Stochastic Block Model (SBMs)

Parameters: Z the length-n community assignment vector assigning each node
to one of K communities, and B the K x K block probability matrix

Edge probabilities: E[a;;] = pi; = b.,-;
Expected node degrees: All nodes in the same community have the same ex-
pected node degree.

Eldi; 2 = k| =Y mibik + (ng — 1)bys
1%k

Calculating the probability matrix: P = CBC", where C is the n x K one-hot
encoding of the community assignment vector

Specification: A is SBM, (%, B)
Intuition: The existence/non-existence of edges depends on the community a
node is assigned to.

Random Dot Product Graphs (RDPGSs)

Parameters: X the n x d latent position matrix

Edge probabilities: E[a;;] = p;; = & Z;

Expected node degrees: E[d;] = >_7, z] z;

Calculating the probability matrix: P = XX "

Specification: A is RDPG,(X)

Intuition: The existence/non-existence of edges depends on the latent positions
of the incident nodes.

Degree-Corrected Stochastic Block Model (DCSBMs)

Parameters: 7 the length-n community assignment vector assigning each node
to one of K communities, 6 the length-n degree-correction vector, and B the
K x K block probability matrix

EdgC pI‘ObabﬂitiCSS E[aij] =Dij = Gzﬂjbzizj
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e Expected node degrees: The degree-correction factor “scales” the expected de-
gree of a given node compared to other nodes in the same community.

E[di;zi = k‘] = 91’ Z nlblk Z 9j + (nk — 1)bkk Z Qj

1k jizj=I Jizj=k,j#i

e Calculating the probability matrix: P = OCB(0C) T, where C is the n x K
one-hot encoding of the community assignment vector, and © is the diagonal
matrix whose entries are the degree-correction factors

e Specification: A is DCSBMn(Z,g7 B)

e Intuition: The existence/non-existence of edges depends on the community a
node is assigned to, where the degree-correction factors 6; or 6; up- or down-
weight the edge-existence probabilities.

Independent-edge Erdos-Renyi (IER)

e Parameters: P, an n X n probability matrix

e Edge probabilities: E[a;;] = p;;

e Expected node degrees: E[d;] = ., pij

e Calculating the probability matrix: the probability matrix is a parameter, and
is just P.

e Specification: A is IER,(P)

e Intuition: The existence/non-existence of edges is unstructured, other than
the structure implied by the constraints of the network (independent-edge,
unweighted, undirected, loopless).

Further technical details regarding single network models are provided in Ap-
pendix A.

Structured Independent-Edge Model (SIEM)

e Parameters: Z an n X n cluster assignment matrix for each edge to one of K
edge clusters, and p a length-K probability vector for each of the K edge-
clusters

e Edge probabilities: E[a;;] = p.,,

e Node degrees: E[d;] =3, ; p2,;

e Specification: A is STEM,,(Z,p)

e Intuition: The existence/non-existence of edges depends on the cluster a given
edge is assigned to.

Joint Random Dot Product Graphs (JRDPG)

e Parameters: X the latent position matrix

e Viewed as individual random networks (marginally), each of A("™) are RDPG,,(X)
e Viewed as a collection of random networks, A(™ are independent

Specification: {A®M, ..., AW} are JRDPG, 1 (X)
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e Intuition: The collection of random networks {A(l), R A(l)} are independent
RDPG,(X) random networks with homogeneous structure (the probability
matrices are all the same).

COmmon Subspace Independent-Edge Model (COSIE)

e Parameters: V the n x d shared latent position matrix, and R™ the d x d
score matrix for each of the M networks

e Viewed as individual random networks (marginally), each of A are IER, (P(m)),
where P(") = VRm)YT

e Viewed as a collection of random networks, A(™) are independent

e Specification: {A(l)7 . 7A(l)} are COSIE,, u (V, {R(l), ey R(m)})

e Intuition: The collection of random networks {A(l), ey A(l)} are independent
IER, (VR(m)VT). The shared latent positions V' convey shared structure
across the networks, and the (potentially unique) score matrices R(™) delineate
how to combine the shared latent positions for each network. This network
model captures homogeneity across the networks through the shared latent
positions and heterogeneity across the networks through the potentially unique
score matrices.

Correlated Random Dot Product Graphs (pRDPG)

e Parameters: p the correlation between the two networks, and X a latent posi-
tion matrix

e Viewed as individual random networks (marginally), each of A(™ are RDPG,,(X)

e Viewed as a pair of random networks (jointly), with A®) an RDPG,(X)
random network, the edge-probabilities for A are:

ST o T = 1
] < (40—l
Y (1 - p)a 2;, al) =0

e Edge correlations: corr (ag;), ag)) =p

e Specification: A is SIEM,(Z,p)

e Intuition: The two RDPG,,(X) random networks A and A(®) have edges
which are correlated by p; i.e., p conveys that edges existing in one network
provide information about edges existing in the other network (p is positive),
edges existing in one network are uninformative about the edges of the other
network (p is near 0), or edges existing in one network provide information
about edges not existing in the other network (p is negative).

Signal Subnetwork Model (SSN)

e Parameters: 7 the length-Y class assignment vector whose elements 7, delin-
eate the probabilities of a network being in class y, a set of n x n probability
matrices P for all Y classes of networks, S the signal subnetwork which is
a collection of edges
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e Edge probabilities: If an edge (i,j) € S, then for at least two classes y and ¢/,
pz(-?) =+ pg/). If an edge (i,j) € S, for all classes, pgjl-) =...= pgj).

e Specification: { (AW, y1),...,AM y;)} are SSN,, (7, {P?,..., PO} S)

e Intuition: The “signal subnetwork” delineates the edges which carry the “sig-
nal”; i.e., the edges which differ across the two classes. Aside from the signal

subnetwork edges, the remainder of the edges are identical across the networks.

Positive semidefiniteness and relating block models to RDPGs

As we learned in Section 4.5, positive semidefiniteness (PSD) is useful in that
all positive semidefinite networks can be thought of as RDPGs. Particularly
for block models (stochastic block models and degree-corrected stochastic block
models), positive semidefiniteness of the block matrix means that the block ma-
trix can be easily factorized by its square-root matrix:

B=vBVB .

When the block matrix of a block model is PSD, we can find an equivalent
RDPG. Stated another way, we could calculate a latent position matrix, where
an RDPG with that latent position matrix has the same probability matrix as
the original block model.

Latent positions for SBMs
When A is SBM,(Z, B) where B is PSD, a latent position matrix can be cal-
culated as X = C'v/B, which will have n rows and K latent dimensions (one for

each community). The latent position for a given node is Z; = \/ET(':}, where ¢;
is the one-hot encoding of the community z; for the node i. Consequently, for all
nodes with the same community assignment, the latent positions are the same.
For nodes with different community assignments, the latent positions may differ.

Latent positions for DCSBMs

When A is DCSBMn(Z,g,B) where B is PSD, a latent position matrix can
be calculated as X = ©C+/B, which will have n rows and K latent dimensions
(one for each community). The latent position for a given node is Z; = 6; \/ET@,
where ¢; is the one-hot encoding of the community z; for the node i. Conse-
quently, for all nodes with the same community assignment, the latent positions
are the same, up to a rescaling by the degree-correction factor #;. In this sense,
the degree-correction factor for a PSD DCSBM “stretches” the latent position as-
sociated with that community. For nodes with different community assignments,
the latent positions may differ.

Stochastic equivalence and a hierarchy of random network models

In Section 4.2.4, we introduced the idea of stochastic equivalence. Two random
networks were stochastically equivalent if they had the same probability matrix.
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We used this idea to introduce the concept of “generalizations” of families of
random network models; that is, one random network model (the “generalizing”
model) generalizes the other (the “contained” model) if, for every random net-
work in the contained model, we can identify a stochastically equivalent random
network in the generalizing model.

Figure 4.11.1 summarizes these relationships. In this Figure, there is a single
circle for each random network model described above. When one circle (the
contained model) is contained in the other (the generalizing model), the indicated
random network model is contained in the generalizing random network model.

IER = SBM(K = n) = DCSBM(K = n) = gRDPG
block models with
PSD block matz%ces

Figure 4.11.1 The hierarchy of random network models for single networks.

1 ERs are generalized by every other single network model.

2 SBMs with K < n (each node is not assigned to its own unique community)
are contained by DCSBMs, and SBMs with K < n and PSD block matrices
are contained by RDPGs.

3 DCSBMs with K < n generalize SBMs, because they add an additional op-
tional parameter (the degree-correction factors). SBMs and DCSBMs with
indefinite block matrices are not RDPGs.

4 RDPGs generalize random networks with PSD probability matrices, such as
ERs, and block models with PSD block matrices.

5 IER networks are the most general network models, and are equivalent to block
models which allow non-informative communities (i.e., each node assigned to
its own community). These are also equivalent to the generalized RDPG, or
GRDPG, which we will briefly describe in Section 5.7.3 and in Appendix A.7.

It is useful to approach network modelling with this hierarchy of random net-
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works in mind, due to the result of Concept 4.4.1: when we develop a technique
for one random network model, the technique will apply “for free” to any ran-
dom network model contained within it. In particular, when we develop tools for
RDPGs, the techniques and intuition also apply to PSD SBMs and DCSBMs,
since these are contained in the RDPGs.
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Learning Network Representations

In Chapter 3, we explored ways to describe and summarize observed networks.
Chapter 4 introduced statistical models for random networks that could generate
such observations. This chapter builds on these foundations to use our statistical
models for learning useful representations, also called embeddings, of networks
(the second to last step in Figure 5.0.1).

As we discussed in Section 1.3, networks are often not naturally suited to many
traditional machine learning algorithms, which expect data in tabular form. Net-
work embeddings address this challenge by transforming network data into vec-
tor representations that capture key structural properties. There are a variety
of ways we can create these representations, one of which are called spectral
embedding methods.

This chapter covers the following topics:

1 Section 5.1 introduces maximum likelihood estimation for simple network mod-
els.

2 Section 5.2 motivates the need for network embeddings and contrasts networks
with tabular data.

3 Section 5.3 presents adjacency spectral embedding (ASE) for learning latent
position representations.

4 Section 5.4 covers Laplacian spectral embedding as an alternative to ASE.

5 Section 5.5 explores techniques for embedding multiple networks simultane-
ously.

6 Section 5.6 discusses joint representation learning incorporating node attributes.

7 Section 5.7 addresses estimating the appropriate latent dimension for embed-
dings.

Understanding the statistical models from Chapter 4 provides valuable con-
text for this Chapter. Moreover, they provide theoretical foundations for many of
the applications we will examine in Chapter 7 and beyond. As readers progress
through this Chapter, we encourage them to regularly revisit the relevant statis-
tical models in Chapter 4 when learning each new representation technique.
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Network Population

Network Sample Network Machine Learning

. Choose Suitable Representation Apply Machine Learning System

| [Observation|Dimension Dimension 2
T I

H ) “ : ;
Network Population /’/ |

Assumption X |

Learn property about network population assumption

Figure 5.0.1 The statistical learning pipeline. In this chapter, we will choose suitable
representations for networks.

Maximum likelihood estimation

In Chapter 4, we introduced the concept of a random network, and began think-
ing of an observed network as a sample from its random network. Random net-
work models are defined by their parameters. For example, an SBM,,(Z, B) is
defined by the parameters z' and B. However, when we observe networks in the
real world, we do not have direct access to these parameters, and we must es-
timate them. This section explores methods for estimating parameters using a
method common in statistical inference called Maximum Likelihood Estimation
(MLE).
We cover the following:

1 The basics of MLE
2 MLE for the Erd6s-Rényi , estimating the edge probability parameter
3 MLE for the Stochastic Block Model, estimating the block probability matrix

MLE is often used both explicitly and implicitly to build representations from
observations of random variables, and works well when we have a firm under-
standing of the underlying behavior of our network. It is not particularly effective
in more general cases, so the remainder of the Chapter will focus on alternative
strategies. Appendix B.1 provides more detailed mathematical derivations of
MLE for network models.

Suppose we encounter a real-world network and wish to understand it better.
We assume that this network is an observation of a random network characterized
by certain parameters, but we do not know the parameters in advance. How do
we estimate them?

We can often use Mazimum Likelihood Estimation (MLE). The basics of MLE
are discussed in Concept 5.1.1.

In this section, we will explore the MLE for our two most common graph
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Concept 5.1.1 The basics of MLE

In MLE, the objective is to find the parameter values that maximize the
likelihood of the observed network under a given network model. This lets us
use the data we have to estimate the parameters that generated it.
Mathematically, let £(0; A) denote the likelihood function, where 0 represents
the parameters of the model and A is the observed network. The MLE of
is given by:

Ovrp = argmax L£(0; A)
0

In practice, the negative natural logarithm of the likelihood function is often
used to simplify calculations, because the logarithm has a property known as
monotonicity, meaning that if x > y, then log(x) > log(y). Therefore, if =
is the maximizer of a function, then z is also the minimizer of the negative
logarithm of that function. So, by minimizing the negative log likelihood, we
maximize the likelihood.

models, the Erdés-Rényi (ER) random network and the Stochastic Block Model.
It is worth noting that both models, under the positive semidefinite assumption,
can also be thought of as Random Dot Product Graphs. We will take advantage
of this fact in Section 5.3.

Erdds-Rényi (ER)

Recall from Section 4.2 that the Erdés-Rényi (ER) random network has a single
parameter: the probability of any edge existing, p.

Let’s explore how we can use MLE to estimate p. Imagine we have a coin, but
we don’t know the probability of it landing on heads. However, we are allowed
to flip it 100 times and then guess the probability of it landing on heads. After
100 flips, say it landed on heads 45 times. We flip again. What is our best guess
for the probability that the coin will on heads?

If you thought it might be 14750, or the number of heads we got divided by
the total number of coin flips, you would be right. This guess is the maximum
likelihood estimate for a binary random variable.

The same principle applies to the ER random network. The best estimate of
the probability of an edge existing in an ER random network is the ratio of the
total number of edges in the simple network, m = i B divided by the total
number of edges possible in the network, which is (")

2
Our result is:

3

i
—
S E
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The hat symbol means that p is an estimate: it is a function of the observed
data that we use to describe the estimand, which is the parameter of the model
that we want to learn about. In this case, since we are considering an ER,,(p)
model, our estimand is p.

Let’s look at an example. We will use a sample of an ER random network,
with 50 nodes and an edge probability of 0.3, similar to the example in Section
4.2. We begin by simulating and visualizing the appropriate network:

from graspologic.simulations import er_np
import numpy as np

0.3
er_np(n=50, p=p)

p
A

Next, we fit the EREstimator from graspologic, and compare the true proba-
bility p = 0.3 to the estimated probability p:

from graspologic.models import EREstimator

model = EREstimator(directed=False, loops=False)
model.fit(A)

# obtain the estimate from the fit model

phat = model.p_

We can see how good the estimator performs by comparing it to the (true)
population parameter, p:

print("Difference between phat and p: {:.3f}".format(phat - p))

The estimate of the probability should end up close to the true value.

Stochastic Block Model

In Section 4.3, we said that the SBM, like the ER, is characterized by a proba-
bility parameter; in this case, a block probability matrix B. The entries in B, by,
denote the probabilities of edges existing between pairs of communities. When
the other parameter for the SBM, the community assignment vector 2, is known,
we can use similar strategies for learning about B.

As before, we will use the notation my; to denote the total number of edges
between nodes in community k£ and nodes in community [, while ng; represents
the total possible number of edges between these communities. When we apply
the Maximum Likelihood Estimation (MLE) method to this model, we estimate
bkl by dividing M by Nkl -

7 Ml
by = —.
Tkl

To bring this back to our coin flip example, this is like saying that there is one
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coin (k,[) for each pair of communities in our network. We flip each coin once
for every possible edge between those pairs of communities, ng;. When that coin
lands on heads, that edge exists, and when it lands on tails, that edge does not
exist. Our best guess is just to count the number of heads we obtained, my;, and
divide by the number of coin flips we made, ng;.

In our Section 4.3 example, we had 100 students, each of whom were in one
of two schools (school 1 and school 2). If the students were both in school 1,
the probability that they were friends was 0.6, and if the students were both in
school 2, the probability that they were friends was 0.4. If the students attended
different schools, the probability that they were friends was 0.1. This gave us a
block matrix of:

6 .1
s=[1 ]

Using this setup, we will simulate an appropriate SBM:

from graspologic.simulations import sbm

n = [50, 50]
B = np.array([[0.6, 0.1]
[0.1, 0.4]])

A, z = sbm(n=n, p=B, return_labels=True)

A network sample is shown in Figure 4.3.1.
Next, we fit an appropriate SBM, and investigate the estimate of B:

from graspologic.models import SBMEstimator
from graphbook_code import heatmap

model = SBMEstimator(directed=False, loops=False)
model.fit (A, y=z)
Bhat = model.block_p_

# plot the block matrix vs estimate

heatmap (B, title="$B$ true block matrix", vmin=0, vmax=1, annot=True)

heatmap(Bhat, title=r"$\hat B$ estimate of block matrix", vmin=0, vmax=1, annot=True)
heatmap(np.abs(Bhat - B), title=r"¢|\hat B - B[$", vmin=0, vmax=1, annot=True)

The difference between B and B is shown in Figure 5.1.1, and will tend to be
quite small.

In this section, we have learned about estimating parameters for two types of
simple networks. First, we have the FR,(p) random network. Here, edges are
largely unstructured. Second, we have the SBM,, (%, B) network. For this, the
network structure is predetermined by known community assignments and we
only need to understand B.

For both types of random networks, we can accurately estimate the under-
lying probability parameters of these models using methods like MLE. These
approaches allow us to make well-informed guesses about the likelihood of differ-



5.1 Maximum likelihood estimation 217

(A) B true block matrix (B) B estimate of block matrix (C) |é —B|
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Figure 5.1.1 (A) the true block matrix underlying a random network. (B) the
estimated block matrix from the network sample. (C) the difference between the
estimated and true block matrices.

ent types of connections within these networks. Appendix B.1 provides technical
details for MLE in ER and SBM random networks.
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Why do we embed networks?

We have been mentioning that a major topic of study in network machine learn-
ing is representation learning, which in our case often deals with embedding
networks into modalities that we can understand as feature representations. We
call these feature representations tabular data and the way we get to it an em-
bedding method.

As we discussed in Section 1.1.1, tabular data is structured with rows repre-
senting observations and columns denoting features. This format simplifies the
application of numerous ML algorithms such as neural networks, decision trees,
or tasks such as classification, regression, and clustering. In this Section, we
explore the motivation behind representation learning. We cover the following
topics:

1 The challenges of applying traditional machine learning algorithms to network
data,

2 The concept of statistical dependence in network structures,

3 The need for transforming network data into tabular formats, and

4 How embeddings address the complex dependencies inherent in networks.

After giving proper motivation, we will dive into our first representation learn-
ing method, Adjacency Spectral Embedding, in Section 5.3.

A common underlying assumption in machine learning is that each obser-
vation (row) is independent of others, reducing complex interdependences and
correlations to simpler, feature-based relationships. However, in network data,
this independence assumption crumbles. Each node is explicitly connected to
others, resulting in a web of dependencies.

Network embeddings are a way of transforming network data into more di-
gestible form for traditional ML algorithms. By projecting network data into a
vector space (creating a “feature representation” for each node), we retain crucial
information about node relationships while also structuring the data in a way
that respects the expectations of these algorithms.

There is also a rich bidirectional relationship between networks and tabular
data. Just as we can get from networks to tabular data, we can get from tabular
data to networks. For instance, we can think of each row in our data matrix
as a vector in Euclidean space. We can define its edge weight with other rows
via some similarity or distance metric for that space, such as a Gaussian kernel,
the Euclidean distance, or the cosine distance, and create a network accordingly.
This method underlies numerous dimensionality reduction techniques, such as
the diffusion map. Another strategy might be to find the nearest neighbors of the
row vector, and construct a network using those neighbors. This idea underlies
other techniques such as isomap.

The key with this example is less the specific techniques that are applied, and
more the big picture of the implications of these problems on network data.
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Case Study 5.2.1 Lobster dataset

To better understand the concepts of this section, we will try to understand
a lobster dataset [1]. Note that this dataset is not network-valued. In this
dataset, n = 2560 lobsters were collected by a team of university investigators
in Norway. The data is encoded in a tabular format, where each row indicates
the observation of a single lobster. For each lobster, the investigators measured
the lobster’s biological sex, the crusher claw width (CW), and the total length
(TL) of the lobster. These attributes (or features) are encoded in the columuns.
Our question of interest is whether we can predict the crusher claw width using
the lobster’s biological sex and total length.

Statistical dependence

To visualize whether we expect to find a relationship between the attributes
measured in the lobster dataset, we use a scatter plot, shown in Figure 5.2.1.
Each point represents the biological sex, claw width CW, and total length TL of
a single lobster. There is clearly a positive association, where longer lobsters tend
to have larger crusher claws. Further, it would appear that male lobsters tend to
have a more dramatic increase in crusher claw width as total length increases.

(A) Plot of lobster data
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Figure 5.2.1 (A) a scatter plot of lobster total length against crusher claw width,
separated by biological sex (shape). (B) a linear regression of the crusher claw width
onto total length and biological sex, with an interaction term for biological sex and
total length.

In other words, this graph indicates a dependence between crusher claw width,
lobster total length, and biological sex. Larger lobsters tend to have greater claw
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widths, and as males grow, their claw widths tend to grow faster than female
claws.

It looks like we could fit a line between the total length and the crusher claw
width for each lobster biological sex, and get a pretty good description of the
relationship between the three features. A first-pass strategy would be to use a
linear regression. In this case, based purely on the information we have gathered
from visualizing the data, an appropriate model would regress the crusher claw
width onto the lobster biological sex and total length, and allow for the biological
sex to modify the relationship between total length and crusher claw width.

Figure 5.2.1(B) shows the results of this regression model. It appears that a
relatively straightforward linear regression model does a good job of capturing
what we intuitively derive from visualizing the data in Figure 5.2.1(A). We were
able to explicitly describe a dependence that we expected, model it, and then
capture it by fitting a regression model we believed to be appropriate.

It is almost never this easy to study a dependence, but it is often at least
possible to do using an appropriate method. The key is that the traditional
approach to dealing with dependencies when they arise in machine learning is to
model them directly (like we did above) or indirectly (using latent models, for
example, which we did not describe here, but which are discussed in [2]). When
we have underlying dependencies in the data and want to account for them, our
approach is to explicitly describe or isolate the dependence whenever possible.
Further, if we are uncertain about dependencies in the model, we can often at
least attempt to infer them implicitly.

How can we adapt our tabular models to networks?

This example, while trivial, gives us a good sense of some of the problems we
will run into when we try to analyze network data.

The machine learning techniques and intuitions we build are usually designed
for tabular data formats. Networks are not tabular at all; an observed network
is a matrix and not a vector, and a node is defined within the adjacency matrix
by its set of connections with other nodes. It is unclear at first glance how to
adapt a network for the tabular setting.

The solution to this problem is a network embedding, which is first and fore-
most a tool. Embedding is the “bridge” which provides functionality to convert
to tabular data. Embedding a network and then visualizing that embedding is
also often the simplest way to quickly explore a network.

All networks have the same type of statistical dependence which arose in the
lobster data, but on a much larger scale. When studying a dataset with two
features there is one possible dependence that can arise: the first feature can
be related to the second feature. When studying a dataset with three features
like the lobster data, there are three possible pairwise dependencies that can
arise: the first feature being related to the second, the second related to the
third, or the first being related to the third. The number of possible pairwise
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dependencies with d features is @. When d is small, this is manageable with
explicit modelling (like we did above for the lobsters). Even when d is fairly
large, most dependencies are typically negligible.

Unfortunately, dependencies in networks are explicitly non-negligible. The
nodes and edges that make up the adjacency matrix have inherent dependencies:
each edge depends on a pair of nodes, so our network has at least (Z) depen-
dencies to consider when determining how to learn from it. Stated another way,
nodes could be related to one another explicitly (by a specific grouping, such
as a community assignment) or implicitly (by the nodes having similarities de-
pending on different aspects of them that are not immediately apparent at first
glance), and these relationships convey dependencies between the edges or sub-
networks of the network itself. When n is 50, a small sized network, (g) = 1225,
which means that with just 50 nodes, we would have over a thousand possible

dependencies.

Ezxplicitly delineating the dependence structure
Sometimes, we can take the easy way out with network data, like we might do
with tabular data: we can simply ignore a lot of the dependencies that might
exist. If we think that the nodes of our network are totally unrelated, we can
learn from it by using strategies appropriate for ER random networks (Section
4.2). Remember that the ER random network made the assumption that all
pairs of nodes have an equal connection probability that does not depend on any
aspect of the individual nodes themselves (the edges are entirely independent).
If we are given some sort of a grouping between the nodes, such as a community
assignment vector, we can learn from the network using strategies appropriate for
SBM random network models (Section 4.3) and their cousins. Remember than
the SBM random network models make the assumption that, once we know the
community assignment Z of a node, the edge probability is simply the appropriate
entry of the block matrix. The SBM makes the crucial assumption that other than
the community assignments and the block probabilities, edges are independent.
These approaches make excellent first-passes, and can be combined with other
techniques we will see arise in Part III.

If we cannot explicitly delineate dependencies, what are we left with?
We usually cannot immediately ignore dependence structures in networks. We
might have a network where we do not know a good grouping of the nodes
ahead of time, or we might want to learn appropriate groupings of nodes directly
from the data. There might be dependencies that go beyond just a grouping of
the nodes, or grouping nodes together might be entirely inappropriate. There
are a variety of ways in which prescriptive applications of SBMs with known
community assignment vectors and ERs are not entirely appropriate.

In the next few sections, we will start to learn embedding techniques to address
these more complicated situations.
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Adjacency spectral embedding

Section 4.4 introduced the Random Dot Product Graph (RDPG), a statistical
model which parametrizes some positive semidefinite probability matrix P as
the product of a latent position matrix X and its transpose: P = XX . In
this section, we learn how to estimate X from some adjacency matrix A using a
technique called Adjacency Spectral Embedding (ase).

We cover the following:

1 The mathematical foundations of ase, including eigendecomposition and sin-
gular value decomposition,

2 The process of embedding adjacency matrices into latent positions,

3 Limitations of ase for adjacency matrices and the transition to singular value
decomposition,

4 Interpretation of ase results and their relationship to underlying network
structure, and

5 The concept of non-identifiability in network embeddings.

Intuition about positive semidefiniteness from Section 4.5 will be critical for
the embedding approach that we learn in this chapter. We will heavily use both
the eigendecomposition and the singular value decomposition. For a refresher
on eigendecomposition, see [3]. For singular value decomposition, read lectures 4
and 5 in [4]. One key result that we will use repeatedly throughout this section
concerns matrix multiplications with diagonal matrices. Readers should work
through Exercise 5.3.1 as a check for linear algebra background.

Exercise 5.3.1 Matrix multiplications with diagonal matrices

Suppose the A is a n x m matrix, D is a m X m square diagonal matrix, and B
is a m X m matrix. Denote the columns of A and B by a; and b;, respectively,
and the diagonal elements of D by d;; that is:

T T d T T
A= @ ... dn|, D=| . . B=|b brn
1 1 d L L

m

Show that:
ADBT = " da;b]
i=1

using the rules of matrix multiplication, and expansion of the above sum.
Note that Eiil_):r is a matrix.

Imagine that we have a probability matrix P for a positive semidefinite, simple,
independent-edge random network. Section 4.5 showed that any PSD real matrix
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has a real square-root matrix. Since the network is simple, it is undirected, and
so P is symmetric.

If we let X = +/P be the square-root matrix for P, so that P = XX, P is
the probability matrix corresponding to an RDPG,(X) random network. For
our purposes, we will assume that the network has n nodes, and X has a latent
dimensionality of d which is less than the number of nodes. This implies that
the rank of X is at most d (the rank of the matrix, the number of linearly
independent columns, cannot exceed the number of columns).

Uses of the eigendecomposition for positive semidefinite probability matrices

These facts provide us with useful information about the eigendecomposition of
P. Specifically, we can factorize P into its eigenvalues and eigenvectors (called
the eigendecomposition of P, another example of a matrix decomposition from
Remark 4.5.1) and this provides us with latent position matrices for random
networks. Note that these results only apply with symmetric, PSD probability
matrices, where the matrix is guaranteed to decompose into a full set of eigenval-
ues and eigenvectors. Remember that the probability matrix for a network with
n nodes is square (n x n). If the network is simple, it is also symmetric (Sec-
tion 4.1). Relevant conclusions for such a probability matrix are summarized in
Concept 5.3.2.

Concept 5.3.2 The eigendecomposition of real symmetric matrices

Consider a real symmetric square matrix R. Diagonal symmetry in matrices
guarantees a full eigendecomposition. The eigendecomposition of R is:

n
R=QAQ" =) Ndd/,
=1

where A is the diagonal matrix of the ordered (in decreasing order) eigenvalues
A; of R, and @ is an orthogonal matrix whose columns g; are eigenvectors of R.
Throughout this book, we notate the eigendecomposition of a matrix R with
evd(R). A matrix W is orthogonal if it is square and WW'T = WTW = I,
the identity matrix.

If R is positive semidefinite and low-rank, the eigenvalues have another inter-
esting property, summarized in Concept 5.3.3.
For such a positive semidefinite and low-rank matrix R, notice that the evd is:

R=QAQ" =) N
=1

d n
=D NGG + D NGd
i=1

i=d/ 41
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Concept 5.3.3 The eigendecomposition of symmetric, low-rank matrices

Assume that R is an n x n real symmetric square matrix, the rank of R is
d < n, and R is positive semidefinite. If R = QAQ" is an evd of R, A will
have d’ positive eigenvalues, and the remaining n — d’ eigenvalues will be 0.
So:

MZ>2X> .2 >0= g1 =...= A,

d/
i=1

where we used the fact that A\; = 0 for the remaining n — d’ eigenvalues. For any
d>d:

d n
Y ONGT = Y NGd =0,
i=d'+1 i=d'+1

because both the left and right of the equals sign have the value of 0 (since the
eigenvalues are 0). If d > d’, then combining these facts gives:

d
R=> NG
i=1

dl
=) N -
=1

This fact leads to the observation noted in Concept 5.3.4.

Concept 5.3.4 evd for positive semidefinite, low-rank matrices

Assume that R is an n X n real symmetric square matrix, the rank of R is
d' < n, and R is positive semidefinite. Then if R = QAQ" is a evd for R, for
any d > d':

R=QuMQy,

where @)y is a matrix whose columns are the first d columns of @, and Ay is
a d X d square matrix whose diagonal entries are the first d diagonal entries
of A (the first d eigenvalues of R).

Remember that the RDPGs can characterize any random network with a PSD
probability matrix, as we learned in Concept 4.5.2. If the latent position matrix
X has d latent dimensions where d < n, then by definition, the rank of X is at
most d. Further, the rank of a matrix is equal to the rank of its transpose, so
the rank of X " is at most d as well.
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The rank of the product of two matrices is also upper-bounded by the ranks
of the individual matrices. For instance, if C' = AB, the rank of C' is:

rank(C') < min (rank(A), rank(B)). (5.1)

In our case, since P = XX ' and X and X" are rank at most d, P has a rank
of at most d.

Applying this fact in conjunction with Concept 5.3.4, we see that if the prob-
ability matrix P is positive semidefinite, has rank at most d, and is symmetric,
we obtain a characterization of latent positions of P where:

P =QaiMiQ]
= (QuVA)(QuvAa)" = XX, X =QuvAa (5.2)

where /A4 is the matrix whose entries are the square roots of the first d eigen-
values of P. Note that /Ay is real, because the top d eigenvalues are positive by
Concept 5.3.3, so their square root is defined.

We can put this entire procedure together using Algorithm 15, to obtain a
latent position matrix for the random network.

Algorithm 15: Finding latent positions for a low-rank, positive semidef-
inite probability matrix

Data: P an n x n positive semidefinite square probability matrix of rank
at most d.

Result: a latent position matrix for the random network.

Let @, A = evd(P) be the eigenvectors and eigenvalues of P.

=

T T A1
2 Let Qa= @1 ... qy|,andlet Ay = be the matrix
1 1 A

whose rows are the first d eigenvectors and the diagonal matrix whose
entries are the first d eigenvalues of P.

3 Compute /Ag to be the matrix whose entries are v/;, for all 4 from 1 to
d.

4 Let X = Qd\/ITd

5 return X

This gives us a method to compute a latent position matrix for the underlying
random network, which has n rows (the same as the number of nodes) and d
columns. We will call this process eigembed(P).

Limitations of eigembed for adjacency matrices

These results are helpful when we know the probability matrix ahead of time. In
fact, we even know how to determine whether the probability matrix is positive
semidefinite, using the procedure that we developed in Section 4.5, where we
simply checked whether all of the eigenvalues were non-negative.
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Unfortunately, in real data, we do not have the probability matrix; all we
have is the network itself, usually in the form of an adjacency matrix. It would
be helpful if we could simply plug the adjacency matrix into Algorithm 15, and
obtain a reasonable estimate of latent positions. Unfortunately, while this matrix
is real and symmetric, it is not necessarily positive semidefinite. This means that
we cannot necessarily decompose it in the same way and obtain real estimates
of latent position matrices.

Consider, for instance, the adjacency matrix for a 2 x 2 network:

0 1

=
From Section 4.5, for a 2 X 2 matrix to be positive semidefinite, its determinant
has to be non-negative: det(A) > 0. However, det(A) = —1, so this matrix is not

positive semidefinite.

This means that none of the logic leading to Algorithm 15 applies to adjacency
matrices. In this simple example, for instance, v/A; would not even be a real
matrix (it would be a complex matrix). In practice, the implications of this

trivial example are that we cannot always use the eigendecomposition to obtain
real estimates of latent position matrices from adjacency matrices.

The singular value decomposition allows us to estimate latent position
matrices

There is a closely related approach, the singular value decomposition, which we
can use to estimate latent position matrices regardless of the positive semidefi-
niteness of P. Concept 5.3.5 summarizes useful results about the singular value
decomposition.

Concept 5.3.5 The singular value decomposition of real matrices

If R is a real n X n square matrix of rank d, then the singular value decompo-
sition is the factorization:

n
R=USV' =) oiii;i],
=1

where ¥ is the diagonal matrix of the non-negative ordered singular values o;
of R, U is an orthogonal matrix whose n columns #; are the n-dimensional
left singular vectors of R, and V is an orthogonal matrix whose n columns vj;
are the n-dimensional right singular vectors of R. Throughout this book, we
notate the singular value decomposition of a matrix R with svd(R).

When a matrix is positive semidefinite and low-rank, such as the probability
matrix for an RDPG, we obtain a virtually equivalent result to Concept 5.3.4
(which was for the evd) for the svd. This observation is noted in Concept 5.3.6.
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Concept 5.3.6 svd of positive semidefinite, low-rank matrices

If R is positive semidefinite, then all left and right singular vectors u; = v;
for any o; > 0.

If R is a real matrix that is rank d’ < n and has the svd R = UXV ", R will
have d’ positive singular values, and the remaining n — d’ singular values will
be 0. So:

0'120’22...20'(1/>O:O'd/+1:...

Il
S
3

For such a positive semidefinite and low-rank matrix R, the svd is:

where we used the fact that @; = ; for the first d’ singular values. Notice further
that o; = 0 for the the remaining n — d’ singular values, so:

R = Zaluzu + Z 0u; v _'T

i=d'+1
Because Oul = 04,4, i] =0, this implies that:
R = Zalulu + Z 0; _'T,
i=d'+1
Therefore:
R=UXUT,

so the svd of a positive semidefinite and low-rank matrix R is also an evd of R.
We can take this a final step further, in Concept 5.3.7.

Together, when P is positive semidefinite, symmetric, has rank at most d, and
the svd is given by P = UXV T, we obtain a characterization of latent positions
of P using the left singular vectors and the singular values which is similar to
the result we obtained in Equation (5.2):

P=XX", X=Uz/%4 (5.3)

Here, /24 is the matrix whose entries are the square-roots of the first d singular
values of P, and Uy are the first d left singular vectors of P. However, there is a
subtle but impactful distinction to the result we obtained in Equation (5.2).
The left and right singular vector matrices U and V are by definition real
matrices for any real matrix P (no requirement of positive semidefiniteness).
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Concept 5.3.7 svd gives an evd for positive semidefinite, low-rank
matrices

If R is a positive semidefinite, low-rank matrix with rank d’ < n, and the svd
is given by R =UXV T, then R =UXU" is also an evd for R.
Therefore, by Concept 5.3.4, for any d > d':

R =Us2.U;]

where Uy is the n x d matrix of the top d left singular vectors of R, and ¥4
is the d x d diagonal matrix of the top d singular values of R.

Further, the singular values o; are always non-negative, which means that they
have a real square root. This means that any time we compute Ugy/%4 using the
svd of a real matrix, we will end up with a real result.

The procedure in Algorithm 15 only produced a real matrix when the input
matrix followed strict conditions that are not necessarily satisfied by adjacency
matrices; particularly, positive semidefiniteness. However, the procedure we just
developed can be applied to any real matrix and produce a real result, summa-
rized in Algorithm 16.

Algorithm 16: Estimating latent positions from adjacency matrices
(ase)

Data: A an adjacency matrix for a simple network.
d a target latent dimensionality.
Result: an estimate of a latent position matrix.
1 Let U, %, VT = svd(A) be the left singular vectors, the singular values,
and the right singular vectors of A.

T T o1
2 Let Uy = |(u; ... g|,andlet X4 = be the matrix
L L

0d
whose rows are the first d left singular vectors and the diagonal matrix
whose entries are the first d singular values of A.

3 Compute /X4 to be the matrix whose entries are /o3, for all ¢ from 1 to
d.

4 Let X = Ugv/Sa.

5 return X

This process is known as the Adjacency Spectral Embedding, or ase. It is
called “Adjacency” because unlike eigembed, it is able to operate on the adja-
cency matrix. “Spectral” means that its theoretical intuition relies on the eigen-
values/eigenvectors (the spectrum) of P. “Embedding” means that it finds a
mathematical structure contained in another (in this case a tabular structure
contained within the adjacency matrix, as explained in Remark 5.3.8). While
we will not obtain the convenient equality in Equation (5.3) that the adjacency
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Remark 5.3.8 ase tabularizes the adjacency matrix

One of the challenges we noted in Section 1.3 and reiterated in Section 5.2
was that network learning differs fundamentally from traditional machine
learning in that the data are not tabular. However, the embedding process
has changed this: we have tabularized the network into a real estimated latent
position matrix with n rows (one for each node) and d columns (one for each
latent dimension). This provides us with a tabular data structure, which we
can build upon later on to explore the nodes using more traditional machine
learning approaches.

matrix is exactly equal to XXT where X = ase(4), X is a real matrix that we
can study further.

Imagine we have an SBM,(Z, B) with 100 nodes, where the first 50 nodes
are in community 1, and the second 50 nodes are in community 2. The block
matrix will be homophilic, so by Section 4.5, the probability matrix is positive
semidefinite.

from graspologic.simulations import sbm
from graphbook_code import generate_sbm_pmtx, lpm_from_sbm
import numpy as np

n = 100
# construct the block matrix B as described above
B = np.array([[0.6, 0.1],

[0.1, 0.4]])

# sample a graph from SBM_{100}(tau, B)
np.random.seed(0)
A, zs = sbm(n=[n//2, n//2], p=B, return_labels=True)

lpm_from_sbm(zs, B)
generate_sbm_pmtx(zs, B)

o X
]

Figure 5.3.1 plots the latent positions, the probability matrix, and the network
sample. The latent positions are all equal for nodes from the same community.
In light of the results we explored in Section 4.7.8, we should expect this for an
SBM random network with a positive semidefinite block matrix.

In the SBM we are studying above, the latent position matrix has 2 latent
dimensions (one for each community). This is no coincidence, and the reason for
this is important to understand. This insight is provided in Concept 5.3.9.

Next, we use graspologic to compute the ase of our network sample. We know
that there are two communities, so we embed into two dimensions. This gives us
an estimate of the latent position matrix:

from graspologic.embed import AdjacencySpectralEmbed as ase
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Figure 5.3.1 (A) latent positions of the SBM random network, (B) the probability
matrix of the SBM random network, (C) a sampled adjacency matrix of the SBM
random network.

Concept 5.3.9 Number of latent dimensions for positive semidefinite
SBMs

From Concept 4.3.3, the one-hot encoding matrix C has n rows and K columns
(one for each community). For each community, all nodes have the same one-
hot encoding. That is, for all nodes i and j where z; = z; = k (nodes ¢ and j
are in the same community), ¢; = ¢; (they have the same one-hot encoding).
Further, the one-hot encodings for each community are distinct from one
another. That is, any nodes i and j' where z; # z;; (nodes ¢ and j' are in
different communities), ¢; # ¢+ (they have different one-hot encodings). This
means that C' has K unique rows and is therefore rank K.

Further, the positive semidefinite block matrix B will be full rank in gen-
eral. With P = CBC'", we can identify an upper bound for the rank of the
probability matrix using Equation (5.1):

rank(P) < min (rank(C),rank(B),rank(C’T)) .

By the above, rank(C) = K, rank(B) = K, and rank(C'T) = K, since matrices
have the same rank as their transposes. Therefore, rank(P) < K.

From Equation (5.3), P = XX where X = U/, and d is > the rank of
P. Therefore, for a positive semidefinite SBM with K communities, we use K
embedding dimensions, since the corresponding probability matrix P would
have a rank of at most K.

d = 2 # the latent dimensionality
# estimate the latent position matrix with ase
Xhat = ase(n_components=d, svd_seed=0).fit_transform(A)

Using this estimate of the latent position matrix, we can visualize an estimate
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of the probability matrix, as:

Let’s do this with numpy:

Phat = Xhat @ Xhat.transpose()

Figure 5.3.2(A) and (C) plots the latent position matrix and probability ma-
trix, and Figure 5.3.2(B) and (D) plots the estimated latent position matrix and
estimated probability matrix.

Comparing the latent positions in Figure 5.3.2(A) to the estimated latent
positions in Figure 5.3.2(B), we see that the values are different; however, a major
pattern remains the same. The estimated latent positions follow the general
trend we would anticipate for the SBM; particularly, all of the nodes in the first
community (the first 50 nodes) tend to have similar estimated latent positions,
and all of the nodes in the second community (the second 50 nodes) tend to
have similar estimated latent positions which are distinct from the first. In light
of Section 4.7.8, the true latent positions are identical for nodes in the same
community, so any estimated latent positions in this same community should be
close to each other. Likewise, the probability matrix in Figure 5.3.2(C) is similar
to the estimated probability matrix in Figure 5.3.2(D).

(©P=xxT (D) P=XXT
X (B X
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2
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Figure 5.3.2 (A) the true latent positions, (B) the estimated latent positions, (C) the
true probability matrix, (D) the estimated probability matrix.

Now, let’s consider what happens when we randomly reorder the nodes of the
network, just like we did in Section 4.3.5:

vtx_perm = np.random.choice(n, size=n, replace=False)

# reorder the adjacency matrix
Aperm = A[tuple([vtx_perm])] [:,vtx_perm]
# reorder the community assignment vector
zperm = np.array(zs)[vtx_perm]

# compute the estimated latent positions using the
# permuted adjacency matrix
Xhat_perm = ase(n_components=2).fit_transform(Aperm)

Our adjacency matrix looks like Figure 5.3.3(A), and the estimated latent
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Figure 5.3.3 (A) the permuted adjacency matrix, (B) the estimated latent positions
of the permuted adjacency matrix. (C) the pairs plot of the estimated latent
positions of the permuted adjacency matrix, and (D) the pairs plot shown with the
true community labels of the nodes.

positions look like Figure 5.3.3(B). It is not quite as obvious now that the two
communities of nodes in the network have similar latent positions looking only
at the heatmap of X in (B), because these communities have been dispersed
throughout the network.

The “pairs plot” for estimated latent positions
Figure 5.3.3(C) visualizes tabular data structures to explore the latent structure
with a pairs plot.

To study the pairs plot, we can call the pair plotting utility directly from
graspologic, which provides a wrapper for the pairplot function from seaborn
designed for latent position matrices:

from graspologic.plot import pairplot

pairplot(Xhat, title=r"Pairs plot of $\hat X$")

Figure 5.3.3(C) shows the pairs plot for the estimated latent positions. The
pairs plot is a d x d matrix of plots, where d is the total number of features of the
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matrix for which a pairs plot is being produced. It is called “pairs” plot because
it plots pairs of dimensions.

For each off-diagonal plot, the k" row and I*" column has the points (2, ;)
for each node in the network. It is a scatter plot for each node of the £** dimension
and the [*" dimension of the matrix being plotted. There are two distinct looking
“blobs” of point clouds in the pairs plot of X in Figure 5.3.3(C). These “blobs”
are known as latent clusters. They are latent because they are unknown to us at
the beginning of analysis, and clusters because they are groups of points. These
clusters provide evidence for latent community structure in the network. The
plot is symmetric, since the off-diagonal entries are mirror images of one another
(one will be dimension & against dimension /, and the off-diagonal entry will be
dimension [ against dimension k).

The diagonal elements of the pairs plot represent histograms or density esti-
mates (called Kernel Density Estimates, or KDEs) of the estimated latent po-
sitions for each dimension. If we do not include labels, we obtain histograms,
which are scaled bins showing the number of points for a given dimension which
fall into the indicated range. If we do pass in labels, we obtain density estimates,
where higher densities indicate that more points have latent position estimates
in that range. For instance, the top-left density estimate is the density estimate
of the first latent dimension for all nodes, the middle is a density estimate of the
second latent dimension for all nodes, and so on.

When the number of embedding dimensions is two, showing a full pairs plot
is redundant. In this case, we often simply show a scatter plot of dimension 1
against dimension 2.

Now, let’s see what happens to the pairs plot for X , which we pass in the
reordered community labels for the nodes:

fig = pairplot(Xhat_perm, labels=zperm, legend_name = "Community",
title=r"Pairs plot of $\widehat X$ with community annotation",
diag_kind="hist")

The resulting plot is shown in Figure 5.3.3(D). The two distinct clusters in
Figure 5.3.3(C) each correspond to a single community in the underlying SBM
random network. In fact, nodes of the same community tend to have estimated
latent positions that are close together. We say vectors are “close together” with
respect to the Euclidean distance, defined in Concept 5.3.10.

To evaluate this, we can compute the distance matrix of the estimated latent
positions, D. We will use the the unpermuted points to make the conclusion
more immediate. Each entry D,; corresponds to the distance d(i‘i, :?j) between
all pairs of estimated latent positions. We can compute the pairwise distance
matrix using scipy:

from scipy.spatial import distance_matrix

D = distance_matrix(Xhat, Xhat)
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Concept 5.3.10 Euclidean norms and the Euclidean distance

If # = (z;)L, is a d-dimensional real vector, the Euclidean norm (or, 2-norm)
is defined as:

Ify= (yi)le is a second d-dimensional real vector, the Fuclidean distance is
defined as:

A, g) = 1 = gl =/ (@ = §) T (T - §) =

Pairwise dist. matrix Figure 5.3.4 shows a plot of the pair-
wise distance matrix. Note that the pair-
wise distance matrices between the first
50 nodes (community 1, the upper-left
block of the pairwise distance matrix) and
the second 50 nodes (community 2, the
bottom-right block of the pairwise dis-
tance matrix) are relatively small, but the
pairwise distances between nodes from
community 1 and nodes from community

Node 2 (and vice-versa, in the upper-right and
Figure 5.3.4 The pairwise distance bottom-left blocks of the pairwise dis-
matrix between the latent position tance matrix) are relatively large. This
vectors of all pairs of nodes. will be useful to us in Section 6.1 when

we attempt to estimate underlying com-
munity structure from SBM random networks.

Why do we use ase?

The primary utility of ase is that it tabularizes an adjacency matrix into an
n X d real matrix, where d is the number of embedding dimensions.
There are additional reasons to use ase:

ase always recovers latent positions for the probability matriz, given the
latent dimensionality

Say we sample a network A from an RDPG,,(X) random network with a latent
position matrix X and latent dimensionality d. Using ase(P,d) gives us true
latent positions for the probability matrix, which we found in Equation (5.3).
We can embed our sample’s adjacency matrix A using ase in the exact same
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way that we embed the underlying probability matrix P to get estimates of the
latent positions. We can use ase even if A is not positive semidefinite, so we will
always obtain a set of real latent positions for adjacency matrices.

ase decouples dependencies of the random network

Studying a latent position matrix X is statistically equivalent to studying P
when P is a function of X, such as P = XX . Since X is far simpler than P (it
will usually have fewer columns, in practice), it will be easier to study.

Section 5.2 discussed the complexity of the dependency structure for a random
network A. This is because the inherent coupling of edges to nodes creates at
least (g) possible dependencies.

The probability matrix P defines the behavior of the random network A.
When P is positive semidefinite and P = XX for a set of latent positions,
the dependency structure encoded by P is also encoded by X. This means that
the latent positions, which often have a number of columns much less than the
number of nodes, encode the complicated dependency structure of the underlying
network.

Estimated latent positions from ase are directly related to latent positions
of random networks

Our discussion of ase has focused on the spectral embedding of P and its latent
positions. In practice, we only have A, not P.

However, when A is a sample from a random network A with a positive
semidefinite probability matrix P, the estimates of latent positions X closely
approximate the true latent positions X of A as the number of nodes in the
network increases [5; 6; 7] (up to rotations and reflections, which is the focus
of Section 5.5.1). Similarly, p approximates P, with limit theorems showing
convergence as the node count increases. Appendix B.2.1 details the theoretical
advantages of ase.

These advantages do not apply to sparse networks, which we address in Section
6.2.

Results hold for non positive semidefinite probability matrices
When we view a network as a sample of a random network with a positive
semidefinite probability matrix, studying X will be a good surrogate to use in
place of studying X (since we cannot obtain X from a network adjacency matrix
A). This is powerful because the set of IER, (P) random networks where the
probability matrix is positive semidefinite include many complicated structures,
such as those shown in Section 4.5, and extensions of these structures to more
than two communities.

In fact, ase remains valid even outside of positive semidefinite probability
matrices, as briefly discussed in Section 5.7.3. We explain ase using positive
semidefinite probability matrices because this approach is intuitive and requires
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only college-level linear algebra. The general case requires complex analysis and

advanced probability theory.
However, the applicability of these results outside of the positive semidefinite

context indicates that they can be applied broadly and robustly.
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5.4 Laplacian spectral embedding

Section 5.3 introduced the Adjacency Spectral Embedding, ase, which finds em-

beddings through a spectral decomposition of the adjacency matrix. The Lapla-

cian, introduced in Section 3.4.4, offers an alternative matrix representation of

networks. This section explores Laplacian Spectral Embedding (1se), a method

for creating embeddings from the Laplacian rather than the adjacency matrix.
We cover the following key concepts:

The motivation for using the Laplacian matrix instead of the adjacency matrix,
Different types of Laplacian matrices: standard, normalized, and regularized,
The process of Laplacian Spectral Embedding,

I R

Advantages of 1se, particularly for degree-corrected stochastic block models,
and
5 Comparisons between ASE and lse in various network scenarios.

1se provides a robust network embedding method less sensitive to degree
heterogeneity than ase. This technique captures global structure and creates
smooth, continuous embeddings, making it particularly useful for networks with
varying node degrees.

Section 5.3 showed how adjacency spectral embedding, or ase, estimates latent
positions (up to an orthogonal transformation) for positive semidefinite proba-
bility matrices. For homophilic SBM,,(Z, B) random networks, estimated latent
positions for nodes in the same community tend to be similar.

This similarity aligns with our observation in Section 4.7.8 that the true latent
positions for nodes of the same community are identical. As noted in Section
5.3.3, the estimated latent position matrix produced by ase reasonably estimates
the underlying network’s latent positions, and will do better the more nodes there
are. Therefore, the estimated latent positions for nodes in the same community
will follow this pattern, and be very similar in large networks (see Appendix
B.2).

However, SBM,,(Z, B) random networks poorly represent many real-world net-
works. These models assume that the connection probability for a pair of nodes
7 and j depends only on their community assignments z; and z;, as given by the
block matrix entry b.,.. in Section 4.3. This assumption ignores the individual
node characteristics, such as node popularity.

541 DCSBM,,(Z,0, B) random networks

Section 4.7 introduced the degree-corrected SBM random networks, or DCSBM,,(Z, 6, B).
As noted in Section 4.7.8, the latent positions for nodes of the same community
in a DCSBM,(Z, 5, B) random network are identical up to a rescaling by the
nodes’ degree-correction factors ¢; and 6;.
Using notation from Section 4.7.8, the latent position vectors for a DCSBM,,(Z, 5, B)
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random network are:
z] = 6,6/ VB

where ¢ is a column-vector corresponding to the it” row of the one-hot-encoding
matrix of the community assignment vector z. In this vector, ¢;x = 1 when the
node is in k, and 0 otherwise. Geometrically, 6; “rescales” the vector E’I\/E,

where the vector ¢

VB is the same for the entire community.
We can make this more concrete with an example. We will use a DCSBM,,(Z,0, B)

similar to the one in Section 4.7, but with more extreme degree-correction factors

0:

import numpy as np
from graphbook_code import dcsbm

nk = 150

z = np.repeat([1,2], nk)

B = np.array([[0.6, 0.2], [0.2, 0.4]])

theta = np.tile(6**np.linspace(0, -1, nk), 2)
np.random.seed(0)

A, P = dcsbm(z, theta, B, return_prob=True)

Next, we compute the ase of A, using the strategy from Section 5.3, and we
compute a pairwise distance matrix:

from graspologic.embed import AdjacencySpectralEmbed as ase
from scipy.spatial import distance_matrix

d = 2 # the latent dimensionality

# estimate the latent position matrix with ase

Xhat = ase(n_components=d, svd_seed=0).fit_transform(A)
# compute the distance matrix

D = distance_matrix(Xhat, Xhat)

Figure 5.4.1(A) shows a scatter plot of the estimated latent positions, anno-
tated with the community of each node. Scatter plots of estimated latent posi-
tions are illustrated on square axes, to highlight the structure and shape of the
scattered points. The estimated latent positions appear to be “elongated” blobs
for a given community. This means that the blobs are elliptical, where the red
blob elongates towards the upper-right, and the blue blob elongates towards the
lower-right in our figure.

We can understand this because the true latent positions for each node ¢ are
given by z; = Oi\/EE;-T, where ¢; is a vector whose value ¢;, = 11if z; = k, and 0
otherwise. In this sense, the true latent positions are “stretched” by the degree-
correction factors. Using an informal transitivity argument, the estimated latent
positions are estimating the true latent positions which are stretched along an
axis, so the estimated latent positions will also end up stretched along an axis.

The distance matrix in Figure 5.4.1(B) reveals a pattern. While nodes in
the same community generally have similar distances, many nodes have smaller
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Figure 5.4.1 (A) the estimated latent positions for a network sample of a
DCSBM,(Z,0, B) random network, where color indicates community (gray=
community 1, black=community 2), and (B) the pairwise distance matrix.

between-community distances than within-community distances. Dark gray bands
in the distance matrix in the upper-left and lower-right blocks of the distance
matrix show this, as well as light gray bands in the upper-right and lower-left
blocks of the distance matrix.

Next, let’s divide each latent position by the underlying degree-correction fac-
tor. The rows of Xhat_rescaled consist of the entries %, so we are “unstretching”
each latent position by its degree-correction factor:

Xhat_rescaled = Xhat / thetal:,Nonel
D_rescaled = distance_matrix(Xhat_rescaled, Xhat_rescaled)

Figure 5.4.1(C) shows these rescaled latent positions, and Figure 5.4.1(D) shows
the pairwise distance matrix. Notice that rescaling by the degree-correction fac-
tors 6; eliminated the “stretching” effect in the estimated latent positions. Fur-
ther, the distances are now virtually devoid of the cross-community similarity:
we are back to nodes of the same community having generally smaller distances
that pairs of nodes in opposite communities.

This suggests that the degree-correction vector g can be used in conjunction
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with ase to recover rescaled latent positions where, after rescaling, the rescaled
latent positions for nodes in the same community tend to be close together in
Euclidean distance.

In practice, we do not have the degree-correction vector. It was a parameter
of the random network, for which we only have a sample A.

The Laplacian Spectral Embedding

Recall from Section 4.5 that if P is positive semidefinite, ase(P) gives us two
matrices Uy and X4, where Y = Ug+/Y4 is a latent position matrix for the random
network:

P=YY".

This procedure also works for functions of the probability matrix which pre-
serve positive semidefiniteness. An interesting example would be multiplying by
diagonal matrices that only take positive real values. If a matrix R is positive
semidefinite, and a matrix D is diagonal with only positive values, then both
DR and RD are also positive semidefinite.

The population network laplacian
In Section 4.6.4, we introduced the population network Laplacian £. We defined
it as:

L=D :PD" 3.

The diagonal matrix D is the expected degree matrix, and the diagonal entries
E[d;] are the expected degrees of each of the nodes in the network. Assuming
that every node ¢ has at least one other node j where p;; > 0, the diagonal
entries are positive, and the inverse square-root matrix Dz is just the diagonal

\/ﬁ. Section 3.4.3 provided useful intuition transferable

matrix with entries

to these matrices.

When P is a positive semidefinite matrix, its positive semidefiniteness is pre-
served under multiplications (pre or post) with diagonal matrices whose diagonal
only contains positive values. This means that if P is positive semidefinite, D:pP
is positive semidefinite. Since D 2P is positive semidefinite, we can also post-
multiply by another diagonal matrix D2 and end up with a positive semidefinite
matrix, so L is positive semidefinite too.

Likewise, when P is a rank d matrix, its rank is preserved under multiplications
(pre or post) with diagonal matrices whose diagonal only contains positive values.
By a similar argument, this means that if P is rank d, then £ is rank d.

This population network Laplacian £ has a special feature: it is normalized
by the expected degrees of the nodes. We can see this by writing out the multi-
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plication in Equation (4.16):

£l __DPin
i B AN )

L= i :
_Pm Prn
VE[di]\Ed,] Eldn]
So, the population network Laplacian £ has entries £;; = ——2%——. This looks

VE[di]\/E[d;]

very similar to the DAD Laplacian from Section 3.4.4, except instead of adjacencies
and node degrees, we have probabilities (expected values of the adjacency matrix
entries, Section 4.6) and expected node degrees.

Estimating the population network laplacian
The qualifications that we needed in Remarks 5.3.2 and Remarks 5.3.5 about the
positive semidefiniteness of P and its rank d < n allowed us to conclude that:

P=YY',

where P was the positive semidefinite probability matrix. We could compute such
a Y for the probability matrix using either the eigendecomposition in Algorithm
15 or the singular value decomposition in Algorithm 16, and obtain latent posi-
tions that were equal to the true latent positions for an underlying RDPG,,(X)
random network (up to an orthogonal transformation, due to non-identifiability,
the focus of Section 5.5.2).

We also learned above that the population network Laplacian £ is both positive
semidefinite and has a rank d < n, so:

L=XXT,

where X is an n x d real matrix, and is computed from the eigenvectors,/values or
the singular vectors/values using Algorithms 15 and 16 (with the same caveats).
This X is similarly referred to as the latent positions. In this book, we will refer
to this X as latent positions of the population network Laplacian, and it will
always be clear from context whether it is the X computed from the adjacency
matrix or the Laplacian.

Samples of networks A are not always positive semidefinite, discussed in 5.3.
Similarly, even if L is positive semidefinite and rank d, the DAD laplacian L will
not necessarily be positive semidefinite. Therefore, the procedure in Algorithm 15
is not guaranteed to produce a real result. However, the procedure in Algorithm
16 will still at least provide us with a real answer.

When we compute the DAD laplacian and then run the spectral decomposition
approach, we term the strategy Laplacian Spectral Embedding, or lse, which is
described in Algorithm 17.

We can now use lse to produce estimates of the latent positions for the popu-
lation network laplacian £, which is similar to the probability matrix (but regu-
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Algorithm 17: Estimating latent positions from laplacian matrices (1se)

Data: A an adjacency matrix for a simple network.
d a target latent dimensionality.
T an optional regularizer.
Result: an estimate of a latent position matrix for the population
network laplacian.
1 Compute the degree matrix D of the network A.
2 Regularize the degree matrix with D, = D + 71,,.

11

3 Compute the DAD laplacian, L = D, 2 AD; 2.

4 Let U, %, V" = svd(L) be the left singular vectors, the singular values,
and the right singular vectors of L.

1 1 o1
5 Let Uy = (U1 ... ugq|,andlet X4 = be the matrix
Il Il o

whose rows are the first d left singular vectors and the diagonal matrix
whose entries are the first d singular values of A.

6 Compute /X4 to be the matrix whose entries are /o3, for all ¢ from 1 to
d.

7 Let X = Ugv/Sy.

8 return X

larized by the node degrees). Will this help us fix the degree-correction stretching
problem that we noticed in Figure 5.4.17 Let’s find out.

We can perform 1lse using graspologic:

from graspologic.embed import LaplacianSpectralEmbed as lse

d = 2 # embed into two dimensions
Xhat_lapl = lse(n_components=d, svd_seed=0).fit_transform(A)
D_lapl = distance_matrix(Xhat_lapl, Xhat_lapl)

We show the latent positions and the distance matrix estimated through ase
and 1lse in Figure 5.4.2. Notice that when we tabularize A through ase in Figure
5.4.2(A), the estimated latent positions tend to be “elongated” along an axis as
they were in Figure 5.4.1. This makes sense because the true latent positions are
also “elongated” along an axis, and the amount of elongation is determined by
the degree-correction factors (6;). 1se eliminates some of this “elongating” effect.
The “blobs” of nodes in the same community tend to be more similar in Figure
5.4.2(C). This is reflected in the distance matrix of Figure 5.4.2(D), where nodes
in the same community tend to have smaller distances than nodes in different
communities. This was not the case in Figure 5.4.2(B), where many nodes are
more similar to nodes in the opposite community than in the same community.
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Figure 5.4.2 (A) the estimated latent positions, (B) the pairwise distances of
estimated latent positions, (C) the estimated latent positions from lse, (D) the
pairwise distances of the estimated latent positions from lse.

When do we use 1se over ase, and vice-versa?

The primary difference between lse and ase is illustrated in Figure 5.4.2. ase
will capture estimates of latent positions of the adjacency matrix, whereas lse
will capture estimates of latent positions of the population network Laplacian.
Loosely, this has the consequence that lse will produce “scaled” estimates of
latent positions that have been adjusted for degree differences in the underlying
network.

Often, we will want to learn about latent structures that are not related to the
degrees of the nodes in the network. In such cases, the scaled estimates produced
by lse will often make latent structure more obvious both visually (in heatmaps
and pairs plots) and algorithmically (through the use of downstream models to
identify latent structure from estimated latent positions).

An initial visualization to determine whether ase or lse is appropriate is the
node degree histogram, which shows the degrees for each node in the network.
Let’s investigate this for the DCSBM,,(Z, 5, B) sample we generated in Section
5.4.1:
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import seaborn as sns
import pandas as pd

# compute the degrees for each node, using the
# row-sums of the network
degrees = A.sum(axis = 0)

# plot the degree histogram
df = pd.DataFrame({"Node degree" : degrees, "Community": z})
sns.histplot(data=df, x="Node degree", bins=20, color="black")

The key feature that we look for is whether the degree histogram is right-skewed
or heavy tailed. Remember from Section 3.6 that a distribution is right-skewed if
it “tails oft” towards the relatively large values in the positive direction. In these
situations, the node degrees are bounded below by zero (the networks are sim-
ple, so all the adjacencies a;; are either 0 or 1, and the node degrees are sums of
adjacencies). This is generally referred to as a “heavy tailed degree distribution”,
since it can only “tail off” to the right. In Figure 5.4.3(A), the degree distribu-
tion for nodes across both communities tails off to the right. DCSBM,,(Z, 6_’; B)
random networks where the degree-correction factors 8; tend to have mostly rela-
tively small values but some relatively large values will tend to yield heavy tailed
degree distributions.

This contrasts with SBM,(Z, B) random networks and DCSBM,,(Z,0, B)
random networks where the degree-correction factor #; is constant for all nodes
in the same community, which will tend to have symmetric degree distributions
for each community.

Asbm = sbm([nk, nk], B)

# row-sums of the network
degrees_sbm = Asbm.sum(axis = 0)

The histogram for an SBM,, (7, B) random network is shown in Figure 5.4.3(B).
Note that the degree histogram appears to have two “peaks”, and neither peak
is particularly heavy tailed (they both look fairly mirrored). This plot provides
evidence that the degree-distribution is not heavy tailed.

Heavy-tailed degree distributions arise frequently in real data [8; 9; 10]. This
pattern is particularly apparent in networks that share features of core-periphery
networks from Section 4.5, where a selection of nodes (the core) have much
higher node degrees than the nodes outside of the core (the periphery) [10]. This
pattern can materialize concurrently with other patterns, such as the example
that we saw above with a DCSBM, (%, 5, B) network with heterogeneous degree
correction factors and homophilic networks.

When we can identify a heavy-tailed degree distribution from visualizations
such as the node degree histogram, 1se may be advantageous to use over ase.
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Figure 5.4.3 (A) the degree histogram for a DCSBM,(Z, 5, B) network, where the
degree-correction factors are not equal for the nodes in the network. (B) the degree
histogram for a SBM,(Z, B) network.

Multiple network representation learning

When we explored statistical models of networks in Chapter 4, we found it
desirable to have strategies for multiple-network scenarios in Section 4.9. We
now return to this situation in the new context of representation learning.

We cover the following:

Motivations for multiple network analysis,

The concept of joint matrices for multiple networks,

Parallel embedding techniques, including Omnibus Embedding (omni),

Fused embedding techniques, including Multiple Adjacency Spectral Embed-
ding (mase),

N

5 Comparisons between omni and mase, discussing their strengths and use cases,
and
6 The challenge of alignment in multiple network settings.

We assume knowledge of COSIE (Section 4.9.2) and joint random dot product
graphs (Section 4.9.1). We will return a third time to this scenario in the context
of applications in Chapter 9.

When we have multiple networks, there are a variety of questions that we
might want to ask. In this section, we’ll focus on a few of these questions, and
provide structured ways to learn representations of many networks that allow us
to answer downstream questions. The COSIE,, » (S, RW ..., R(M)) random
networks in Section 4.9 will be critical for understanding many of the techniques
that we cover in this section.

We will use a running example of brain networks, which we describe in Remark
5.5.1.

Let’s generate working examples.

from graspologic.simulations import sbm
import numpy as np
from sklearn.preprocessing import LabelEncoder
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Box 5.5.1 Alien and human brain networks

We have been given the unique task of learning about a group of 4 recently-
discovered human-like alien life forms. When studying their brains (in a non-
invasive way ), we make the remarkable discovery that aliens and humans have
brain areas that do similar things across species. These n = 100 brain areas
will be the nodes of the network.

For both aliens and humans, there are two hemispheres (communities) in
the brain. However, while human brains tend to have a homophilic structure
(with more connections between nodes in the same hemisphere of the brain),
alien brains tend to have a core-periphery structure, where the nodes in the
left hemisphere (the core) are much more connected than nodes in the right
hemisphere (the periphery).

For this reason, we want to be able to obtain suitable representations of these
networks to learn about the differences between human and alien brains.

n = 100 # the number of nodes

M = 8 # the total number of networks

# human brains have homophilic block structure
Bhuman = np.array([[0.2, 0.02], [0.02, 0.2]])

# alien brains have a core-periphery block structure
Balien = np.array([[0.4, 0.2], [0.2, 0.1]])

# set seed for reproducibility
np.random.seed(0)

# generate 4 human and 4 alien brain networks

A_humans = [sbm([n // 2, n // 2], Bhuman) for i in range(M // 2)]
A_aliens = [sbm([n // 2, n // 2], Balien) for i in range(M // 2)]
# concatenate list of human and alien networks

networks = A_humans + A_aliens

# 1 = left hemisphere, 2 = right hemisphere for node communities
le = LabelEncoder()

labels = np.repeat(["L", "R"1, n//2)

zs = le.fit_transform(labels) + 1

The collection networks is a list of adjacency matrices where the first 4 entries
correspond to the human brains, and the second 4 entries correspond to the alien
brains. labels corresponds to community labels for the nodes of the networks,
where L is a place-holder for “Left hemisphere”, and R is a placeholder for “Right
hemisphere”. We also fit a LabelEncoder to our labels, allowing us to map them
to 0 and 1 in the form of the array zs. Having dummy placeholders for discrete
community labels (such as zs) is often handy when we want to do things like
run one-hot encodings, and more informative node labels (such as labels) are
handy for when we want to visualize and plot. We can use our fit LabelEncoder,
le, to easily convert between labels and their numerical mapping.
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Figure 5.5.1 (A) the human brain networks, and (B) the alien brain networks.

Figure 5.5.1 plots the human and alien brain networks, with nodes are ordered
by the node hemisphere (the “community”). Whereas the human brain networks
tend to have more connections within the same hemisphere (the on-diagonal
blocks), the alien brain networks tend to have high amounts of connections be-
tween nodes in the first community, and fewer connections between nodes in
the second community. Our goal is to characterize the differences in network
structure between humans and aliens.

In Section 5.3 and 5.4, we learned two approaches for embedding networks
with positive semidefinite probability matrices, ase and 1se.

When we have multiple networks, we could start by tabularizing them using
embedding techniques and then comparing these tabular representations across
the networks. However, this approach would end up being misleading due to
non-identifiability.

The non-identifiability problem and network embeddings

Assume that we have a network A which is RDPG,(X), where X is the latent
position matrix for A, and P = XX is its probability matrix. In this case, X
is the parameter for the RDPG random network.

In many univariate distributions, the parameters uniquely define a distribu-
tion. If x is a Gaussian random variable with two parameters, mean p and
variance o, any random variable with a different mean or a different variance
has a different distribution. If x is a coin that lands on heads with probability
0.5 (the parameter for the Bernoulli distribution), its behavior is distinct from a
coin which lands on heads with probability 0.3.

In this sense, it might be surprising to know that there are infinitely many
potential latent position matrices Y where the resulting probability matrix would
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be equal to P, even though X # Y. These latent position matrices consist
of all possible rotations around and reflections across the origin of X. This is
problematic, because P defines the distribution of A.

In Concept 5.3.2, we learned that an orthogonal matrix W in d dimensions
is any d x d matrix where WWT = WTW = I, the d-dimensional identity
matrix. Imagine that Y is another latent position matrix, but is an orthogonal
transformation of X. That means that there is an orthogonal matrix W where
Y = XW. The probability matrix for the RDPG,(Y') network is:

P=vY"
= XW (XW)",

because Y = XW. Applying the definition of a transpose, we get:

P=Xxww'TxT’
= XI,XT,

because W is an orthogonal matrix, so WTW =wwT = I, (where I is the
rank-d identity matrix). Finally, since XI; = X:

P=XXT.

This leads to the conclusion in Concept 5.5.2.

Concept 5.5.2 Non-identifiability of RDPG random networks

If Y and X are latent position matrices with d latent dimensions, W is a
d-dimensional orthogonal matrix, and Y = XW (Y is an orthogonal transfor-
mation of X), then RDPG,,(X) random networks and RDPG,,(Y) random
networks have the same probability matrix. There is no reason that either
of these latent position matrices would be better than the another, as they
produce the same probability matrix.

When dealing with single network questions, this is not much of a problem,
as our main interest in single network questions is typically about latent
positions of nodes relative one another. However, when dealing with multiple
network questions, this will be very impactful because we will need to take care
to ensure that the latent positions are rotationally aligned between different
networks.

We can also think about this geometrically, with the understanding that or-
thogonal matrices in two dimensions are either rotations (of the points in 2-d
space) or rotations combined with reflections (e.g., across axes).

First we will think of the orthogonal matrix as a rotation. Imagine that we
have a simple latent position matrix X with two nodes and two latent dimensions
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When we compute the probability matrix with P = XX T, we get:

TOT

o A
P:XXT:h %J 7 @
2 1 L

Thinking of each latent position #; as a point in two dimensions, we see that
pij = & F;. So, the matrix P is the set of dot-products between the latent
positions for all pairs of nodes. The dot product of two Euclidean vectors Z; and
Z; is equivalent to:

—

i - Tj = || Tll[|Z5] cos F(Zi, T5)

where J(Z;, Z;) is the angle between &; and &;. If we apply a rotation matrix W
to X, we get:

Foa A
Y_XW—h B JW
o [FoEwW A
TE#HwW A

so we could write 7] = & W: the rotated latent positions Y are all rotated by
the same rotation matrix W.

When we rotate both vectors by the same angle, which is what happens when
we apply the same rotation W to each of the latent positions, neither their
lengths nor their angles with respect to each other change, so their dot product
remains constant. Therefore, any rotation of a latent position matrix produces
a network with the same probability matrix.

We can also think about the case where the matrix W’ is a reflection of an
axis across the origin. For instance, consider the matrix W’ where:

When pre-multiplied by a latent position matrix X with two latent dimensions,
W’ has the effect of “reflecting” the first latent dimension across the origin:
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Applying the reflection W to X gives:

—T11  T12
XW' =
—ZTnl Tn2
Therefore, the probability matrix is:
—T11  T12
XW/(XW/)T — —T11 L] —Tnl — XXT7
12 N ITn2
—Inl Tn2

because when computing the element-wise products of rows of X W’ with columns
of (XW’)T | the negatives cancel.

In the general case (more than two latent dimensions), the concept of ro-
tational and reflectional non-identifiability is generalized as non-identifiable up
to an orthogonal transformation. Exercise 5.5.3 works through illustrating that
orthogonal transformations are distance preserving.

Exercise 5.5.3 Orthogonal matrices are distance preserving

Assume X is a latent position matrix with n nodes in d dimensions, and W
is a d x d orthogonal matrix. Further, assume that Y = XW is an orthogonal
transform of X. Using the definition of the Euclidean distance, the definition
of an orthogonal matrix, and the fact that ; = W T Z;, show that for any two
nodes ¢ and j:

1% — Zll2 = 17 — 3l
or that orthogonal transformations preserve distances between latent posi-

tions. Formally, a distance-preserving transformation is known as an isome-
try.

Why are rotations and reflections problematic?

As we mentioned in Section 5.5.2, the latent positions are non-identifiable, in that
for an RDPG, (X) with latent positions X, an RDPG,(XW) where W is a d-
dimensional orthogonal matrix has the same probability matrix. The estimated
latent positions X share this issue. Let’s estimate the latent positions for a single
network from our example networks:

from graspologic.embed import AdjacencySpectralEmbed as ase

# embed the first network
Xhat = ase(n_components=2, svd_seed=0).fit_transform(A_humans[0])

We visualize the estimated latent positions as a scatter plot (a plot of X similar
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to the pairs plot you learned in Section 5.3) in Figure 5.5.2(A). Next, we apply
a rotation matrix W to X; in this case, the rotation matrix has the effect of a
90° clockwise rotation:

# a rotation by 90 degrees
W = np.array([[0, -1], [1, 0]])
Yhat = Xhat @ W

The points after rotation are illustrated in Figure 5.5.2(B), with the points
before rotation shown in light gray. The rotation clockwise follows the arrows.
Notice that the two “blobs” are rotated clockwise by 90° around the origin.

Despite the fact that the latent positions of X and Y are different (they are
rotated), they produce the same probability matrix:

# check that probability matrix is the same
np.allclose(Yhat @ Yhat.transpose(), Xhat @ Xhat.transpose())
# returns True

We can similarly reflect across the first latent dimension:

# a reflection across first latent dimension

Wp = np.array([[-1, @], [0, 1]])

Zhat = Xhat @ Wp

# check that the probability matrix is the same

# check that probability matrix is the same

np.allclose(Zhat @ Zhat.transpose(), Xhat @ Xhat.transpose())
# returns True

Figure 5.5.2(C) illustrates the points after reflection, with the points before re-
flection s