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Preface

The network machine learning earthquake

In the early 1990s, a Stanford University Computer Science PhD student named
Larry Page turned his attention to the the world wide web.

With colleague Sergey Brin, Page conceptualized the complex web of docu-
ment links on the web as a large network, where a link from one page allows
navigation to another. Page and Brin theorized that the number of incoming
links to a document indicated its “popularity”, which they called the page rank.
The pair developed a query system to parse sentences into keywords and an in-
dexing system mapping keywords to high-ranking pages. After publishing with
other computer scientists, Page and Brin developed the Google search Engine
prototype in 1998 and founded Google, Inc. shortly after.

Networks have become a dominant data structure for understanding many
everyday concepts. Social networks ushered in a new era of human intercon-
nectedness, led by multi-billion dollar corporations such as Facebook, X (Twit-
ter), Linkedin, Instagram, Douyin (TikTok), and WeChat. The global economy
forms an interconnected network of companies and countries engaged in daily
trade. The Earth’s food chain constitutes an ecological network where plants
and animals compete for survival. Neurons of the brain form a web of axons and
synapses, uniquely producing an individual identity.

Network Machine learning in your projects

Network science has advanced rapidly, providing new strategies for deriving in-
sights about the world. Its researchers can expose shadowy financial networks
and corporate fraud, or create frameworks for measuring healthcare teamwork.
Ecologists can model relationships between animal species, while neuroscientists
can map neuronal communities in the brain. Data scientists can view diverse
company data – from user logs to financial records to sensor data – as networks,
revealing hidden insights.

Whatever your motivation, exploring and exploiting networks for analysis is a
worthy endeavor.
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Objective and approach

This book assumes minimal prior knowledge of network analysis. Its goal is
to equip readers with the concepts, the intuitions, and tools needed to apply
statistical learning and data science techniques to network data, as illustrated in
Figure 0.0.1.

Whoever you are, we believe you will find value in this book.

Figure 0.0.1 Broadly, we think that the techniques developed and described in this
book fall somewhere in the middle of this Venn Diagram.

We will cover the fundamentals of network machine learning, focusing on de-
veloping intuition through both theory and relevant python code. By the end of
this book, readers will be able to utilize efficient, easy-to-use tools for network an-
laysis. The text introduces a range of new techniques, including representations,
theory, and algorithms for networks.

We will demonstrate these concepts using production-ready python frame-
works:

1 numpy [1] and scipy [2] provide scientific computing capabilities, including ar-
ray objects for computational network representation and linear algebra tech-
niques.

2 scikit-learn [3] offers efficient implementations of many machine learning
algorithms, serving as an excellent starting point for network analysis.

3 graspologic [4] and networkx [5] are open-source Python packages that provide
utilities and algorithms for network-valued data analysis.

Our approach emphasizes intuitive understanding of networks through con-
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crete working examples and foundational theory. While the book can be read
without a computer, we strongly encourage readers to experiment with the code
examples.

Many languages and software packages support network analysis, but time
constraints prevent us from covering all of them. matlab offers numerous built-in
utilities, while R’s igraph package [6] provides functionality complementary to
the techniques we discuss.

Readers unfamiliar with python versed in other languages should not find this a
significant obstacle. Working through the examples provides ample opportunity
to acquire new programming skills.

Prerequisites

Network science is fundamentally rooted in linear algebra. We expect readers
to have some familiarity with vectors, matrices, and basic operations on these
objects such as vector/matrix multiplication and addition.

A background in machine learning will enhance understanding of the book’s
concepts. Much of the content relates to statistical learning, which integrates
statistics with machine learning. We assume basic familiarity with probability
and statistics, such as coin flip models (Bernoulli trials) and expected values of
random quantities (means). The main content of the book uses formal mathemat-
ics as a supplementary tool to develop intuition (rather than rigorous proofing).

Some programming experience is beneficial, as we use python. Those with
limited Python or math background need not worry – we provide resources to
get started.

We also employ jupyter, a useful and easy to learn tool. We offer resources for
those unfamiliar with Python’s scientific libraries, and provide a pre-configured
programming environment via docker which is version controlled for all packages
in the text [7].

For readers interested in the underlying mechanics, appendices cover the the-
oretical foundations of the techniques discussed. These sections assume college-
level understanding of calculus, linear algebra, probability, and statistics.

Roadmap

This book is organized into four parts.

Part I Foundations introduces network machine learning and demonstrates solv-
ing a complete problem. It covers:
– What a network is and sources of data,
– Motivations for studying networks,
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– Examples of ways you could apply network machine learning to your
own projects,

– An overview of the types of problems network machine learning is good
at dealing with, and

– Exploring a real network machine learning dataset.
Part II Representations explores network conceptualization and representation

methods. Topics include:
– Properties of different network types,
– Preparation of network data for analysis,
– How to conceptualize networks with statistical models, and the utility

of this point of view,
– Network representation methods and their utility,
– Transforming networks into tabular forms, both individual networks

and groups of networks, and
– How to incorporate additional information (attributions) to networks.

Part III Applications is about exploiting the representations from Part II for down-
stream learning tasks. It covers the following topics:
– Figuring out if communities in networks are different from each other,
– Selecting reasonable statistical models to represent the data,
– Finding interesting nodes, edges, or communities,
– Finding anomolous time points in networks which are evolving over

time,
– Handling new data after model training,
– How hypothesis testing works with networks,
– Figuring out which nodes are the most similar in a pair of networks,

and
– diffusion methods and graph neural networks.

The appendices provide mathematical background for curious readers. These
sections present technical details omitted from the main text.

Other resources

Numerous resources compliment the content of this book.
For readers new to machine learning, we recommend Aurélian Géron’s excellent

work [8] as a starting point. Key ideas to familiarize oneself with include types of
machine learning problems, common algorithms and techniques (e.g., K-Means,
testing, validation), and basic machine learning data structures.

To our knowledge, this is the first book to explicitly focus on network ma-
chine learning for single and multiple network problems with a programming
component. For broader exposure to networks, we recommend:

1 “Network Science” [9], an accessible introduction to network science.
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2 “Networks” [10], an overview of the mathematics of networks and network
models.

3 “Python for Graph and Network Analysis”[11], Network analysis techniques in
Python.

4 “Network Analysis” [12], Network data structures and summary statistics.
5 “A User’s Guide to Network Analysis in R” [13], hands-on network analytics in

R.
6 “Statistical Analysis of Network Data” [14], Statistical models and methods
for network science.

Readers needing a linear algebra refresher may find the first two lectures of
“Numerical Linear Algebra” [15] helpful for later Chapters of the book. Basic
statistics and statistical inference knowledge is also beneficial; the ability to
understand the top portion of the Wikipedia summaries of “random variable”,
“normal distribution”, and “bernoulli distribution” should suffice.

For a more comprehensive statistical overview, we recommend “Statistical In-
ference” [16] or “Mathematical Statistics” [17]. An explicit introduction to sta-
tistical learning, such as “An Introduction to Statistical Learning” [18], may also
prove valuable.

Conventions used in this book

This book employs the following conventions:

• Italics denote definitions of terms or concepts.
• Unicode block: indicates algorithm names, function names, package names,

programmatic text elements, and related concepts.

Box 0.0.1 Remarks

These boxes contain ideas directly relevant or supplementary to the main
content, though not essential for understanding core concepts of a section or
paragraph.

Code examples

All code for simulations and algorithms appears within the book. Python code
blocks and their expected output follow this format:

def howdy_world():

# A function to print informative text.

print("Howdy world!")

howdy_world()

# Howdy world!
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When discussing initial environment setup, we occasionally demonstrate bash

commands for direct use in a terminal session. Mac and Linux users can ac-
cess these via the pre-installed terminal utility. Windows users should refer to
instructions in Chapter 2.

Bash code blocks, identified by a leading $, appear as follows:

$ echo "this is a bash demo"

this is a bash demo

The book emphasizes visualizations and plotting. We provide explicit code
for generating all figures initially, and assume that readers will become familiar
with the basic plotting utilities as we use them more frequently and be able to
reproduce the plots themselves in later sections. All plotting code and detailed
information for configuring your environment to reproduce our plots is available
online at www.cambridge.org/9781009405393. Readers can locate specific plots by
navigating to the appropriate book section.

How to Read this Book
As with all quantitative books, we recommend taking the time to carefully think
through the equations and math. The new information content contained in a
single equation is much higher than that contained in a paragraph of text, and
should be treated accordingly.

We refer to other Chapters or Sections of the book regularly, referring them by
their number designation (e.g., “Section 4.7”). This is to help readers build their
mental network: concepts should always be understood through their connection
to each other rather than in isolation. For this reason, we also recommend that
readers pay careful attention to Chapter and Section numbers, possibly even
having a separate table of contents in an easily-accessible location.

A note on randomness
Most examples in this book employ simulations and approaches involving inher-
ent randomness. Executing the same code twice will likely yield different results.
We sometimes use simulations without fixed seeds for three reasons:

1 Real-world networks tend to be large, with potentially slow analysis algo-
rithms. This presents a trade-off: using real-world examples may better demon-
strate certain properties but can be computationally intensive. Simulations
allow readers to develop intuition more quickly, with examples running in sec-
onds rather than minutes.

2 Simulations enable readers to modify and experiment with algorithms and
approaches, fostering insight by altering simulation parameters. We encourage
hands-on exploration to challenge and refine intuition. This approach means
that each run will produce slightly different results, and plots may not exactly
match those in the book.
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3 Many network algorithms incorporate randomness to achieve faster or numer-
ically superior solutions. To familiarize readers with relevant field techniques,
we cannot ignore these methods. Running the same algorithm on an identical
network may produce slightly different numerical results, even if conclusions
remain similar.

While specific outputs may differ, the broad implications of each code segment
should lead to similar conclusions as those presented in our plots. Readers should
expect qualitatively similar but quantitatively different results. This adds an-
other dimension to the learning process, requiring readers to identify important
aspects of figures and solidify their intuition about whether they have reproduced
the intended conclusion.

Situationally, we will use hard-coded seeds to ensure reproducibility. However,
readers should generally anticipate that their outputs will match ours qualita-
tively (exhibiting the same phenomena) but not necessarily quantitatively (spe-
cific numerical values may differ).

Using code examples, citations, and feedback

This book aims to teach network machine learning code development. We pro-
vide this code for readers to borrow and repurpose in their programs and doc-
umentation. Brief snippets may be used with proper attribution to our citation
(provided below). Programs borrowing code may be written without permission.
However, permission is required for selling or financially profiting directly from
code provided in this book.

To cite this textbook, you can use the following MLA citation:
Bridgeford, Eric W. et al. Network Machine Learning. Cambridge University

Press, 2025.
For permission requests, feedback, or discussion, please contact the authors di-

rectly using the information provided on our website at www.cambridge.org/9781009405393.
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Terminology

In this section, we define the mathematical terminology, notation, and operations
used throughout the book.

Mathematical concepts
Symbol Definition Description/Example
x A scalar number x = 5

~x A column vector ~x =

5

2

6


xi the ith element of a column

vector
x2 = 2

X A set I = {1, 2}∑
i∈N xi A sum indexed by a set N

∑
i∈I xi ≡

∑2
i=1 xi = 7∏

i∈N xi A product indexed by a set N
∏
i∈I xi ≡

∏2
i=1 xi = 10

Y A matrix Y =

[
1 2

3 4

]
yij The (i, j)th element of a ma-

trix
y22 = 4

Mathematical operations
Operation Name Definition
~x>~y The Euclidean inner product

∑n
i=1 xiyi = |~x||~y| cos θ

C = AB Matrix multiplication cij =
∑n
k=1 aikbkl

||~x||k The k-norm of ~x
(∑n

i=1 |xi|k
) 1

k

||~x− ~y||2 The Euclidean distance be-
tween ~x and ~y

√∑n
i=1(xi − yi)2

||X||F The Frobenius norm of X
√∑r

i=1

∑c
j=1 x

2
ij

Probability and statistics concepts
We assume an undergraduate-level background in probability and statistics.
Readers should have a grounded concept of randomness, and know what a
random variable is (for example, a Normal or Gaussian random variable, or
a Bernoulli “coin flip” random variable). Unprepared readers should explore the
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pages for “random variable”, “normal distribution”, and “bernoulli distribution”
on wikipedia. The notation that we will use in this book is:

Symbol Explanation Example
x A random variable x takes the value 0 or 1

with probability 0.5

~y A random vector ~y =

[
y1

y2

]
Z A random matrix Z =

[
z11 z12
z21 z22

]
Pr(A) Probability that an event

A happens
Pr(x = 1) = 0.5

Bern(p) The Bernoulli distribution
with probability p

If x is a Bern(p) random
variable, then Pr(x =

1) = p, and Pr(x = 0) =

1− p

Bibliography



Part I

Foundations





1 The Network Machine Learning
Landscape

We begin by exploring the network machine learning landscape. We start with
high-level concepts about networks, introducing basic terminology required to
understand network data. This will make Chapter 3 more digestible when we
formally introduce network data structures and how to manipulate them.

We also describe the different types of problems in network machine learn-
ing, and how network data fits into the types of problems practitioners need to
address.

This chapter covers the following:

1 How do networks fit into the world of machine learning, and why are they
important?

2 What does it mean to learn from a network, and what kinds of things should
we try to learn?

3 How can we use network-valued data to understand the world better?
4 What challenges might we encounter when we analyze network-valued data?

This high-level understanding provides the context necessary for understand-
ing the practical significance of the methods that we will develop throughout the
book.
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1.1 What is network machine learning?

Machine learning is a field of inquiry devoted to understanding and building
methods that learn; that is, methods that leverage data to improve predictive
performance on some set of tasks [1].

Machine learning has grown enormously over the past few decades, and its
use-cases are rapidly pervading modern life. For instance, a photo editor working
in pattern recognition might want to automatically segment an object so that
they can blur the background (see Figure 1.1.1). An audio engineer might want
to identify and separate unique instruments in a song. A student might have
software draft an essay. All of these examples use data to learn a pattern that
can be leveraged to accomplish some task.

Figure 1.1.1 Learning how to segment an image to blur the background. A machine
learning system is trained using numerous images with the foreground segmented out.
This trained system is then used to segment out the foreground on new images, and
then the background is blurred.

1.1.1 Traditional machine learning leverages tabular data structures

In traditional machine learning, data follows a tabular format. The data are
arranged in a table or array, where each row represents a single observation
or datapoint, and each column represents a feature or dimension. This tabular
structure is convenient because it allows techniques developed in one domain
of machine learning to be modified or applied to problems in another domain
without reinventing the wheel. For example, given a tabular dataset where each
row represents a particular lobster with columns representing its length and sex,
we might try to predict the lobster’s claw size. We could accomplish this by
fitting a linear regression model for the claw size of other lobsters depending on
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their length and biological sex. For a more detailed discussion of tabular data
structures, we recommend the pandas tutorial on tabular data [2].

In Figure 1.1.2, we explore how tabular data is used in a machine learning
system using a basic classification task. Each observation is either blue or orange.
Some of the data (the training set, circles) is used to train a machine learning
algorithm (learning, the transparent blue and orange cells above and below the
diagonal), and the remainder of the data is used to test the trained algorithm on
new data (evaluating, the new colored red and blue squares). The trained model
can then be further refined (updated), or deployed for an intended use-case.

Figure 1.1.2 Machine learning systems start by obtaining inputs as tabular data,
where the rows are observations and the columns are features, i.e. dimensions of each
observation.

1.1.2 What is a network?

Many people have some notion of a “network” as describing a system like the in-
ternet, or cell phone towers transmitting data. Networks have a specific definition
in machine learning and data science. In a network:

1 We have a group of items (e.g., people in a social network), and
2 These items are interconnected through clearly defined relationships (e.g.,

which people are friends with one another).

Unlike tabular data where each row represents an independent observation,
networks capture relationships between nodes. These connections cannot be eas-
ily represented in the tabular format without losing crucial structural informa-
tion. This necessitates specialized approaches in network science for analysis and
learning.

Networks can also be referred to as graphs. In this book, we primarily use
the term “network” rather than “graph” to avoid confusion with the other use of
the word graph (plots on x/y coordinate axes). However, we may encounter the
word “graph” in some algorithm or tool names.

Each object in a network is called a node, or a vertex (for consistency we’ll
stick to “node” in this book). A connection between two nodes is called an edge.
Figure 1.1.3(A) illustrates a simple network of business with 8 notes, with edges
indicating transactions. We observe that some nodes are well-connected with
other nodes – for example, the node in the center has edges with four other
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Figure 1.1.3 (A) indicates a simple network, where nodes are businesses, and edges
exist if a given pair of businesses transact with one another. (B) indicates the same
simple network, but each node also has a piece of information attached to it, the
number of employees (indicated by the node size).

nodes – and we also have nodes which are not connected to anything, like the
disconnected business.

Networks might also contain extra information. For example, each node might
be associated with a feature vector. For instance, in the business transaction
network shown in Figure 1.1.3, we might have information about the company
size. We could reasonably assume that larger companies tend to have more busi-
ness transactions with other companies. Figure 1.1.3(B) illustrates this scenario,
where the network includes company size information represented by the size of
each node. In this case, each node is associated with a scalar value (the company
size), which can be thought of as a length-one vector.

1.1.3 Why do we study networks?

Networks are ubiquitous and can be used to model almost any scenario involving
objects interacting with each other. Some examples include:

• Social networks, where nodes represent people and edges represent friendships.
• Computer networks, where nodes represent computers and edges represent

data transmission.
• Air traffic networks, where nodes represent cities and edges represent flights

between them.
• Infection networks where nodes represent people and edges represent disease

transmissions.
• Brain networks in neuroscience, where nodes represent neurons and edges rep-

resent their white matter connections.

More examples include ecological networks, electrical networks, and gene net-
works. We frequently use networks to represent mathematical relationships:

• In Bayesian networks, nodes represent variables and edges represent condi-
tional dependencies.
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• Correlation networks can be created from data, where nodes represent vari-
ables and edges represent their correlations.
• We can create semantic networks in natural language processing, where nodes

represent concepts and edges represent their semantic distance from one an-
other.
• Neural networks in computer science, where nodes are artificial neurons and

edges are weights between them.
• Attention networks in large language models like ChatGPT, where nodes are

tokens (parts of words), and edges define the information that should be trans-
ferred between them
• More generally, we can create Euclidean networks from any tabular dataset by

representing data points as nodes and defining a distance or similarity metric
between pairs of data points to create edges.

Our own daily cognitive processes can be viewed as movement through a vast
semantic network, with nodes as concepts or ideas and edges as mental associa-
tions between them. To see this directly, visualize a concept or object. Perhaps
the food you had for breakfast this morning, or the city you live in. Now, think
about the connections between those concepts and others. Maybe you had eggs
and toast for breakfast. Eggs and toast are connected with a multitude of other
concepts in your mind: forks and silverware, kitchens, hunger, protein, carbo-
hydrates, your morning routine, chickens, wheat, other breakfast foods, and so
forth. Exploring these mental relationships is equivalent to walking along a small
subset of your personal cognitive network.

For business-minded readers, this is an opportune time to learn about net-
works. Language models have become ubiquitous in the startup environment,
but they hallucinate and need to be well-grounded. Using networks as their back-
bone is an excellent way to accomplish this goal. The application section of the
book provides many tools useful for tackling real-world network problems. Some
examples include analyzing social networks, optimizing supply chains, detecting
fraud, developing recommendation systems, and using graph neural networks to
develop new medical treatments.

The development of network machine learning follows a typical pattern in
scientific advancement:

1 Academic phase: Researchers spend 10-20 years publishing proof-of-concept
papers, exploring problem-solving approaches, and developing fundamental
tools. This work is often done informally, with code existing primarily in
Jupyter notebooks.

2 Industry adoption: As the field matures, companies begin to recognize the
potential of these academic tools. They adapt them to enhance their products
or services and develop user-friendly packages (like networkx or graspologic)
to make the tools accessible to a broader audience.

Network machine learning is currently at a critical juncture. Its academic
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Figure 1.1.4 The network machine learning pipeline: We start with a network, choose
a suitable representation, apply appropriate machine learning techniques, and
interpret the results in the context of the original network.

foundations have been established over the past two decades, and we are now
seeing the transition of its tools from academia to industry. This presents a
unique opportunity for early adoption of application-focused network machine
learning tools in business contexts.

1.1.3.1 Why do we need special machine learning approaches for
networks?
In the wild, networks primarily exist as nodes and edges rather than in a tabular
format. This presents a challenge, since techniques that were developed over
decades for tabular data cannot be directly applied for network-valued data.
However, we can adapt networks to traditional tabular formats using network
representation tools. Once we transform these networks into more conventional
structures, we can apply techniques from other domains of machine learning to
analyze our networks.

Figure 1.1.4 illustrates the high-level process of network machine learning. By
network machine learning, we refer to machine learning techniques applied to
network-valued data (data which is a network, not a tabular structure). This
process typically involves the following steps:

1 Obtain a network dataset,
2 Select a suitable representation for the network, based on the questions we
wish to address,

3 Apply appropriate machine learning techniques to our representation, and
4 Interpret the results in the context of the original network structure.

We will now explore the types of problems we might encounter in network
machine learning. Then, in Chapter 2, we will walk through a simple end-to-end
network analysis project.

1.2 Types of network machine learning problems

There are many different types of network machine learning systems. We broadly
group them into the following categories:
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• whether they involve one or multiple networks (single or multiple network
learning systems),
• whether they require additional information in the form of network attributes

(attributed or non-attributed network learning systems),
• whether they ask questions about an edge, a node, a group of edges/nodes, or

about the network itself, and
• whether the approach can be used in isolation from a statistical model (non-

model based or model-based network learning systems).

To illustrate these criteria, we will use two running examples:

Example 1.2.1 Brain networks for musicians and non-musicians

Brain networks have been acquired from a large group of people. The nodes
represent areas of the brain, and the edges represent whether a pair of areas
can communicate using neurons. Each network is either from a musician or a
non-musician.

Example 1.2.2 A pair of social networks for students at a school

We will also use social networks for students at two schools. Nodes represent
students, and edges represent whether the students are connected on social
media. Networks exist from two social media sites: Facebook and Instagram.

These categories are not mutually exclusive, and a network machine learning
system will pull elements from several categories simultaneously. For instance,
a system might be single network, node-attributed, and non-model-based like a
community detection algorithm.

1.2.1 Single vs multiple network learning systems

Single network learning systems
In many network learning scenarios, there is only a single sample: the network
itself. A single network learning system derives insight from a single network,
which is a single collection of nodes and edges. This differs from traditional ma-
chine learning frameworks, in which having a single sample would be disastrous:
in that case, insight would be impossible, because we need multiple observations
to identify trends or patterns.

However, in network learning, a single sample is not necessarily limiting. While
there may be only one network, it is defined by a collection of many nodes and
edges. Thus, it is still possible to learn about relationships that exist among
the nodes, edges, or both. The caveat is that the conclusions drawn are limited
by the specific network under study, which may not be representative of the
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global population of networks. This limitation is often not significant, depending
on what the network represents. Most of the tools in this book are for single
network learning systems.

Multiple network learning systems
A multiple network learning system derives insight from multiple networks, each
consisting of collections of nodes and edges. Unlike a single network learning
system where conclusions can only be drawn based on characteristics of that
particular network, a multiple network learning system can generate insights
both within and across the networks.

The following are examples of multiple network learning systems:

• multiple network representation learning in Section 5.5,
• anomaly detection in Section 8.1,
• signal subnetworks in Section 8.2, and
• graph neural networks in Section 9.1.

1.2.2 Non-attributed vs richly-attributed network learning systems

While machine learning typically distinguishes between unsupervised and su-
pervised learning, network learning employs more specific terminology for these
concepts.

1.2.2.1 Non-attributed network learning systems
The concept of a non-attributed network learning system is analogous to fully
unsupervised machine learning. Unsupervised learning can be defined as a learn-
ing problem where the data provided to the algorithm does not include the
desired solutions, known as labels. A network learning system is considered non-
attributed if the data given to the system include only the nodes and edges at
the time of the analysis.

For instance, consider the Facebook network from Example 1.2.2. Suppose
that the information about which students attend which school has been lost.
We hypothesize that there might be two groups of students in the network, called
communities, and that if a student is in a particular community, they tend to be
better friends with other students in the same community. We want to see if we
can identify these communities programmatically, and perhaps recover the school
information for each student. Figure 1.2.1 illustrates a non-attributed network
learning problem. The groups of nodes that are heavily connected (indicated by
the gray circles) correspond to the schools that each student attends.

Examples of non-attributed network learning systems include:

• network embeddings in Section 5,
• community detection in Section 6.1,
• latent position comparisons in Section 7.1, and
• anomaly detection in Section 8.1.
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Figure 1.2.1 A school network. Nodes represent students, and edges indicate
friendships. The grey circles indicate guesses as to which school each student belongs
to.

1.2.2.2 Attributed network learning systems
Similarly, the concept of an attributed network learning system is analogous
to supervised or semi-supervised machine learning. Supervised learning can be
loosely defined as a learning problem where data provided to the algorithm
includes labels, and stypes of learning systems!emi-supervised learning can be
loosely defined as a learning problem in which the data provided to the algorithm
includes some of the labels. A network is an types of learning systems!attributed
network learning system if at the time of analysis, the network(s) include at-
tributes in addition to nodes and edges. These attributes do not necessarily have
to be scalar-valued labels: they can be vectors as well. There are four main types
of attributed network learning systems. They are:

• Networks with node attributes,
• Networks with edge attributes,
• Networks with network attributes, and
• Networks with multiple-network attributes.

Networks with node attributes
When networks have node attributes, each node has an additional piece of in-
formation describing it. Returning to the school example, consider a scenario
where for each student, there is an additional piece of information: their school.
The goal is to investigate whether the probability of two students being friends
is higher in school one or in school two. A problem for networks with node
attributes is shown in Figure 1.2.2(A).

Examples of problems that deal with node attributes include:

• joint representation learning in Section 5.6,
• model selection in Section 6.4,
• testing for differences in block matrices in Section 7.2, and
• testing for differences between groups of edges in Section 6.3.
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Figure 1.2.2 (A) the school network for Facebook, analyzed using node attributes.
(B) the school network for Facebook, analyzed using edge attributes.

Networks with edge attributes
When networks have edge attributes, each edge has an additional piece of in-
formation describing it. For example, in the school network, we could entirely
ignore the school assignments, and simply focus on whether the students have
more friends within schools (solid edges) or between schools (dashed edges). This
example is illustrated in Figure 1.2.2(B). Rather than focusing on the school as-
signments of the nodes, we focus on two groups of edges (the within-school edges,
and the between-school edges).

An example of a problem with edge attributes is testing for differences between
groups of edges in Section 6.3.

Networks with network attributes
When networks have network attributes, each network has an additional piece
of information describing it. Referring back to Example 1.2.1, each brain net-
work was from either a musician or a non-musician. This piece of information
characterizes each of the networks as either from a musician or a non-musician
individual, and applies to the entire collection of nodes and edges for a given
network. Figure 1.2.3 illustrates a network with network attributes.

An example of a problem that leverages network attributes is signal subgraph
estimation, in Section 8.2, or graph neural networks in Section 9.1.

Networks with multiple-network attributes
A network with multiple-network attributes consists of a collection of networks
(each of which has nodes and edges) where we have additional information that
describes how the nodes (or the edges) of the different networks relate to one
another. Returning to Example 1.2.2, let’s add another dimension. Imagine the
accounts are, for all intents and purposes, anonymous, since identifying infor-
mation is not shared by default on Facebook or Instagram accounts. However,
we know that a particular Facebook account corresponds to the same person’s
Instagram account for three people. We want to see if we can use this cross-
network attribute (the matched accounts) to discover suitable matchings for the
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Figure 1.2.3 A collection of brain networks, where the nodes represent areas of the
brain and the edges indicate which brain areas can communicate. The color of the box
around each network indicates whether it comes from a musician or a non-musician.

remaining accounts in the network. A problem with multiple-network attributes
is shown in Figure 1.2.4.

Figure 1.2.4 Two social networks from different social media sites. The nodes are
people’s accounts on the social media sites (they are the same for both sites) and the
edges indicate which pairs of accounts follow one another for that particular site. For
three people, we know a matching across the two networks (yellow nodes, dashed
edges).

An example of a problem which leverages cross-network attributes is seeded
graph matching, in Section 7.3.

1.2.3 Scope of network analysis

Network machine learning often tempts researchers to explore entire networks,
even when questions are more focused. Consider a transportation network with
stations as nodes and rush-hour ridership counts between stations as edges. A
different network might exist for each week of the year. The following examples
demonstrate questions about different network components.
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1 Studying a single edge: Determining whether a particular route needs an ad-
ditional train due to rush hour popularity might require examining this route
across many networks to estimate passenger numbers.

2 Studying a single node: Deciding on station expansion could involve analyzing
passenger throughput at a specific station.

3 Studying groups of nodes or edges: Evaluating the impact of canceling an entire
line would require considering effects on other stations (groups of nodes) and
passenger numbers on other lines (groups of edges).

4 Studying the entire network: Assessing the need for increased public trans-
portation funding might entail analyzing the city’s weekly cost across the en-
tire transportation network.

1.2.4 Model-based vs non-model-based network learning systems

Statistics forms a core component of network learning systems. This is because
network learning problems inherently involve randomness, whether in the sam-
pled networks, the set of acquired networks, the collected data, or other factors.

In statistics, we often sample observations from a population, and then use
what we learn from the sample to extrapolate to the population. We often build
statistical models in service of this.

Consider a statistical model as a conceptual framework that explicitly accounts
for variation, randomness, or error in the networks we obtain compared to the
entire population. The balance between model-based and non-model-based net-
work learning is a core aim of this book, so we will explain the difference without
reference to networks.

1.2.4.1 Model-based learning systems
A model-based learning system requires a statistical model to derive meaning
from an analysis.

Consider two coins, each flipped twenty times. To determine if the probability
of heads is the same or different for these coins, we use a hypothesis test. We
have two hypotheses: that we have the same (first hypothesis) or different (sec-
ond hypothesis) probability of landing on heads. A hypothesis test determines
whether or not the data provide evidence against the first hypothesis.

This question requires a statistical model because “probability” has a specific
statistical interpretation. To answer this question, several factors about the ex-
periment require clarification:

• Are heads and tails the only possible outcomes for each coin? For example,
could a thicker coin have a non-zero probability of landing on its edge?
• Is the probability of heads consistent across all twenty flips for each coin?

Could different flipping techniques in the first and last ten flips affect the
frequency of heads?
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• Are the outcomes of coin flips independent? For instance, would saying a prayer
after two tails influence the probability of getting heads on the next flip?
• Is the sample size sufficient to detect differences between the coins? Many

statistical tests, including this one, can be interpreted in various ways. With
small sample sizes, assumptions must be carefully considered, as certain testing
approaches (like the chi-squared test) may only be meaningful with larger
datasets.

In order to make a conclusion based on our hypothesis test, we need to be
specific about the assumptions we make about these details of the our data sam-
ple, since the answer to our question depends on these assumptions. Therefore,
we need to understand the assumptions that we made, so that we can make a
decision based on the outcome of the hypothesis test that we performed.

1.2.4.2 Non-model-based learning systems
Many questions can be addressed using either model-based or non-model-based
techniques. While models can provide intuition, they are not always necessary
to answer questions. A non model-based learning system does not require a sta-
tistical model to derive meaning from an analysis.

Figure 1.2.5 (A) Two-dimensional data shown in a scatter plot. The first principal
component (PC) represents the axis of maximum variation, while the second PC is
orthogonal to the first and captures the next highest variation. Arrows show data
projection onto the first PC. (B) PCA projects data onto the first PC by reorienting
the dataset along the first and second PCs (dashed circles and lines), then removing
the second PC (solid circles). This reduces dimensionality from two to one, discarding
the direction of less variation.

To illustrate this concept, consider Principal Components Analysis (pca), a
non-model-based machine learning technique. pca reduces high-dimensional data
to a more manageable number of dimensions, allowing for downstream analysis
with other strategies. Figure 1.2.5 provides a visual illustration of pca, showing
data reduction from two dimensions to one along the first principal component
(PC).
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pca can be executed without additional knowledge about the data, simply as an
algorithm to make data more manageable for other machine learning techniques.
However, understanding pca through the lens of a statistical model (assuming
normally distributed observations) provides additional insight. In this context,
principal components represent directions of maximum variation in the data.

In Figure 1.2.5(A), the black points spread more along the red PC than the
green PC. The degree of variation preserved by each PC is indicated by its score.
This interpretation is useful for machine learning tasks like K-Means clustering,
where distinguishable classes require variability between observations.

1.3 Challenges of network machine learning

Like other branches of science, network machine learning is not without its chal-
lenges. The networks we analyze often contain random imperfections. Rather
than collecting exhaustive data, we typically examine reasonably sized subsets.
This may mean studying a social network with 1000 nodes instead of 100 million,
or 200 brain networks rather than one from every person in the world.

Because our data is not perfect, we often use tools from statistical learning, a
machine learning framework that uses statistics to refine problems, quantify the
reasonableness of conclusions, and make rigorous inferences about networks. In
this section, we will discuss several of the challenges that may arise as a result
of random imperfections in network data. The remainder of the book will be
dedicated to developing models and techniques that allow us to overcome some
of these limitations.

1.3.1 We might imperfectly observe the network

In many branches of science, collecting network data can be an imperfect and
noisy process. Only recently did we acquire a detailed map of the connectome
of a complex organism, the fruit fly larva [3]. Even though fruit fly larvae are
small, this was a substantial undertaking: the fruit fly brain is comprised of
several thousand neurons (nodes), and hundreds of thousands of neuronal con-
nections (edges), all of which fit into a volume smaller than a cubic millimeter.
To study the brain at the neuron-scale, researchers sliced it into thousands of
tiny pieces smaller than a human hair, and then examined each piece individually
with a microscope. From there, algorithms and manual tracing were performed
to reconstruct, slice-by-slice, which neurons were connected with which other
neurons. To complicate matters further, all of this work was derived from a sin-
gle organism. This means that each step allowed minimal room for error. The
neuron-by-neuron map was used to construct a network (called the connectome
of the organism) of connections between neurons.

With so many areas for potential error, it is almost impossible that the fruit fly
connectome is absolutely perfect. We may have missed some neurons, overlooked
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Figure 1.3.1 The true underlying network contains a lot of information that we did
not measure properly in the course of observing or sampling the network.

connections, or made small mistakes anywhere in this complicated process. Fig-
ure 1.3.1 explores what it means for a network to be imperfectly observed. On
the left, we see the underlying network we are trying to obtain. On the right, we
see the actual network we obtained: we might be missing some of the nodes (red
dashed nodes), we might be missing some of the edges (red dashed edges), or we
might see edges which should not really be present (non-vertical edges, red solid
edges). While a portion of the network might faithfully represent the underlying
system (solid green nodes and edges), we do not actually know what part of our
sample is faithful or unfaithful with respect to the true underlying network. The
key is that when we build network machine learning systems, we desire insights
that are robust to these imperfect observations. This is because in some cases,
it might be impossible to ever obtain the data that we need otherwise.

1.3.2 We might not see the whole network

When studying a network, we rarely observe the entire system perfectly in its
entirety. For instance, consider a social network, in which the nodes are people
within the network, and edges represent friendships. If we wanted to study the
network in its rawest form, we might need to collect data from millions, or
billions, of accounts to construct a network that might take an infeasible amount
of space just to store. Actually analyzing the network represents another huge
hurdle; we would need to be able to devise techniques which could efficiently
churn through terabytes worth of data. However, focusing our attention on a
subset of the network involving a few thousand or hundred thousand people
may allow us to ask richer questions. On this reduced subset of people, we are
less limited by computational constraints and so we can apply a wider range of
analytical techniques.

The fruit fly larva (drosophila) connectome example illustrates how researchers
have approaches studying large networks over time. While the complete connec-
tome was mapped only recently, brain networks have been studied for decades.
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Previously, due to economic, computational, and analytical challenges, inves-
tigations focused on subsets of the brain rather than the whole. Despite only
collecting bits and pieces of the network, major insights were learned which di-
rectly informed the effort to collect the entire network.

In both of these cases, we can learn a lot of valuable information by reducing
the size of a network, learning from it, and then applying what we learned to
the entire network. Figure 1.3.2 illustrates sampling a subset of nodes from a
network. The left panel depicts shows the true underlying network with both
solid and dashed edges and nodes. The right panel depicts the sampled network,
which only includes a subset of the nodes and edges.

Figure 1.3.2 The true underlying network has both solid and dashed edges and nodes,
shown in the left panel. However, when we sample the network on the right, our
sample only includes the subset of nodes and edges that are solid.

1.3.3 We might only see a subset of the networks

Consider again Example 1.2.1 of musician and non-musician brain networks. A
team of psychologists might hypothesize that the brains of musicians tend to
be better connected in areas responsible for fine motor coordination and hear-
ing, which are crucial skills for many instruments. To test this hypothesis, the
psychologists could take one of two approaches. They could collect brain net-
works from every individual, or they could collect a subset of brain networks
from groups of musicians and non-musicians in their area. Figure 1.3.3 demon-
strates sampling a subset of networks from a population. Despite the fact that
the psychologists only studied a subset of musicians and non-musicians, with
some statistical assumptions they can derive conclusions that will apply more
broadly than just the group of people they analyzed.

1.3.4 Statistics allows us to generalize to the unseen from the seen

If we collect a set of brain networks, we have collected a sample, a subset of
objects from the larger population. Statistical analysis of the sample allows us
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Figure 1.3.3 The true underlying population contains many more networks than we
are able to actually sample. In the left panel, we have green and red networks, but in
the sample, we only get to see the green networks.

to draw broader conclusions. Rather than limiting our findings to the specific
group or network we sample, statistics enables us to rigorously extend conclu-
sions to a more general population. Figure 1.3.4 summarizes this concept. Note
that “network population” may have different interpretations depending on the
specific question. It might refer to a population of many networks, from which
we observe a sample with some level of uncertainty, or to a “true” single network,
which we can only observe with some level of randomness because of how the
nodes or edges were obtained.

Figure 1.3.4 We have a network population, which in this case means a large network
that we cannot properly observe. We obtain a sample of this network, and then use
analyses on this sample and knowledge of how it was taken from the population to
derive assumptions about our system. Ideally, this will reasonably represent the
network population itself. Using network machine learning, we try to understand the
properties of this network population.

We can learn many things about our network data without leveraging statistics
at all. However, using statistical learning gives us a quantitative framework to
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generalize our findings. Conclusions can then be applied more broadly to the
general population rather than being limited to our specific network data.

1.3.5 Other challenges

Section 1.2 introduced several types of network machine learning problems. The
field is rapidly evolving, with new problem formulations continually emerging.
Researchers face numerous challenges, including:

1 Categorizing problems appropriately,
2 Reformulating research questions to align with existing techniques,
3 Selecting suitable analytical strategies, and
4 Developing entirely new methods when necessary.

These challenges often require significant effort and resources to address. The
following chapter presents an example data analysis in network machine learning,
illustrating how researchers approach these problems in practice.
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2 End-to-end Biology Network
Machine Learning Project

This chapter provides a practical introduction to network machine learning, of-
fering a behind-the-scenes look at the complete process of working through a
project.

This chapter covers the following:

1 Section 2.1 discusses how to approach a network machine learning problem.
2 Section 2.2 guides readers through setting up a local environment for running
the code in this textbook and obtaining example data.

3 Section 2.3 prepares the data for downstream analysis.
4 Section 2.4 covers the algorithm selection process for network data.
5 Section 2.5 demonstrates a learning algorithm for network data.
6 Section 2.6 illustrates how network machine learning can reveal new insights
about network data.

While some of the material in this section may feel opaque, we choose to begin
by emphasizing the big picture rather than minute details, giving the reader a
“global view” before diving into detail in Chapter 3. This approach also ensures
a proper setup of code and dependencies from the outset, which generally leads
to a smoother workflow. Readers are strongly recommended to follow along in
code, diverging and exploring as they go.
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2.1 Looking at the big picture

Welcome to the Neurobiology Institute! A colleague has come to you with an
interesting problem. Brains consist of neurons. Neuronal connection patterns
produce the brain’s unique functions: breathing, moving, hearing, seeing, and
higher level thought.

When they are electrically stimulated, neurons can transmit that electrical
signal to other neurons. This process consumes a lot of energy; while the brain is
only about 2% of the body’s weight, it consumes about 20% of its daily energy.
To keep the neurons replenished with energy (and to remove waste that the cells
produce when they work), the brain has a complicated network of blood vessels.
When a brain area is in use, the body dedicates blood supply to the area that
will need it most.

Neurobiologists have come up with a clever way to decipher brain activity in
humans by looking at this blood flow. Using MRI, they can follow blood move-
ment towards particular areas. Because blood movement correlates with neuron
activity, following blood movement can tell scientists about that activity. Experi-
ments have been performed that empirically demonstrate this strong correlation.

Figure 2.1.1 (A) A hiker on a trail sees a bird pirched in a tree in his field of view
(faint red triangle). (B) The occipital lobe, which is responsible for sight, sits in the
back of the brain (star). The presence of the bird in the field of view causes neurons
to be electrically stimulated (blue line). The activity of the neurons causes the brain
to send blood to the area as the neurons are stimulated (red line). While individual
neurons are too small to see, the blood flow caused by many neurons firing at once
can be picked up by an fMRI scanner.

This imaging technology, known as functional MRI, has proven to be useful
for neuroscientists [1]. By measuring pairs of brain areas, researchers can see
whether the two areas tend to be active together. The idea is that, perhaps,
different combinations of brain areas tend to work together as a unit, allowing
the complicated thought patterns that humans are capable of. By viewing the
different areas of the brain as nodes of a network, and the blood flow correlations
as its edges, scientists can use network machine learning to study the brain. This
area of study, called connectomics, is an active and network-centric subdomain
of neuroscience research [2].

Your colleague has come to you with a set of networks from fMRI sessions,
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and wants to know whether there are any groups of brain areas that tend to have
similar activity. Can you, as a network scientist, take this network of nodes and
edges, and figure out a way to break the nodes into functionally similar groups?

2.1.1 Framing the problem

The first question to ask your colleague is; what exactly is the objective here? In
network machine learning, the choice of the model used is everything. The model
determines what sorts of questions we are capable of asking, and what sorts of
answers we are capable of learning. Asking about the objectives will directly
shape which models and approaches you use.

Your colleague wants to know whether there are any sub-groups of areas that
tend to behave similarly. By “behave similarly”, what your colleague means is,
are there sub-groups of brain areas that tend to work together in conjunction
with other sub-groups of brain areas?

The next task is to determine what type of network machine learning problem
you have. What type of data exists? Are there covariates associated with that
data? Do you need to change your question based on this information? Do you
want to test a hypothesis, or make predictions? What characteristics will your
model need to be able to answer the question appropriately? Before you progress
further, you should answer these questions for yourself.

Once you have gotten a sense of the question and the data, you need to de-
termine what other researchers have already tried. This will prevent you from
repeating work, help you understand where to start approaching the problem,
and give you a reference for how well your techniques are performing. This step
will likely involve reading literature and having conversations with colleagues
about what work has already been done.

You emerge from this process with new information. The data is a set of fMRI
scans taken from patients doing nothing, lying in a scanner. Remembering back to
the types of network machine learning problems in Section 1.2, you conclude that
this is a multiple network learning problem. Your networks are non-attributed,
since you only know their nodes and edges. You want to understand relationships
between groups of nodes and edges. You are going to need to come up with a
definition of what it means for pairs of areas to be similar, and you are going to
want to be able to group areas in a way that is meaningful for your colleague.

2.1.2 Check the assumptions

Throughout the course of this book, we will try to keep the assumptions being
made by our techniques in mind. We want to choose the simplest set of as-
sumptions that can reasonably reflect the data, which means using the simplest
statistical model that can properly answer the questions we ask. In this case, we
don’t care about individual brain area-to-brain area connections at all: we only
care about how groups of brain areas behave in relation to other groups of brain
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areas. This means that we want to choose models which will allow us to learn
about pairs of brain area groups, which is a very different problem from learning
about individual brain areas themselves.

After talking over your understanding of the problem with your colleague, you
are confident that he wants a way to be able to group brain areas together based
on how similar they are, and you have the freedom to define that however you
choose. You have the green light to begin coding.
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2.2 Getting the data and configuring your environment

In this section, we will start to get our hands dirty with some real network
datasets. We recommend walking through these examples with your laptop in a
jupyter notebook. To ease your ability to interact directly with the code of this
book, we’ve developed a standalone docker container that you can use.

2.2.1 Interacting with the book via docker

Getting software to run across multiple operating systems, particularly software
with lots of dependencies, can range from difficult to impossible. While most of
the packages required to run the contents of this book can be installed relatively
easily via a combination of git, pip, and virtual environments, the easiest and
fastest way to get to coding and interacting with real python code is docker.

docker allows you to run standalone software in a separate area of your com-
puter called a docker container to allow software to operate without conflicting
with your local operating system. This means that you can, with a very small
number of button clicks, create deployable software that thousands of people can
use.

To install docker, see their installation guide at [3].

Obtaining the docker container for the textbook
Once you have docker installed on your computer, you can obtain the docker
container for the book relatively easily. If you have a ubuntu/mac operating
system and the docker daemon running on your computer, you can open up a
terminal session and type the following command:

$ docker pull neurodata/graph-stats-book

which will fetch the docker container for the book from [4].
This docker container contains all of the dependencies needed to run the code

within this book, and will allow you to use the book in conjunction with jupyter,
a lightweight, web-based interactive computing platform that you can access
through your web browser at localhost:<port>, where <port> is the port you
provide to the container for execution. We will use port 8888 by default. You can
start the docker container like this:

$ docker run -ti -v <path/to/local/working/directory>:/home/book -p

<port>:8888 neurodata/graph-stats-book \

jupyter-lab --ip=0.0.0.0 --port=8888 /home/book/ \

--NotebookApp.token="graphbook"

This will launch a jupyter-lab session, and should automatically log you into
the session in your browser. If it does not, open up a browser of your choice,



26 End-to-end Biology Network Machine Learning Project

and go to localhost:<port>, where you will be prompted to enter the log-in
password for your session. That login-in password is graphbook, generated from
-NotebookApp.token in the command above. The port is so that your browser can
communicate with the jupyter session inside the docker container (which runs
jupyter internally on port 8888).

If you don’t want to use the docker container, that’s fine too: you can install the
dependencies as they arise manually in an environment of your choice. Detailed
information for configuring your environment, working with the docker container,
and viewing section-by-section pre-prepared jupyter notebooks can be found via
links on our companion website www.cambridge.org/9781009405393.

2.2.2 Downloading the data

When we work with network data, it is rarely the case that the raw data that
we will use is already a network. The raw data is the least processed version of
the data for a project, and is the information upon which the rest of the data is
derived. A derivative is a piece of information that is derived from the raw data.
For us, the raw data are the brain scans. These brain scans were preprocessed
by breaking the scans into brain regions, and then finding blood-flow correlation
between those regions.

We have access to that preprocessed data. You could navigate over to the
neurodata website and download this data directly, but it tends to be useful
to do this programmatically, because if the data changes, you might want your
analysis to automatically use the latest and best version of the data at the time
you execute your function. Further, if you intend your code to be reproducible,
having a function which downloads and prepares the data in a way which the
computer can use will simplify the process of disseminating your work.

To begin, we will start with a code snippet which fetches the required data for
our analysis:

import os

import urllib

import boto3

from botocore import UNSIGNED

from botocore.client import Config

from graspologic.utils import import_edgelist

import numpy as np

import glob

from tqdm import tqdm

# the AWS bucket the data is stored in

BUCKET_ROOT = "open-neurodata"

parcellation = "Schaefer400"

FMRI_PREFIX = "m2g/Functional/BNU1-11-12-20-m2g-func/Connectomes/" + parcellation +

"_space-MNI152NLin6_res-2x2x2.nii.gz/"

FMRI_PATH = os.path.join("datasets", "fmri") # the output folder

DS_KEY = "abs_edgelist" # correlation matrices for the networks to exclude
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def fetch_fmri_data(bucket=BUCKET_ROOT, fmri_prefix=FMRI_PREFIX,

output=FMRI_PATH, name=DS_KEY):

"""

A function to fetch fMRI connectomes from AWS S3.

"""

# check that output directory exists

if not os.path.isdir(FMRI_PATH):

os.makedirs(FMRI_PATH)

# start boto3 session anonymously

s3 = boto3.client(’s3’, config=Config(signature_version=UNSIGNED))

# obtain the filenames

bucket_conts = s3.list_objects(Bucket=bucket,

Prefix=fmri_prefix)["Contents"]

for s3_key in tqdm(bucket_conts):

# get the filename

s3_object = s3_key[’Key’]

# verify that we are grabbing the right file

if name not in s3_object:

op_fname = os.path.join(FMRI_PATH, str(s3_object.split(’/’)[-1]))

if not os.path.exists(op_fname):

s3.download_file(bucket, s3_object, op_fname)

def read_fmri_data(path=FMRI_PATH):

"""

A function which loads the connectomes as adjacency matrices.

"""

fnames = glob.glob(os.path.join(path, "*.csv"))

# sort for consistency

fnames.sort()

# import edgelists with graspologic

# edgelists will be all of the files that end in a csv

networks = [import_edgelist(fname) for fname in tqdm(fnames)]

return np.stack(networks, axis=0)

Now when you call fetch_fmri_data(), it creates a new directory called datasets/fmri

in your workspace, and downloads the adjacency matrices, the standard way to
represent a network as a mathematical object (see 3.4), into your local directory
datasets/fmri.

Throughout this book, we will also use the graspologic package, built for
statistical analysis on networks. We load the dataset using the graspologic utility
import_edgelist():

fetch_fmri_data()

As = read_fmri_data()

2.2.3 Visualizing the data

Next, let’s take an in-depth look at one of the adjacency matrices. In network ma-
chine learning, when dealing with a new dataset, our recommendation is to always
start with visualization. We typically visualize network data using a heatmap.
The resulting plot is shown in Figure 2.2.1(A).
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from graphbook_code import heatmap

A = As[0]

ax = heatmap(A, vmin=-1, vmax=1, title="Heatmap of Functional Connectome")

This plots the adjacency matrix for the functional connectome of a human,
illustrated in Figure 2.2.1(A). The nodes of this network are numbered sequen-
tially. A heatmap is a network visualization in which the x and y coordinates of
a given entry in the matrix indicate the pair of nodes an edge is connected to,
and the color for the (x, y) point in the figure indicates the weight of the edge
between nodes x and y. The edge weight is stronger if the pair of brain areas are
active together more, and lower if the pair of brain areas are less active together.
This is real data, generated from actual fMRI scans.

One thing that we can notice from this plot is that a lot of the edges have tiny
weights. Let’s explore this a little bit further.

A useful summary of the network is to look at a histogram for the edge-weights.
A histogram shows the number of edges (on the vertical axis) which have a given
edge weight range (indicated by the width of a particular bar on the horizontal
axis). You can call this directly on the adjacency matrix (albeit flattened), and
it will plot a histogram of the edge weights. We will do this using seaborn’s
histplot():

import seaborn as sns

import matplotlib.pyplot as plt

ax = sns.histplot(A.flatten(), bins=50)

ax.set_xlabel("Edge weight")

ax.set_title("Histogram of functional connectome edge-weights")

A plot of the adjacency matrix’s edge weights is shown in Figure 2.2.1(B). A lot
of the edge-weights tend to be right around the 0.2 to 0.6 range, which tells us
that, in general, the pairs of fMRI regions have slightly correlated activations.
This is because the correlation metric used for fMRI data is between −1 and 1,
where higher values indicate higher correlations. When some node tends to be
active, other nodes also tend to be active. If this were not the case, the histogram
would be a bit more centered around 0.0.
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Figure 2.2.1 (A) a raw connectome, (B) the raw connectome edge-weight histogram.

2.3 Preparing the data

Next, it’s time for us to prepare our networks for analysis. When we implement
code, we will try to be modular and functional. This is because:

1 Functions will make the useful data preparation code that we write usable on
new networks,

2 We can gradually build libraries of utility functions,
3 We can modularize functions into other parts of our analysis pipeline to keep
a lean module-oriented design, and

4 We can easily try different transformations of the data and evaluate which
ones tend to work best.

2.3.1 Data cleaning

Many network machine learning algorithms cannot work with a node that is
isolated, meaning that the node has no edges. Let’s start with fixing this. We
can remove isolated nodes from the network as follows:

1 Compute the number of nodes each node connects to. This consists of summing
the matrix along the rows (or columns). The network is undirected, which
means that if a node can communicate with another node, the other node can
communicate back.

2 Identify any nodes which are connected to zero nodes along either the rows or
columns. These are the isolated nodes.

3 Remove the isolated nodes from the adjacency matrix.

Let’s see how this works in practice. We begin by first taking the row sums
of each node, which tells us how many nodes each node is connected to. Next,
we remove all nodes with are not connected to any other nodes (the row and
column sum are both zero) from both the adjacency matrix and the labels:
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def remove_isolates(A):

"""

A function which removes isolated nodes from the

adjacency matrix A.

"""

degree = A.sum(axis=0) # sum along the rows to obtain the node degree

out_degree = A.sum(axis=1)

A_purged = A[~(degree == 0),:]

A_purged = A_purged[:,~(degree == 0)]

print("Purging {:d} nodes...".format((degree == 0).sum()))

return A_purged

A = remove_isolates(A)

# Purging 0 nodes...

So no isolated nodes were found, and consequently no nodes were purged.
Great! What else can we do?

With functional MRI connectomes, we often want to look at absolute correla-
tions rather than the original correlations. The intuition is that, if one node is
less active when another node is active, that kind of indicates that they are still
operating together. Let’s see how to compute absolute correlations:

import matplotlib.pyplot as plt

from graphbook_code import heatmap

A_abs = np.abs(A)

fig, axs = plt.subplots(1,3, figsize=(21, 6))

heatmap(A, ax=axs[0], title="Human Connectome, Raw", vmin=np.min(A), vmax=1)

heatmap(A_abs, ax=axs[1], title="Human Connectome, Absolute", vmin=np.min(A), vmax=1)

heatmap(A_abs - A, ax=axs[2], title="Difference(Absolute - Raw)", vmin=0, vmax=1)

Several of the values will change (the faint bands), which is indicated by larger
differences from the raw to the absolute data. We can use this heatmap function
to plot the adjacency matrix as we manipulate it later on in this section.

To streamline the process of cleaning up the raw data, we often need to
write custom data cleaners. We will want our cleaners to work seamlessly with
sklearn’s functions, since we will be using that package regularly. This requires
us to implement three class methods: fit(), transform(), and fit_transform().
By adding TransformerMixin as a base class, we do not even have to implement
the third method. If we use BaseEstimator as a base class, we will also obtain
get_params() and set_params() methods, which may be useful for hyperparam-
eter tuning steps later.

Here is an example cleaner class which purges the adjacency matrix of isolates
and remaps the categorical labels to numbers. A key step to implementing this
all as cleanly as possible is that the inputs, an adjacency matrix and a vector
of node labels, are passed in as a single tuple object. This is because sklearn

anticipates that the return arguments from calls of transform() can be passed
sequentially to one another.
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from sklearn.base import TransformerMixin, BaseEstimator

class CleanData(BaseEstimator, TransformerMixin):

def fit(self, X):

return self

def transform(self, X):

print("Cleaning data...")

Acleaned = remove_isolates(X)

A_abs_cl = np.abs(Acleaned)

self.A_ = A_abs_cl

return self.A_

data_cleaner = CleanData()

A_clean = data_cleaner.transform(A)

# Cleaning data...

# Purging 0 nodes...

2.3.2 Edge weight transformations

One of the most important transformations that we will come across in net-
work machine learning is called an edge-weight transformation. Many networks,
such as the human functional connectome, will have edge weights which do not
just take values of 1 or 0 (edge or no edge, a binary network); rather, many
networks may have discrete-weighted edges (the edges take non-negative inter
values, such as 0, 1, 2, 3, ...), or decimal-weight edges (the edges take values like
0, 0.1234, 0.234, 2.4234, ...). For a number of reasons discussed in Section 3.6,
this is often not a desirable characteristic. The edges in a network might be error
prone, and it might be desirable to capture only one (or a few) properties about
the edge weights, rather than complicating things by leaving them in their raw
values. Further, a lot of the techniques we explore throughout this book might
not work on nonbinary networks. For this reason, we should get accustomed to
transforming edge weights to take new sets of values.

There are two common approaches to transform edge weights: the first is called
binarization (set all of the edges to take a value of 0 or 1), and the second is
called an ordinal transformation.

Binarization of edges
Binarization is quite simple. It means the edges in the raw network take non-
binary values (values other than just 0s and 1s), and we need them to be 0s and
1s for some reason; often, so that an algorithm can work properly. How should
we do this rigorously?

The simplest thing to do is usually to just choose a threshold, and set edges
with weights less than the threshold to 0, and edges with weights greater than the
threshold to 1. Let’s take a look at how we can implement this using graspologic.
We first look at the network before binarization, and then after:
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from graspologic.utils import binarize

threshold = 0.4

A_bin = binarize(A_clean > threshold)

When we plot the cleaned adjacency matrix and the binarized adjacency ma-
trix in Figure 2.3.1(B), we see that it retains a lot of the “general idea” of the
weighted adjacency matrix, but is a lot simpler. Whereas the edge weights in
the left plot were continuous, we’ve now binarized the edges of the network to
only take two possible values (0 or 1). This has the effect of potentially reduc-
ing the variance (since we no longer will need as complicated of descriptions to
summarize the edge-weights), but potentially increasing the bias (since we have
simplified our data and have therefore potentially “thrown away” information
that might be important).

We also could have normalized these edge weights using a pass to ranks. The
rank of an edge is its index if all nonzero edges are ordered by their magnitude.
Through pass to ranks, nonzero edges are replaced with a function of their ordinal
rank, from smallest to largest, with the largest item having a rank of one, and the
smallest item having a rank of 1/(number of non-zero edges). This is called an
ordinal transformation, in that it preserves the orders of the edge-weights, but
discards all other information. The adjacency matrix of the ranked connectome
is shown in Figure 2.3.1(C).

from graspologic.utils import pass_to_ranks

A_ptr = pass_to_ranks(A_clean)

Figure 2.3.1 (A) The cleaned connectome, before re-weighting. (B) The binarized
connectome. (C) The ranked connectome.

This has shifted the histogram of edge-weights, as we can see by plotting a
histogram:

import seaborn as sns

fig, axs = plt.subplots(2, 1, figsize=(10, 10))

sns.histplot(A_clean[A_clean > 0].flatten(), ax=axs[0], color="gray")
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axs[0].set_xlabel("Edge weight")

axs[0].set_title("Histogram of human connectome, non-zero edge weights")

sns.histplot(A_ptr[A_ptr > 0].flatten(), ax=axs[1], color="gray")

axs[1].set_xlabel("ptr(Edge weight)")

axs[1].set_title("Histogram of human connectome, passed-to-ranks")

plt.tight_layout()

The histograms before and after passing the adjacency matrix to ranks are shown
in Figure 2.3.2.

Figure 2.3.2 (A) Histogram of the edge-weights in the adjacency matrix before
normalization. (B) Histogram of the edge weights in the adjacency matrix after ptr.

Passing to ranks has the desirable property that it bounds the network’s edge
weights to be between 0 and 1, as we can see above. This is often crucial if
we seek to compare two or more networks and the edge weights between the
networks differ in magnitude (an edge’s weight might mean something in relation
to another edge’s weight in that same network, but an edge’s weight means
nothing in relation to another edge’s weight in a separate network). Further,
passing to ranks allows us to lower our susceptibility to outliers, as we will see
in later chapters.

Again, we will turn the edge-weight transformation step into its own sklearn-
compatible class:

class FeatureScaler(BaseEstimator, TransformerMixin):

def fit(self, X):

return self
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def transform(self, X):

print("Scaling edge-weights...")

A_scaled = pass_to_ranks(X)

return (A_scaled)

feature_scaler = FeatureScaler()

A_cleaned_scaled = feature_scaler.transform(A_clean)

# Scaling edge-weights...

Transformation pipelines
As you can see, there are a number of data transformations that need to be exe-
cuted to prepare network data for machine learning algorithms. For this reason,
it may be desirable to develop a pipeline which automates the data preparation
process. We can create this using the Pipeline class from sklearn, which can
apply sequences of transformations to data inputs. Here is a simple pipeline for
doing all of the steps we have performed so far:

from sklearn.pipeline import Pipeline

num_pipeline = Pipeline([

(’cleaner’, CleanData()),

(’scaler’, FeatureScaler()),

])

A_xfm = num_pipeline.fit_transform(A)

# Cleaning data...

# Purging 0 nodes...

# Scaling edge-weights..

The pipeline class takes a list of name/estimator pairs defining a sequence
of steps. All but the last estimator must be transformers, which implement the
fit_transform()method. In our case, this is handled directly by the TransformerMixin
base class.

When you call the fit_transform() method of the numerical pipeline, it calls
the fit_transform() method on each of the transformers, and passes the output
of each call as the parameter to the next call, until it reaches the final estimator,
for which it just calls the fit() method.

Next, we see the real usefulness of the Pipeline module. The reason we went
to lengths to define a pipeline was that we wanted to have an easily reproducible
procedure that we could efficiently apply to new connectomes. This is easy to
apply to the second subject in our dataset:

A_xfm2 = num_pipeline.fit_transform(As[1])

# Cleaning data...

# Purging 0 nodes...

# Scaling edge-weights...
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2.4 Selecting and training a network machine learning model

You’ve got your data loaded and pre-processed. Now comes the fun part: mod-
eling your data. To do this, you first want to think about the generative process
that made it: what probabilistic model should you assume?

When you’ve made a decision, you should use that probabilistic model to
create a representation for your data, often by moving from network space, with
nodes and edges, to Euclidean space, with points on a coordinate axis. Moving
to Euclidean space is equivalent to converting to tabular data; we usually think
about geometry when we say “Euclidean”, and about data tables when we say
“tabular data”. The rows of the data table are equivalent to points in Euclidean
space, with the columns corresponding to the axes of that space.

Finally, you want to implement some downstream analysis method which helps
answer whatever question you set out to answer. For your case, you want to use
models and representations amenable to finding groups of correlated nodes.

2.4.1 Generating new representations from your data

As we briefly mentioned in Section 1.1, a major problem with learning from
network data is that networks in their rawest form are not tabular datasets.
To apply techniques from general machine learning (typically designed for tab-
ular datasets), we need to adapt the network to be compatible with tabular ap-
proaches, or adapt our general machine learning architecture for network layouts
such as adjacency matrices, which properly convey the dependencies in network
data. This is called representation learning, and is an important field of study
across machine learning.

We will use a representation learning technique called a spectral embedding,
which you will learn about in Chapter 5. Spectral embedding will appear many
times, whether you are studying one network, pairs of networks, or multiple
networks. Let’s use it to create representations for our connectomes, also called
embedding them:

from graspologic.embed import AdjacencySpectralEmbed

embedding = AdjacencySpectralEmbed(n_components=3, svd_seed=0).fit_transform(A_xfm)

An embedding takes the adjacency matrix, which is a matrix representation
of the entire network, and turns it into a tabular array. Each row of the array is
called an estimated latent position for a given node, and each column is called an
estimated latent dimension of the network. If there are n nodes, there are n rows
of the spectral embedding array, and if there are d estimated latent dimensions
of the network, there are d columns. The spectral embedding has taken the n×n
adjacency matrix, which we can’t use traditional machine learning algorithms
on, and transformed it into a n × d tabular array, which we can use machine
learning algorithms on. We’ll visualize this embedding using a pairs plot, which
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Figure 2.4.1 (A) The pairs plot for the estimated latent dimensions. (B) The pairs
plot with predicted communities of nodes via KMeans with 2 clusters.

is a scatter plot where each node is a single point in the plot, and the x and y
axes are different pairs of latent dimensions:

from graspologic.plot import pairplot

_ = pairplot(embedding, title="Spectral Embedding for connectome")

This pairs plot is shown in Figure 2.4.1(A).
The representation of the adjacency matrix we chose, which uses the spectral

embedding, can be tied to a statistical model with some assumptions. In particu-
lar, it ties to the stochastic block model described in Section 4.3. In a stochastic
block model, each node is a member of a subgroup, called a community, and
its connectivity probability to other nodes in the network is dictated by which
community it is a member of, and which community the other node is a member
of. This sounds a lot like the question that your colleague wanted you to explore,
since it gives a way to take the nodes of the network and form “functionally
similar” subgroups from them.

2.4.2 Using the representations to learn new features from the network

Now that we have a tabular representation of the data, we can use the intuition
and assumptions of the stochastic block model to cluster our nodes. Let’s see
what happens when we apply KMeans to our data:

from sklearn.cluster import KMeans

labels = KMeans(n_clusters=2, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels, legend_name="Predicter Clusters",

title="KMeans clustering")

The results of this pairs plot are shown in Figure 2.4.1(B). So, it looks like the
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k-means was able to learn two clusters of brain regions from our dataset. These
clusters are indicated by the “blobs” of points that are red or blue, respectively.

If we’re careful, we will notice we did something a little weird here. Why did we
choose two? Why not five? Why not eight? We chose two somewhat arbitrarily.
In general, when you don’t know what to expect from your data (we didn’t
know what to expect here, other than that we wanted a modestly sized way to
group the nodes up), it’s a good idea to use quantitative means to make these
determinations for you.

With KMeans, we can use a metric called the silhouette score to do this for us.
You choose the optimal number of clusters as the clustering with the highest
silhouette score (This is covered in Section 6.1 when you learn about commu-
nity detection). graspologic makes this process pretty straightforward with a
KMeansCluster class, which uses the silhouette score under the hood to predict
the number of clusters:

from graspologic.cluster import KMeansCluster

labels = KMeansCluster(max_clusters=10, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels, title="KMeans clustering, automatic selection",

legend_name="Predicted Clusters")

Dynamically identifying an ideal number of clusters might not necessarily get
you the same number when you repeat it multiple times: clustering algorithms
tend to include some randomization. Here, we got 3 predicted clusters. The pairs
plot for the embedded data with the new labels are in Figure 2.4.2(A). Note that
you might get a different number of estimated clusters than we did, because there
is some randomness in the unsupervised learning procedure that we used.

So, what about other possible approaches? Unless you are pretty confident
that the clusters you are looking for have “blobs” that are totally spherically
symmetric (basically, they look like “balls” in the dataset),K-means can be a bad
idea. Another strategy called the Gaussian Mixture Model, or GMM, handles this
slightly more elegantly, allowing the cluster blobs to be any ellipse-like shape. We
can use GMM and automatically select the number of clusters using the Bayesian
Information Criterion, or BIC, with AutoGMMCluster:

from graspologic.cluster import AutoGMMCluster

labels = AutoGMMCluster(max_components=10, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels, title="AutoGMM Clustering, automatic selection",

legend_name="Predicted Clusters")

The pairs plot for the embedded data with the labels determined by GMM in Figure
2.4.2(B). You might get a different number of clusters when you run it than us
(again, due to randomness); here, we got 7.
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Figure 2.4.2 (A) the pairs plot for the embedded data, with node communities
estimated by KMeans. (B) the pairs plot for the embedded data, with node
communities estimated by AutoGMM.

2.5 Fine tuning a network machine learning model

In Section 2.4 we took one of the fMRI networks, created a representation for
it with spectral decomposition, and used various clustering techniques to learn
about latent structure between the brain regions.

However, there is a big caveat: your colleague sent you over a hundred net-
works, and you ignored all but one of them. Surely, there’s something that you
can learn from all of them.

Fortunately, when you have a multiple network problem, there are plenty of
approaches that you can use to learn from all of them simultaneously. Let’s break
down how we can approach this.

We want to produce a representation of all of our networks. The corresponding
nodes of all of these networks represent the same areas of the brain. For all intents
and purposes, we can assume that these different nodes mean the same thing
across all of the different people, even if the networks vary for each individual.
We want to learn whether there is some shared group structure across all of the
different networks, so that we can find groups of related brain regions. To do this,
we will want to take all of our networks, and combine them to produce a single
embedding in which we can look at brain regions separately from individuals.
Does anything exist to help us?

A particular representation called MASE from Section 5.5.3 does just this. It
allows us to take many networks, and learn a single representation for the nodes
across all of the networks. This representation will use information from all of
the networks, so we will not have to worry about ignoring informative networks
like we did before.

from graspologic.embed import MultipleASE

# transform all the networks with pipeline utility

As_xfm = [num_pipeline.fit_transform(A) for A in As]
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# and embed them

embedding = MultipleASE(n_components=5, svd_seed=0).fit_transform(As_xfm)
_ = pairplot(embedding, title="Multiple spectral embedding of all connectomes")

The MASE embedding used all of the networks to produce a single latent
embedding called embedding. It is an array with rows corresponding to nodes
(brain regions), and columns corresponding to dimension. Let’s see what happens
when we apply our clustering method to this embedding:

labels = AutoGMMCluster(max_components=10, random_state=0).fit_predict(embedding)
_ = pairplot(embedding, labels=labels,

title="Multiple spectral embedding of all connectomes",

legend_name="Predicted Clusters")

The pairs plot of the MASE embedding with labels estimated by GMM is shown in
Figure 2.5.1. Again, AutoGMMCluster, the clustering algorithm, has some element
of randomness to it. Don’t be concerned if you don’t get the exact same number
of predicted clusters as we did, or if your clusters look a little different.

Figure 2.5.1 The MASE embedding, with labels learned by GMM.
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2.6 Discover and visualize the system to gain insights

We now have a codebase built to read in the input data, get it cleaned up, embed
it using information from all networks, and predict brain region clusters.

We now arrive at the most important part of any computational analysis:
making sense of whatever it is that we did.

How could we visualize node clusters (formally called communities)? We al-
ready known about the pairs plot, which we saw in Figure 2.5.1(B).

The nodes in this analysis correspond to areas of the brain, and our goal is to
figure out if there are groups of brain regions that are related to each other. We
can therefore gain insight by visualizing how the clusters we found really look in
the brain’s natural space.

We picked a set of networks such that the nodes correspond to known 3D
points in the brain. This means that, with some minor work, we can figure out
the coordinates of the individual nodes for the brain. You don’t need to worry too
much about how this code works; at a high-level, it just obtains 3D coordinates
for the nodes of the network in a json file, and then parses them into a pandas

dataframe:

from urllib import request

import json

import pandas as pd

from pathlib import Path

coord_dest = os.path.join(FMRI_PATH, "coordinates.json")

with open(coord_dest) as coord_f:

coords = []

for roiname, contents in json.load(coord_f)["rois"].items():

try:

if roiname != "0":

coord_roi = {"x" : contents["center"][0], "y" : contents["center"][1], "z" :

contents["center"][2]}

coords.append(coord_roi)

except:

continue

coords_df = pd.DataFrame(coords)

Now that we have the coordinates, let’s try plotting the nodes, but in their
native spatial position. Here, the color will indicate the predicted label, from
our clustering. The slices we show will be a saggital slice through the brain. A
saggital slice shows the brain nodes oriented from back (left of the plot) of the
brain to front (right of the plot), and from bottom (bottom of the plot) to top
(top of the plot). On the left, we show the brain with the lobe annotations, and
on the right, the predicted labels of each node in color, where each node is shown
in its true physical location:

import matplotlib.image as mpimg
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coords_df["Community"] = labels

coords_df[’Community’] = coords_df[’Community’].astype(’category’)

fig, axs = plt.subplots(1, 2, figsize=(18, 6))

axs[0].imshow(mpimg.imread(’./Images/lobes.png’))

axs[0].set_axis_off()

sns.scatterplot(x="y", y="z", data=coords_df, hue="Community", ax=axs[1])

Figure 2.6.1 (left) brain lobe annotations for different areas of the brain (created by
[5]), (right) predicted node communities oriented by spatial position of each node in
the brain.

The resulting plot is shown in Figure 2.6.1. So, the estimated communities of
each node don’t quite perfectly align with the brain lobe that the node is in.
However, nodes tend to be spatially close to other nodes in the same estimated
community. Notice, for instance, that a lot of nodes in the left side of the brain,
the part marked “occipital lobe” in the plot, are the same color. In our plot, these
nodes are red; in your plot, they might be a different color.

In neuroimaging, there tend to be “groups” of brain areas that are organized
together, which are delineated in files called “parcellations”. The idea is that they
“parcellate” (segment) different areas of the brain based on two factors: whether
the areas of the brain work together, and whether they are located near each
other in the brain. This is a generalization of the concept of “brain lobes” that
we briefly went over above.

Let’s see how well the labels we obtained align with one of these parcellations,
known as the “Yeo7” parcellation. We will begin by finding which “Yeo7” parcels
the nodes of our network are positioned in. We will do this using some code
borrowed from the neuroparc repository [6]. The code below will first grab the
mapping of image pixels to Yeo7 parcels, and then grab the mapping of image
pixels to nodes in our network (Schaefer400 parcels). These are stored in the files
with the extensions .nii.gz below. Once we have those files, we will compare
the parcels of nodes in our network to figure out which Yeo7 parcels they fall
within spatially:

import datasets.dice as dice

# obtain the Yeo7 parcellation
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group_dest = os.path.join("./datasets/", "Yeo-7_space-MNI152NLin6_res-2x2x2.nii.gz")

request.urlretrieve("https://github.com/neurodata/neuroparc/" +

"blob/master/atlases/label/Human/" +

"Yeo-7_space-MNI152NLin6_res-2x2x2.nii.gz?raw=true", group_dest);

# obtain the Shaefer parcellation

roi_dest = os.path.join("./datasets/", parcellation +

"_space-MNI152NLin6_res-2x2x2.nii.gz")

request.urlretrieve("https://github.com/neurodata/neuroparc/" +

"blob/master/atlases/label/Human/" +

parcellation + "_space-MNI152NLin6_res-2x2x2.nii.gz?raw=true", roi_dest);

# decipher which Schaefer labels fall within Yeo7 regions

dicemap, _, _ = dice.dice_roi("./datasets/", "./datasets",

"Yeo-7_space-MNI152NLin6_res-2x2x2.nii.gz",

parcellation + "_space-MNI152NLin6_res-2x2x2.nii.gz",

verbose=False)

actual_cluster = np.argmax(dicemap, axis=0)[1:] - 1

So, to be clear, we have now produced two mappings:

1 For each node, we have an estimated (predicted) community for the node. This
is a delineation on the basis of functional similarity of the nodes from the data
that we observed across the networks.

2 For each node, we have a Yeo7 region for the node. This will serve as the “True
parcel” for the nodes.

Next, we will try to figure out whether our predicted communities and the true
communities align with a confusion matrix. Its rows are each of the true parcels
in the reference (Yeo7 region), and its columns are the predicted communities
that we found above. The entries of the matrix are the counts of nodes in the
network that are assigned to a given predicted community and a given parcel:

import contextlib

from sklearn.metrics import confusion_matrix

from graphbook_code import cmaps

# make confusion matrix

cf_matrix = confusion_matrix(actual_cluster, labels)

# and plot it

ax = sns.heatmap(cf_matrix, cmap=cmaps["sequential"])

ax.set_title("Confusion matrix")

ax.set_ylabel("True Parcel")

ax.set_xlabel("Predicted Community")

The resulting plot is shown in Figure 2.6.2. The MASE embedding followed by
clustering tends to find groups of nodes that have similar connectivity patterns in
the connectomes (it will do a good job at finding the nodes that work together).
The nodes in the same community tend to behave “as a unit”, in that they tend
to be active/inactive together. What the plot above shows is that nodes that
have similar connectivity patterns (from the networks) tend to also be in the
same true parcel, which makes sense since the parcels are based on connectivity
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Figure 2.6.2 The confusion matrix of the estimated clusters for each node in the
networks, compared to the parcel that each node is in.

profiles from brains. The clustering is not perfect, in that it is never the case that
a single predicted label corresponds to exactly one true label. If that were the
case, we would expect nodes assigned to each column in the “confusion matrix”
to only have one possible true label assigned to them (which is not quite what
we saw here).

Taking these conclusions together, we find that some areas of the brain (such
as the occipital and parietal areas) feature nodes which are both functionally and
spatially similar: they tend to show similar connectivity patterns with respect to
other groups of nodes in the network, and are in similar spatial positions in the
brain. On the other hand, for other areas of the brain, while the nodes may be
functionally similar, they might not necessarily be spatially similar. This is where
the domain expertise kicks in: we don’t know how to interpret this particular
aspect of our finding, but maybe our colleagues do.

Further, while this analysis only really ended up looking at whether different
groups of regions worked together, there’s no reason we couldn’t also incorpo-
rate spatial information about the nodes into our analysis. In Section 5.6, we will
learn techniques for incorporating both the network data itself and other infor-
mation about the nodes through a technique called Covariate-Assisted Spectral
Embedding (CASE).

And this is where the fun of network machine learning comes into play: network
machine learning is a tool not only to apply algorithms to data, but to facilitate
learning new things about that data as well. We might get some predictable
conclusions (such as some of the nodes being both functionally and spatially
similar), and we might get some unpredictable conclusions (such as some of the
nodes being functionally, but not spatially, similar). Your ability to understand
network machine learning, while crucial, is going to go hand in hand with your
ability to understand the intricacies of the domain you want to apply network
machine learning to. We hope that we can help with the former part; we will
leave the latter to you.
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2.6.1 Try it out

This chapter gave a small scale peek at what a network machine learning project
looks like, and a brief introduction to some tools we can use to gain novel insights
from our network data. The process from obtaining data to choosing appropriate
network machine learning problems can often be extremely arduous. In fact, as
a network machine learning scientist, you might find that just obtaining data in
a useful form (a network) and cleaning the data to be usable takes an enormous
chunk of your time.

If you haven’t already done so, now is a fantastic time to grab your laptop,
select a network dataset you are interested in, and start trying to work through
the whole process from A to Z. If you need some pointers, the graspologic

package makes several datasets available [7]. We recommend working through the
contents of this book by first using the example data presented in the chapter,
and then trying to apply the techniques to your own new data.
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Part II

Representations





3 Characterizing and preparing
network data

In Section 1.3, we introduced Figure 1.3.4, which will recur throughout this book
to contextualize the process of learning from networks. Figure 3.0.1 dives into
the first step after obtaining our data: describing our network sample. Chapter
3 takes a careful look at this step: we explore basic properties, relationships,
statistics, representations, and preprocessing methods for samples of network-
valued data.

Figure 3.0.1 The statistical learning pipeline.

We cover the following:

1 Section 3.1 introduces the basic properties and representations of networks,
including a formal description of the adjacency matrix.

2 Section 3.2 covers descriptive properties of nodes and relationships between
nodes in a network.

3 Section 3.3 explains key network summary statistics like density, clustering
coefficient, and average path length.

4 Section 3.4 discusses matrix representations of networks beyond adjacency
matrices, including degree and Laplacian matrices.

5 Section 3.5 covers subnetworks and connected components within larger net-
works.

6 Sections 3.6 and 3.7 explain regularization techniques for networks, including
node pruning and edge thresholding.



48 Characterizing and preparing network data

7 Section 3.8 describes methods for rescaling edge weights in weighted networks.

We will often use the term “observed network” or “network sample”. As de-
scribed in 1.3, we call it this because the sample of network data that we observe
constitutes only a noisy observation of the population of network data that we
actually want to study. In Chapter , we will explore how we can use random net-
work models to account for the imperfections in our observed network sample.



Characterizing and preparing network data 49

3.1 The Basics of Networks

In Section 1.1, we introduced the concept of networks as collections of nodes
and edges. Together, the nodes and edges are known as the topology of the
network. This section expands on that foundation, developing a framework
in which to understand network properties and representations.

We begin with adjacency matrices, the primary mathematical represen-
tation for network data. The adjacency matrix encodes the nodes and edges
of a network in matrix form, providing a foundation for network analysis.

We then explore key properties of networks, including:

1 Edge directionality,
2 Node loops, and
3 Edge weightedness.

We use a running example of New York City boroughs connected by major
bridges to illustrate these concepts concretely. Later, Section 3.4 explores
the degree matrix and the Laplacian. Sections 3.8, 3.6, and 3.7 build on
concepts from this Section to develop preprocessing techniques.

The fundamental object we use to describe networks is called the adjacency
matrix [1], which is a large square matrix whose (i, j)th entry is 0 if an edge does
not exist between nodes i and j, and nonzero if an edge does exist. Many ways
to represent networks can be directly derived from the adjacency matrix.

3.1.1 Adjacency Matrices for simple networks

Let’s say we have a network with n nodes. We give each node an index (usually
some value between 1 and n, with one value per node) and then we create an
n × n matrix. If there is an edge between node i and node j, we fill the (i, j)th

and (j, i)th values of the matrix with a value of 1, and we say that nodes i and
j are adjacent. We leave it as 0 otherwise.

The adjacency matrix looks like this:

A =

a11 ... a1n
...

. . .
...

an1 ... ann

 ,
Let’s see this in action. We will make a small, simple network with only three

nodes, and then see what it looks like as an adjacency matrix. To visualize this
network, we use a layout plot, provided by nx.draw_network().

import numpy as np



50 Characterizing and preparing network data

import networkx as nx

G = nx.DiGraph()

# add nodes to the network

G.add_node("1", pos=(1,1))

G.add_node("2", pos=(4,4))

G.add_node("3", pos=(4,2))

# add edges to the network

G.add_edge("1", "2")

G.add_edge("2", "1")

G.add_edge("1", "3")

G.add_edge("3", "1")

# the coordinates in space to use for plotting the nodes

# in the layout plot

pos = {"1": (0, 0), "2": (1, 0), "3": (.5, .5)}

nx.draw_networkx(G, with_labels=True, node_color="white", pos=pos,

font_size=10, font_color="black", arrows=False, edge_color="black",

width=1)

Figure 3.1.1 (A) A layout plot of the network, where nodes are circles and edges are
the lines connecting them. (B) the network, visualized as an adjacency matrix.

The resulting plot of the network is shown in Figure 3.1.1(A). Our network
has three nodes, labeled 1, 2, and 3. Each of these three nodes is either adjacent
or not adjacent to the other nodes. We’ll make a square matrix A, with 3 rows
and 3 columns, so that each node has its own row and column associated to it.

So, let’s fill out the matrix. We start with the first row, which corresponds to
the first node, and move along the columns. If there is an edge between the first
node and the node whose index matches the current column, we put a 1 in the
current location. If the two nodes aren’t adjacent, we add a 0. When we’re done
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with the first row, we move on to the second. We keep going until the whole
matrix is filled with 0’s and 1’s.

Since the second and third nodes aren’t adjacent, there is a 0 in locations
a2,1 and a1,2. There are also zeroes along the diagonals, since nodes don’t have
edges with themselves. Here we plotted the adjacency matrix using heatmap();
we won’t always show this plot in the future.

from graphbook_code import heatmap

import matplotlib.pyplot as plt

import seaborn as sns

# convert the networkx graph to a numpy array

A = np.asarray(nx.to_numpy_array(G))

heatmap(A, annot=True, linewidths=.1, cbar=False,

title="Adjacency matrix", xticklabels=[1,2,3], xtitle="Node",

yticklabels=[1,2,3], ytitle="Node"

)

The resulting adjacency matrix is shown in Figure 3.1.1(B).

3.1.2 A running example for the sections ahead

Now that we understand the basics of the adjacency matrix, we are ready for a
running example that we will use for the next few sections.

Let’s say we have a network representing the five boroughs of New York (Staten
Island SI, Brooklyn BK, Queens Q, the Bronx BX, and Manhattan MH). The
nodes in our network are the five boroughs. An edge (i, j) of our network exists
if one can travel from borough i to borough j along a bridge. Let’s start by
defining a network with networkx’s DiGraph() function:

import networkx as nx

from graphbook_code import heatmap

# create an undirected network G

G = nx.Graph()

# add the nodes like before

G.add_node("SI", pos=(2,1))

G.add_node("MH", pos=(4,4))

G.add_node("BK", pos=(4,1.7))

G.add_node("Q", pos=(6,3))

G.add_node("BX", pos=(6,6))

# specify boroughs that are adjacent to one another

pos = nx.get_node_attributes(G, ’pos’)

G.add_edge("SI", "BK")

G.add_edge("MH", "BK")

G.add_edge("BK", "Q")

G.add_edge("MH", "Q")

G.add_edge("MH", "BX")

G.add_edge("Q", "BX")
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Figure 3.1.2 (A) a map of New York. We use this to construct a network of New
York, where the nodes are boroughs of New York and the edges are bridges between
different boroughs. (B) Visualized as a layout plot. (C) Visualized as a heatmap.

A = nx.to_numpy_array(G)

# plotting

nx.draw_networkx(G, with_labels=True, node_color="black", pos=pos,

font_color="white", edge_color="black")

# pass in the xticklabels and yticklabels corresponding to the

# appropriately ordered boroughs (in the order we constructed them)

heatmap(A.astype(int), xticklabels=["SI", "MH", "BK", "Q", "BX"],

yticklabels=["SI", "MH", "BK", "Q", "BX"],

xtitle="Borough", ytitle="Borough"

)

Figure 3.1.2 shows a map of New York City, a layout plot representation of a
network derived from the the boroughs of New York, and an adjacency matrix
as a heatmap of this network.

3.1.3 Directionality and networks

There is a concept of directedness in edges. We have two nodes i and j. In an
undirected network, if there is an edge from node i to node j, there is also an
edge from j to i; the two nodes are simply adjacent. In a directed network, this
is not necessarily the case: an edge from j to i doesn’t imply an edge from i to
j. We will primarily deal with undirected networks in this book, but it is useful
to know that directed networks exist.

Let’s explore this idea with the New York City borough example. When we
decide to travel from borough i to borough j, we care about whether we can
actually drive in that direction. The directedness of the bridge network describes
whether we need to worry about one-way bridges and bridge closures. If our
network contains one-way bridges, then a bridge from borough i to borough
j doesn’t necessarily imply that a path along that bridge from borough j to
borough i exists. If, for instance, the bridges in the Brooklyn (BK) to Staten



Characterizing and preparing network data 53

Island (SI) direction are closed, this would appear as a directed edge in our
network.

We typically show directionality using arrows in the layout plot. Note that
there is no arrow going from Brooklyn to Staten Island along this edge, so we
cannot drive directly from BK to SI via a bridge. We can do this by removing
the arrowhead from BK to SI, although there is still an arrowhead from SI to
BK:

from copy import deepcopy

G_dir = G.to_directed()

# remove the edge from BK to SI

G_dir.remove_edge("BK", "SI")

nx.draw_networkx(G_dir, with_labels=True, node_color="black", pos=pos,

font_color="white", arrows=True, edge_color="black")

Note that we passed the arrows=True argument, which tells networkx to include
the arrows in our plot. A plot of this network is shown in Figure 3.1.3(B). There
are bi-directional arrows (arrows from one node to the other, as well as the
reverse) for all pairs of nodes except Brooklyn and Staten Island. When we see
a layout plot without any arrows like in Figure 3.1.2(B), this typically indicates
that the network is undirected.

Figure 3.1.3 (A) The undirected network. (B) A plot of the network with the bridge
from BK to SI out of service. (C) a plot of the network with a self-loop.

A plot of the undirected network is shown in Figure 3.1.3(A). For the adjacency
matrix A, remember that an edge between nodes i and j is represented by the
adjacency value aij . This means that if the network is undirected, aij = aji for
all pairs of nodes i and j. By definition, this tells us that the adjacency matrix
A is symmetric, so A = A>. We can verify this condition with graspologic:

from graspologic.utils import is_symmetric

A = nx.to_numpy_array(G)

is_symmetric(A)
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# True

A_dir = nx.to_numpy_array(G_dir)

is_symmetric(A_dir)

# False

3.1.4 Loops and networks

If we are already in a borough, why would we want to take a bridge to that
same borough? This logic relates to the concept of self-loops in a network. A
self-loop in a network describes whether nodes can connect back to themselves.
For instance, consider the following loop on Staten Island. This would have the
interpretation of a bridge which connects Staten Island back to itself:

G_loopy = deepcopy(G)

# add edge from SI to itself

G_loopy.add_edge("SI", "SI")

nx.draw_networkx(G_loopy, with_labels=True, node_color="black", pos=pos,

font_color="white", edge_color="black")

A plot of this network is shown in Figure 3.1.3(C). A network is loopless if
self-loops are not possible. It is also important to note that both directed and
undirected network can have self-loops; we only show the undirected case.

For the adjacency matrix A, a self-loop would be represented by the adjacencies
aii for all nodes i, the diagonal entries of A. Therefore, for a loopless network, all
adjacencies aii on the diagonal do not exist. Mathematically, we represent this
by defining the diagonal entries to be 0, which means that the matrix is hollow.
This property is often abbreviated by stating that the diagonal of the adjacency
matrix is 0, or diag(A) = 0. It is important to understand that if a network is
loopless, there is a theoretical distinction between 0 and does not exist. Denoting
the diagonal in an adjacency matrix of a loopless network with 0 is a convenience
and a convention for the field.

We can verify this condition using:

from graspologic.utils import is_loopless

is_loopless(A)

# True

A_loopy = nx.to_numpy_array(G_loopy)

is_loopless(A_loopy)

# False

3.1.5 Weightedness and networks

For most examples in this book, we will discuss unweighted or binary networks. A
network is unweighted or binary if we only care about whether edges are present
or absent. In an unweighted network, a potential edge aij takes the value 1 if
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there is an edge from node i to node j, and takes the value 0 if there is not an
edge from node i to node j.

In our borough example, we could use edge-weights w(i, j) to describe the
average speed of traffic on the bridge. The network is undirected, so we do not
have to worry about directionality differences. The edge-weight is indicated by
the number along the corresponding edge.

G_weight = nx.Graph()

G_weight.add_node("SI", pos=(2,1))

G_weight.add_node("MH", pos=(4,4))

G_weight.add_node("BK", pos=(4,1.7))

G_weight.add_node("Q", pos=(6,3))

G_weight.add_node("BX", pos=(6,6))

# this time, we add weights to the edges

pos = nx.get_node_attributes(G, ’pos’)

G_weight.add_edge("SI", "BK", weight=20)

G_weight.add_edge("MH", "BK", weight=15)

G_weight.add_edge("BK", "Q", weight=5)

G_weight.add_edge("MH", "Q", weight=15)

G_weight.add_edge("MH", "BX", weight=5)

G_weight.add_edge("Q", "BX", weight=15)

edge_wts = nx.get_edge_attributes(G_weight, "weight")

nx.draw_networkx(G_weight, with_labels=True, node_color="black", pos=pos,

font_color="white", edge_color="black")

nx.draw_networkx_edge_labels(G_weight, pos, edge_wts)

We can identify whether a network is unweighted using is_unweighted():

from graspologic.utils import is_unweighted

A_weight = nx.to_numpy_array(G_weight)

is_unweighted(A)

# True

is_unweighted(A_weight)

# False

In a lot of your data analyses, you will come across weighted networks, so we
give you an example of what they will look like in Figure 3.1.4(B).

The weighted adjacency matrix
In most situations, it is favorable to organize these weights w(i, j) in a weighted
adjacency matrix W . The weighted adjacency matrix is simply the n×n matrix
whose entries (for adjacent pairs of nodes) wij are the weights w(i, j) between
all pairs of nodes i and j.

We will need to be careful to choose an appropriate way to represent the idea
that no edge exists between a pair of nodes in the weighted adjacency matrix. In
our example, traffic moving at 0 mph is approximately similar to two boroughs
having no bridge between them (e.g., traffic at a standstill still means we cannot
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Figure 3.1.4 The New York City borough network, where weights indicate the average
speed of traffic. (A) a layout plot for the weighted network, and (B) a heatmap of an
adjacency matrix for the weighted network.

move between a pair of nodes), and therefore we could just set wij to 0 for nodes
not linked by a bridge and the weight of 0 would make sense for both adjacent
and non-adjacent nodes alike.

Consider, for instance, if the edge-weights instead had represent the travel
time between a pair of nodes i and j. In this case, a travel time of zero would
indicate that in no time we can get from node i to j. In this situation, it might
instead make more sense to use a value other than 0 for non-adjacent pairs of
nodes (such as infinity, since you can never travel from one node to the other
along a non-existant bridge).

For this reason, the utility for converting a networkx network to a weighted
adjacency matrix has an argument nonedge which indicates the default weight
for non-adjacent nodes. In our example where edge-weight represents average
speed of traffic, we can simply specify nonedge=0:

A_weight = nx.to_numpy_array(G_weight, nonedge=0).astype(float)

heatmap(A_weight, xticklabels=["SI", "MH", "BK", "Q", "BX"],

yticklabels=["SI", "MH", "BK", "Q", "BX"], title="Weighted adjacency matrix",

xtitle="Borough", ytitle="Borough")

The heatmap for the borough network weighted adjacency matrix is shown in
Figure 3.1.4(B).
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Box 3.1.1 This book considers simple networks

A simple network is loopless, undirected, and unweighted. We develop most
of the examples and techniques in this book for simple networks. Fortunately,
focusing on simple networks is not usually a significant limitation, because the
techniques and packages we describe extend naturally to directed networks
and networks with weights or loops. Most approaches discussed in this book
apply to these more complex network types.
Software package like networkx, graspologic, or igraph typically warn or raise
errors if a technique is incompatible with a given network type. When imple-
menting network analysis methods independently, we recommend reviewing
documentation to ensure the method is compatible with the network struc-
ture.

3.2 Node Properties and Relationships

In Section 3.1, we explored the general properties of networks and their
edges. Just as networks have properties, so too do individual nodes or groups
of nodes. We explore several of these node properties here. We will cover:

1 Node neighbors and incidences, which describe how nodes are linked to
each other,

2 Node degree, which quantifies the number of edges incident to a node,
and

3 Path length, which describes how far apart two nodes are in the network.

Exploring these node properties often provides quick intuition on the
overall network. In Section 3.3, we will build on these concepts and the
concepts discussed in Section 3.1 to explore statistics that summarize net-
work and node properties. The degree matrix in Section 3.4 will then solidify
the idea of a node degree into its own matrix representation.

3.2.1 Node neighbors and incidences

The simplest property of a network is adjacency. A pair of nodes i and j in an
undirected network are neighbors (or, adjacent) if an edge exists between them.
In the adjacency matrix, two nodes i and j are neighbors if their potential edge
aij is nonzero. A node is incident to an edge if it is one of the two nodes linked
by that edge.

In the bridge example in Figure 3.1.2(B), we might say that MH and BK are
neighbors because there is a bridge between them (the Brooklyn Bridge, amongst
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other bridges). Alternatively, we could say that both MH and BK are incident
to the Brooklyn Bridge.

3.2.2 Node degree quantifies the number of edges

The simplest summary statistic for a node is known as the node degree. The node
degree of a node i in a simple network is the number of nodes with which it is a
neighbor. Remember that if two nodes are not neighbors, the adjacency matrix
entry corresponding to this potential edge takes a value of zero. This means that
we can just count the potential edges aij for a node i to get its degree. We do
this by just summing the ith row (or equivalently, if the network is undirected,
its ith column):

di = degree(i) ,
n∑
j=1

aij =

n∑
j=1

aji (3.1)

The reason for the equality of these expressions is that for an undirected net-
work, the adjacency matrix is symmetric, so aij = aji. This is not just counting
edges which exist, since it counts every potential edge for node i. If an edge
exists, aij takes a value of 1, whereas if an edge does not exist, aij takes a value
of 0. This means that every aij is either zero or one:

di =

n∑
j=1

aij

=
∑

j:aij=1

aij +
∑

j:aij=0

aij

=
∑

j:aij=1

1 + 0

In the left sum, since every aij is defined to be 1, this is just the number of
times that node i neighbors another node. The right sum has every aij defined
to be zero, so this is just zero.

For instance, the node BK in our example touches three edges, indicated in
bold in Figure 3.2.1(A), so degree(BK) = 3. In the corresponding adjacency
matrix, summing the entries for node BK along its row outputs three. The
entries which would be summed row-wise or column wise for BK are shown in
black boxes, in Figure 3.2.1(B).

Further, if the network is loopless, we can explicitly exclude the diagonal from
our computation, because for a node i, aii = 0. So Equation (3.1) can equivalently
be written:

di = degree(i) =
∑
j 6=i

aij =
∑
j 6=i

aji (3.2)

This expression will be useful when computing properties of random networks.
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Figure 3.2.1 A case-study of the BK borough. (A) shows that BK has three
neighbors, SI, MH, and Q (edges to SI/MH/Q are bold-faced). (B) shows the axes of
the adjacency matrix which could also be summed to derive this fact. Note the
row/column corresponding to BK (black boxes) has a sum value of three.

Degrees for directed networks
In directed networks, we distinguish between the in-degree and out-degree of a
node.

The out-degree of a node i in a directed network is its number of outgoing
connections, which we obtain by summing node i’s outgoing connections along
its row i of the adjacency matrix:

douti =

n∑
j=1

aij

Whereas the in-degree of a node i is its number of incoming connections, which
we obtain by summing node i’s incoming connections along its column i:

dini =

n∑
j=1

aji

Here, aji is 1 if there is a directed edge from node j to node i, and 0 otherwise.
Note that the expression in Equation (3.1) has defined the in- and out-degrees
to be equal for undirected networks.

We can use the following code to calculate the in-degrees and the out-degrees
for a network, given its adjacency matrix.

def in_degrees(A):

"""

A function to compute the in-degrees for the nodes of an adjacency matrix.

"""

return A.sum(axis=1)

def out_degrees(A):

"""

A function to compute the out-degrees for the nodes of an adjacency matrix.
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"""

return A.sum(axis=0)

# get the degree for node BK, which is node 2 in our network,

# using either the in- or out-degree

print(in_degrees(A)[2])

# 3.0

Degrees for weighted networks
If the network is weighted, then all of the logic we’ve learned so far applies
directly both for directed and undirected networks. The adjacency matrix A

has entries aij = w(i, j) if the edge exists between nodes i and j and usually 0

otherwise. This means that when we compute the degrees (either the undirected
node degree, the in-degree, or the out-degree), we instead sum edge weights when
the edge exists, and usually 0s otherwise. Note that the defining and interpreting
node degrees in weighted networks may change based on the properties of the
edge weights. For instance, a 0 place-holder for “non-existent” edges could be
substituted for other values depending on the edge weight interpretations.

3.2.3 The path length describes how far two nodes are

How many bridges would you need to cross to get from Staten Island to the
Bronx? This is an example of a path in a network. A path between two nodes
i and j is a sequence of edges which starts at node i, and traverses through
other nodes in the network until reaching node j. By convention, paths do not
traverse the same node or set of nodes multiple times. Two nodes are described
as connected if a path exists between them. The path length is the number of
edges in the path. In the New York example, one could travel from Staten Island
to the Bronx in four possible ways, two of which are indicated in in (B) and (C)
in Figure 3.2.2.

Figure 3.2.2 (A) The New York boroughs. (B) A length 3 path from SI to BX. (C) A
length 4 path from SI to BX.

In this case, there are only four paths from SI to BX which do not visit the
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same node more than once, but in a larger network, there may be many possible
paths from one node to another. We will usually be interested in one particular
path, the shortest path. The shortest path length or distance between nodes i
and j is the path with the smallest path length that connects nodes i and j.
In our example, a shortest path is indicated by Figure 3.2.2(B), in which the
shortest path length is three. There are multiple shortest paths of length three
in this example. If it is not possible to get from node i to node j using edges of
the network, the shortest path length is defined to be infinite.

A common statistic is the distance matrix for the network D, which is the
n×n matrix whose entries dij are the shortest path lengths between all pairs of
nodes in the network. For the New York example, we can compute and visualize
the distance matrix using:

D = nx.floyd_warshall_numpy(G)

heatmap(D, title="Distance matrix", xticklabels=["SI", "MH", "BK", "Q", "BX"],

yticklabels=["SI", "MH", "BK", "Q", "BX"], xtitle="Borough", ytitle="Borough")

Paths in directed networks
If the network is directed, the interpretation of a path is the same, except we
have to be careful to account for the directionality when finding paths from one
node to the next. For instance, in Figure 3.1.3(B), there is a path from the node
SI to BK, MH, Q, or BX, but there are no paths from BK, MH, Q, nor BX to
SI (since the bridge from BK to SI is out of service).

Paths in weighted networks
If the network is weighted, path lengths typically are instead the sum of edge-
weights along the path. For instance, in Figure 3.1.4(A), the path from SI to MH
via BK would have a path length of 35.
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3.3 Network summary statistics

We have now explored the basic properties and representations of networks
in Section 3.1, as well as descriptive properties of nodes and relationships
between nodes in Section 3.2.

Building on this foundation, we now turn our attention to network sum-
mary statistics, which provide concise quantitative measures of network
structure and characteristics.

In this section, we will learn several network summary statistics, includ-
ing:

1 The network density, which quantifies how many edges are present rela-
tive to the total possible edges,

2 The clustering coefficient, which measures the tendency of nodes to form
tightly connected groups, and

3 The average shortest path length, which captures the typical distance
between pairs of nodes in the network.

These summary statistics complement the network representations we
will explore in Chapter 5. They provide a ‘birds-eye’ understanding of the
relationships within and between networks, though they should be compli-
mented by direct examination of the full network structure. Section 4.6.3.1
extends the concept of network density to random networks, and Section
6.2 explores how sparsity impacts computational efficiency in large-scale
network analysis.

3.3.1 The network density

Given the adjacency matrix A of a simple network, what fraction of the possible
edges actually exist?

To understand this quantity, first we must understand how many edges are
possible in a network. This is where the “caveat” about loopless networks come
in: we need to count in such a way that we don’t accidentally assume that self-
loops are potential edges; since the self-loops are simply not possible, we need
to ignore them.

There are n total nodes in a network, so A is an n × n matrix. Therefore, A
has n2 total entries. However, over half of these entries are redundant for simple
networks. Since we assume the network is simple, it is by definition loopless. This
means that every entry is by default 0 along the diagonal. Since each node i has
a corresponding diagonal entry aii, this comes to n entries that we do not need
to count. This leaves n2 total possible edges (the total number of entries in the
matrix A) minus n (the total number of entries which are automatically 0), or
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Box 3.3.1 Shorthands in network science

There are a number of short-hands to be familiar with in network science.
The most common ones are:

1 Double sums
∑n
i=1

∑n
j=1 xij will often be abbreviated as

∑n
i,j=1 xij . i and

j are both summing over the same indexing set {1, ..., n}, and therefore it
is redundant to write it twice.

2 Likewise, triple sums
∑n
i=1

∑n
j=1

∑n
k=1 xijk will often be abbreviated as∑n

i,j,k=1 xijk.
3 There may be ambiguous sums, such as

∑
i,j xij . This would sum over all

possible values i and j could take that would make sense when considered
with the summand (e.g., the xij term). For example, if xij are the entries
of an n×m matrix X, this sum would be

∑n
i=1

∑m
j=1 xij .

4 Sums may index inequalities, such as
∑
i6=j xij . This means to consider all

possible pairs (i, j) where i 6= j. Two of these appear frequently for square
adjacency matrices A:
•
∑
i 6=j aij , which means

∑n
i=1

∑
j 6=i aij .

•
∑
j>i aij , which means

∑n
i=1

∑n
j=i+1 aij .

n2 − n = n(n − 1). This quantity represents the total number of possible edges
not in the diagonal.

If the network is undirected, every node that is not in the diagonal is also
being double counted. This is because in the adjacency matrix of an undirected
network, for every pair of nodes i and j, aij = aji. So we are overcounting the
number of possible edges not in the diagonal by a factor of two. This leaves the
total number of possible edges in the network as 1

2n(n− 1): the total number of
possible edges not in the diagonal reduced by a factor of two. This quantity is
notated by

(
n
2

)
, which is read as “n choose 2”. In the network in Figure 3.3.1(B),

we see all of the possible edges indicated. If you were to count them up, there
are 1

2 · 5 · (5− 1) = 10 possible edges.
Now, how many edges actually exist in the network? The sum of all of the

entries of A can be represented by the quantity
∑n
i,j=1 aij . For each node i, we

sum all of the aij , and then we add these across all of the nodes. Since A is
loopless, we don’t need to count the diagonal entries. This brings the quantity
to
∑
i 6=j aij , since we don’t need to count any edges along the diagonal of A.

Next, due to the undirected property, if an edge in A exists between nodes i and
j, both aij and aji take the value of 1. To obtain the edge count of A, we only
need to count either aij or aji. By convention we will always count the entries
aij in the upper triangle of A, which are the entries where j > i. This brings the
quantity to

∑
j>i aij .

The six total edges in the network are indicated in Figure 3.3.1(A).
To put it all together, the network density indicates the density of edges which
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Figure 3.3.1 (A) The New York Borough network. The actual edges are shown. (B)
The New York Borough network with all possible potential edges.

are present in the network. For a simple network, the network density can be
defined as the ratio between the total number of edges in A and the total number
of edges possible in A:

density(A) =

∑
j>i aij(
n
2

) =
2
∑
j>i aij

n(n− 1)
(3.3)

In our example, this is simply the ratio of edges which actually exist to edges
which could possibly exist, which is 6

10 = 0.6. We can use networkx to compute
the network density using the function density():

nx.density(G)

# 0.6

In a simple network, there are additional ways this equation can be written.
Notice the following inequality, by definition of a simple network:

n∑
i,j=1

aij =
∑
j>i

aij +
∑
i>j

aij +

n∑
i=1

aii

=
∑
j>i

aij +
∑
i>j

aij + 0,

because the network is loopless (so the diagonal is 0). Further, since aij = aji,
the first term is exactly equal to the second term, so:

n∑
i,j=1

aij =
∑
j>i

aij +
∑
i>j

aij

=
∑
j>i

aij +
∑
j>i

aij = 2
∑
j>i

aij

⇒
∑
j>i

aij =
1

2

n∑
i,j=1

aij
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This gives us the useful relationship that we can plug into Equation (3.3):

density(A) =
1
2

∑n
i=1

∑n
j=1 aij(

n
2

) =

∑n
i=1

∑n
j=1 aij

n(n− 1)

We wrote out the double sum to point out a key relationship. Notice that the
inner-most sum is just computing the degree di of each node i, because di =∑n
j=1 aij in an undirected network. This means that:

density(A) =
1
2

∑n
i=1 di(
n
2

) =

∑n
i=1 di

n(n− 1)
(3.4)

Finally, notice that 1
n

∑n
i=1 di is the average degree over all of the n nodes in the

network. We will typically abbreviate this quantity using the symbol d. Using
this fact with the right-most equality in Equation (3.4), we see that:

density(A) =
d

n− 1
.

The density can therefore be conceptualized as the average degree of each node
in the network, divided by the maximum possible degree each node could have
(which, in a simple network, is n − 1, since a node could at most have an edge
to the other n− 1 nodes in the network). This concept will become useful when
we discuss sparsity in Section 6.2.

3.3.2 The clustering coefficient indicates how much nodes tend to cluster together

A triplet is an ordered tuple of three nodes which are connected by two or three
edges. For a tuple of three nodes to be a triplet, there must be a contiguous path
from one end of the triplet to the other. The triplets are closed if there are three
edges, and open if there are only two edges.

The clustering coefficient indicates the fraction of closed triplets. In the New
York example, we look at only Brooklyn, Manhattan, Queens, and the Bronx,
and temporarily ignore Staten Island:

G_clus = nx.Graph()

G_clus.add_node("MH", pos=(4,4))

G_clus.add_node("BK", pos=(4,1.7))

G_clus.add_node("Q", pos=(6,3))

G_clus.add_node("BX", pos=(6,6))

pos = nx.get_node_attributes(G, ’pos’)

G_clus.add_edge("MH", "BX")

G_clus.add_edge("MH", "BK")

G_clus.add_edge("BK", "Q")

G_clus.add_edge("MH", "Q")

G_clus.add_edge("Q", "BX")

nx.draw_networkx(G_clus, with_labels=True, node_color="black", pos=pos,
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font_color="white", edge_color="black")

The plotted result is shown in 3.5.1(B). We have the following triplets:

1 Open triplets between Bronx, Manhattan, and Brooklyn: (BX, MH, BK), (BK,
MH, BX)

2 Open triplets between Brooklyn, Queens, and Bronx: (BX, Q, BK), (BK, Q,
BX)

3 Closed triplets between Brooklyn, Manhattan, and Queens: (BK, MH, Q),
(BK, Q, MH), (MH, BK, Q), (MH, Q, BK), (Q, BK, MH), (Q, MH, BK)

4 Closed triplets between Bronx, Manhattan, and Queens: (BX, MH, Q), (BX,
Q, MH), (MH, BX, Q), (MH, Q, BX), (Q, BX, MH), (Q, MH, BX)

To clarify a fine technical point of open triplets, we do not count (BK, Q, MH)
as a triplet because there is no edge from BK to Q. We must be able to go from
the first node to the second to the third along edges that exist in the network
in order for three nodes to count as a triplet. In our example, there are twelve
closed triplets amongst the nodes (delineated in number 3. and 4. above), and
there are 4 open triplets (delineated in numbers 1. and 2. above). The global
clustering coefficient (or transitivity) is defined as:

C =
number of closed triplets

number of closed triplets + number of open triplets

In our example, this comes to C = 12
2·6+2·2 = 0.75. This equation can also be

understood in terms of the adjacency matrix. If a triplet between nodes i, j,
and k is closed, then all three of the potential edges aij , ajk, and aki have a
value of 1. Therefore, the number of times that aijajkaki = 1, is the number of
closed triplets. This means that the number of closed triplets can be expressed
as
∑n
i,j,k=1 aijajkaki.

For a given node i, we can find an arbitrary triplet (either open or closed)
with the following procedure.

1 Pick a single neighbor j for node i. The node i has a number of neighbors
equal to degree(i) = di, so there are di possible neighbors to choose from.

2 Pick a different neighbor k for node i. Since node i had di neighbors, it has
di − 1 neighbors that are not node j.

3 Since nodes j and k are both neighbors of node i, we know that aij and aik both
have values of one, and therefore the edges (i, j) and (i, k) exist. Therefore,
the tuple of nodes (i, j, k) is a triplet, because at least two edges exist amongst
the three nodes. This tuple is closed if the edge (j, k) exists, and open if the
edge (j, k) does not exist.

4 Therefore, there are di(di − 1) triplets in which node i is the leading node of
the triplet.
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Since triplets are ordered tuples, we can repeat this procedure for all nodes,
which counts the total number of triplets for the entire network. Therefore, the
number of open and closed triplets in the network is the quantity

∑
i di(di − 1).

Then we can express the clustering coefficient in terms of the adjacency matrix
as:

C =

∑n
i,j,k=1 aijajkaki∑n
i=1 di(di − 1)

Which gives us an expression to implement programmatically. The clustering
coefficient can be computed via networkx using:

nx.transitivity(G_clus)

# 0.75

3.3.3 The average shortest path length

Another common statistic computed using the distance matrix from Section 3.2.3
is the average shortest path length. Conceptually, the distance matrix D can be
thought of as capturing the “accessibility” of the network, in that if it tends to
have larger values, nodes tend to be separated by longer paths, and vice-versa.

The average shortest path length d̄ of a simple network is the average of all of
the shortest paths between two distinct nodes i and j of the distance matrix:

d̄ =
1

n(n− 1)

∑
i6=j

dij

The normalizing factor is n(n− 1) because the sum
∑
i 6=j is short-hand for the

double-sum
∑n
i=1

∑
j 6=i. In a network with self-loops, the average shortest path

length does not exclude the diagonal, and therefore we should be careful with
which expression we use. The left-most sum has n terms, and for each node i,
there are n−1 other possible values that j can take where j 6= i. This means that
we are summing n− 1 terms n times (which is n(n− 1)). This can be computed
using networkx:

dbar = nx.average_shortest_path_length(G)

# 1.5
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3.4 Degree Matrices and Laplacians

In Section 3.1, we introduced adjacency matrices as the primary mathe-
matical representation for network data. This section explores additional
matrices derived from the adjacency matrix.

We cover the following matrix representations for networks:

1 The degree matrix, which encodes node degrees on its diagonal, and
2 The network Laplacian and its variations, including the normalized Lapla-

cian, the DAD Laplacian, and the regularized Laplacian (used to address
issues with low-degree nodes).

The Laplacian and its properties in particular are fundamental to several
of the spectral methods we will learn about in Chapter 5. Further, many of
the spectral methods we develop in Chapters 6, 7, and 8 can be equivalently
applied to the Laplacian, with unique advantages over other spectral meth-
ods. In Section 4.6.4, we will extend the Laplacian to random networks,
and then use the Laplacian to build an embedding technique in Section 5.4.
Section 5.6 creates a joint representation using the regularized Laplacian,
and Section 6.2 explores how the sparsity of the DAD Laplacian impacts
computational efficiency in network analysis.

In general, we will represent networks with matrices. In addition to being
computationally convenient, using matrices to represent networks lets us use
tools from linear algebra and statistics. Using matrices also lets us use common
python tools for array manipulation like numpy or pytorch.

3.4.1 The degree matrix

In Section 3.2.2, we defined the degree of a node i in a simple network as the
number of nodes that i is connected to.

The degree matrix takes this a step further, representing the degree of every
node in the network. The degree matrix appears relatively often as a step in
creating other matrix representations of networks. It is a diagonal matrix with
the values along the diagonal corresponding to the degree of each node:

D =


d1 0 ... 0

0
. . . . . .

...
...

. . . . . . 0

0 ... 0 dn

 , di = degree(i)

D is called diagonal because all of the entries dij = 0 unless i = j. The diagonal
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Remark 3.4.1 Overloading notation

In Section 3.2, we used the same letter, D, for the distance matrix as we do
for the degree matrix. From now on in the book, D will refer to the degree
matrix, unless stated otherwise.

entries dii of the degree matrix are the node degrees degree(i) for each node i.
Using the counting procedure described in Section 3.2.2, we see that the node SI
has degree one, the node BK has degree three, the node MH has degree three,
the node Q has degree three, and the node BX has degree two. We can compute
the degree matrix for an unweighted, undirected network by using either of the
following commands:

# in-degree matrix

D_in = np.diag(in_degrees(A))

# out-degree matrix

D_out = np.diag(out_degrees(A))

# the network is undirected, so in and out degrees are same

print(np.all(D_in == D_out))

# True

These two methods are identical when the network is undirected because the in-
and out-degrees for undirected networks are the same.

# arbitrarily set degree matrix to in-degree matrix

D = D_in

Figure 3.4.1 plots the degree matrix using the heatmap utility that developed
for the adjacency matrix.

3.4.2 The Laplacian Matrix

The standard Laplacian Matrix L = D − A [2] is a direct derivative of the
Adjacency Matrix A, since the degree matrix D can be calculated from A. It is
used in practice because it has a number of interesting mathematical properties
which are useful for analysis. For instance, the magnitude of its second-smallest
eigenvalue, called the Fiedler eigenvalue, tells us how well-connected our network
is, and the number of eigenvalues equal to zero is the number of “islands” or
connected components our network has (a concept introduced in Section 3.5.1).
Incidentally, this means that the smallest eigenvalue of the Laplacian will always
be 0, since any simple network always has at least one connected component
(itself).

Another interesting property of the Laplacian is that the sum of its diagonals
is twice the number of edges in the network. This is because the ith diagonal, Lii,
is the degree of node i, and aij = aji causes us to over-count. Because the sum
of the diagonal of a matrix is the trace, and the trace is also equal to the sum
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of the eigenvalues, this means that the sum of the eigenvalues of the Laplacian
is equal to twice the number of edges in the network.

Since the only nonzero values of the degree matrix is along its diagonals, and
because the diagonals of an adjacency matrix never contain zeroes if its network
doesn’t have nodes connected to themselves, the diagonals of the Laplacian are
just the degree of each node. The values on the non-diagonals work similarly
to the adjacency matrix: they contain a −1 if there is an edge between the two
nodes, and a 0 if there is no edge.

The Laplacian for a simple network looks like the degree matrix, but with −1s
in all the locations where an edge exists between nodes i and j. We compute it
in Python below.

L = D - A

Figure 3.4.1 shows a plot of the Laplacian matrix as a heatmap, along with
the degree and adjacency matrices.

Figure 3.4.1 The Laplacian matrix, along with the components that are used to
compute it (the degree matrix and the adjacency matrix).

3.4.3 The Normalized Laplacian

There are a few variations on the standard D − A version of the Laplacian
which are widely used in practice, and which (confusingly) are often also called
the Laplacian. They tend to have similar properties. The Normalized Laplacian,
Lnorm. is one such variation. The Normalized Laplacian [2] is defined as:

Lnorm. = D−1/2LD−1/2 = I −D−1/2AD−1/2

Where I is the identity matrix.
Below we can see the normalized Laplacian in code. We use graspologic’s

to_laplacian() function, with the form set to I - DAD, which computes Lnorm.

above.

from graspologic.utils import to_laplacian

L_sym = to_laplacian(A, form="I-DAD")
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A heatmap of the normalized Laplacian is shown in Figure 3.4.2(A).
We can understand the normalized Laplacian from the name: we can think

of it as the Laplacian normalized by the degrees of the nodes associated with a
given entry.

Here is what the operation is doing:

Lnorm. = D−
1
2LD−

1
2

=

d1 . . .
dn


− 1

2
l11 ... l1n

...
. . .

...
ln1 ... lnn


d1 . . .

dn


− 1

2

=


1√
d1

. . .
1√
dn


l11 ... l1n

...
. . .

...
ln1 ... lnn




1√
d1

. . .
1√
dn



=


l11
d1

... l1n√
d1
√
dn

...
. . .

...
ln1√
dn
√
d1

... lnn

dn

 (3.5)

So the normalized laplacian has entries lnorm.ij =
lij√
di
√
dj
.

We can plug in the value of L to obtain a similar relationship with the adja-
cency matrix A.

Lnorm. = D−
1
2LD−

1
2

= D−
1
2 (D −A)D−

1
2

= D−
1
2DD−

1
2 −D− 1

2AD−
1
2

= D
1
2D−

1
2 −D− 1

2AD−
1
2

= In×n −D−
1
2AD−

1
2

The D−1/2DD−1/2 term can be thought of as spiritually the same as what we
would think of DD (if that were not undefined!), since it just works out to be the
identity matrix. The D−1/2AD−1/2 is just doing the same thing to A that we
did to L. So we’re normalizing the entries of the adjacency matrix by the degrees
of the nodes a given entry is concerned with; that is, aij√

di
√
dj
.

The eigenvalues of the normalized Laplacian are bounded between 0 and 2,
and so the Laplacian is a positive semidefinite matrix, which means that it is a
matrix with non-negative eigenvalues. This means that a suite of linear algebra
techniques, which may not run successfully on the adjacency matrix (which is not
positive semidefinite in its most raw form for simple networks, as we will learn in
Section 4.5), can be executed on the network Laplacian. For more details about
the properties of the Laplacian, see [3].
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3.4.4 The DAD Laplacian

We will often use the spectral embedding of the Laplacian (see Section 5.4). To
understand the spectral embedding, we will need a related Laplacian, called the
DAD Laplacian:

LDAD = D−
1
2AD−

1
2

LDAD and Lnorm share major similarities. Performing the same manipulations
as in Equation (3.5), we find that lDADij =

aij√
di
√
dj
. We can therefore understand

the DAD Laplacian to be the adjacency matrix, but with entries aij normalized
by the square-root of the degrees of the nodes i and j.

In Section 5.4, we will learn about the importance of the singular value decom-
position for spectral embedding of Laplacians. The singular value decomposition
will allow us to look at the laplacian as a sum of simpler matrices. “Simple”, in
this context, means a rank-one matrix created from the outer product of two
vectors. By looking only at a few of these “simple” matrices, we can learn about
the Laplacian and reduce noise in the Laplacian itself. The properties of the DAD

Laplacian are discussed at length in [4] and [5].
The most important connection is that these “simple” matrices will be identical

for Lnorm. and LDAD, except for one important fact: they will be in reverse order
from one another. In Lnorm, the matrices we will want to use will be the last
few, and in LDAD, the matrices we will want to use will be the first few. When
we compute the singular value decomposition, there are ways to only compute
the first few matrices without having to go through the trouble of computing all
of them, whereas the reverse is not true. To get the last few simple matrices, we
would have to compute all of the preceding ones first. This means that to get the
simple matrices we want, we can get much better computational performance
using LDAD instead of Lnorm.

We can compute the LDAD in graspologic similarly to above, but with form="DAD":

L_dad = to_laplacian(A, form="DAD")

Figure 3.4.2(B) shows a heatmap of the DAD Laplacian.

3.4.5 The regularized Laplacian

The regularized Laplacian is an adaptation of the DAD Laplacian. When networks
have degree matrices where some of the degrees are extremely small, the spec-
tral clustering approach we will learn about in Section 6.1 will not perform well:
The spectral clusterings will be influenced by the small-degree nodes. To over-
come this hurdle, instead of using the DAD Laplacian, we can use the regularized
Laplacian, defined similarly to the DAD Laplacian, as:
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LrDAD(τ) = D
− 1

2
τ AD

− 1
2

τ

Where τ is a regularization constant which is greater than or equal to zero,
and Dτ = D + τI. This τ term “inflates” the diagonal elements of the degree
matrix by increasing the small degrees by τ . This is make the nodes with small
degrees less impactful on our results. If τ = 0, then LrDAD(τ) = LDAD. The
regularized Laplacian is discussed at length in [6].

Let’s see what LrDAD(τ) and LDAD look like when we pick τ to be 1. We
can do this in graspologic using form="R-DAD", and then setting regularizer

appropriately:

tau = 1

L_rdad = to_laplacian(A, form="R-DAD", regularizer=tau)

The R-DAD Laplacian is shown in Figure 3.4.2(C).
We will learn about some other ways to handle nodes with very low degrees

in Section 3.6 on Regularization.

Figure 3.4.2 Different variations of Laplacians for the same underlying network.
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3.5 Subnetworks and Connected Components

In Sections 3.1, we introduced the basic representation of networks, the
adjacency matrix. We built some understanding of network and node prop-
erties in Sections 3.2 and 3.3. Building on this foundation, we now turn
our attention to subnetworks and connected components within larger net-
works.

This section covers:

1 The concept of subnetworks, including induced subnetworks,
2 Connected components and their properties, and
3 The largest connected component (LCC) and its significance in network

analysis.

Understanding subnetworks and connected components allows us to focus
on specific regions of interest or to decompose large networks into manage-
able parts. These concepts are particularly important during preprocessing,
where we often choose to operate only on the largest connected component.
Section 4.10 uses the concept of subnetworks to define a statistical model.
Sections 8.3 and 8.2 demonstrate how identifying specific subnetworks can
reveal important signals in applied settings. Using relevant substructure
rather than full networks often leads to more computationally tractable
solutions in applied settings.

It is often useful to break a large network into smaller bits. For instance, when
we were looking at the clustering coefficient in Section 3.3.2, we found it useful
to break out the nodes BK, Q, BX, MH and their edges so that we could count
triplets.

A subset of nodes and their edges pulled from a network is called a subnetwork.
In this case, the network topology of the New York example is (V, E) defined by
the sets:

1 The nodes V : {SI,BK,Q,MH,BX}, and
2 The edges E: {(SI,BK), (BK,MH), (MH,Q), (MH,BX), (Q,BX)}.

and the subnetwork which removed Staten Island, SI is the network:

1 The nodes Vs: {BK,Q,MH,BX}, and
2 The edges Es: {(BK,MH), (MH,Q), (BK,Q), (MH,BX), (Q,BX)}.

In the subnetwork with nodes and edges (Vs, Es), every element in Vs is an
element of V , the nodes of the complete network, and every element in Es is an
element of E, the edges of the complete network. So (Vs, Es) is a subnetwork of
(V,E). This particular subnetwork is also induced. A subnetwork is induced by
a set of nodes if the following conditions hold:
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1 The nodes Vs are a subset of the nodes of the network V , and
2 The edges Es consist of all of the edges from the original network where both
of the corresponding nodes are in Vs.

An example of our induced subnetwork is shown in Figure 3.5.1(B). Figure
3.5.1(C) shows an example of a subnetwork which is not an induced subnetwork.
We can create an induced subnetwork (in this case, from BK, MH, Q, and BX)
using networkx:

G_induced = G.subgraph(["BK", "MH", "Q", "BX"]).copy()

nx.draw_networkx(G_induced, with_labels=True, node_color="black", pos=pos,

font_color="white", edge_color="black")

Figure 3.5.1 (A) The New York Borough example. (B) The subnetwork induced by
the node set {BX, MH, Q, BX}. This is also the example that we used to study
clustering. (C) A non-induced subnetwork.

Representing subnetworks
A subnetwork is a collection of nodes and edges defined on these nodes. Therefore,
a subnetwork is itself also a network. This means that we could still represent a
subnetwork using an adjacency matrix, with the caveat that its size might change
(since the nodes of a subnetwork are a subset of the nodes of the network) and
the density might change (since the edges of a subnetwork are a subset of the
edges of the network).

3.5.1 The largest connected component

A particular induced subnetwork that we will often be concerned with is known
as the largest connected component (LCC). To define the largest connected com-
ponent, we will need to modify our example slightly. Let’s say the bridge network
also includes the Boston area, and we have two new nodes, Boston (BO) and
Cambridge (CA). Boston and Cambridge have several bridges between one an-
other, so an edge exists between them. However, there are no bridges between
boroughs of New York and the Boston area, so there are no edges from nodes in
the Boston area to nodes in the New York area.
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Box 3.5.1 A caveat with the adjacency matrix of subnetworks

Conceptualizing an induced subnetwork as a mere deletion of rows and
columns, without regard for network structure, complicates later analysis.
This approach obscures node identities, making it difficult to associate re-
tained nodes with their original properties or metadata. For example, a vec-
tor containing useful node information becomes challenging to interpret if we
lose track of which nodes remain in the subnetwork. To avoid confusion, we
recommend recording the indices of the nodes from the initial network when
computing a subnetwork.

G_withbos = deepcopy(G)

G_withbos.add_node("BO", pos=(8, 6))

G_withbos.add_node("CA", pos=(8, 8))

G_withbos.add_edge("BO", "CA")

# fetch positions with boston and cambridge added

pos = nx.get_node_attributes(G_withbos, ’pos’)

# plot

nx.draw_networkx(G_withbos, with_labels=True, node_color="black", pos=pos,

font_color="white", edge_color="black")

We visualize the network with Boston and Cambridge in Figure 3.5.2(A).
The entire network can be described by the sets:

1 V = {SI,MH,BK,BX,Q,CA,BO}, and
2 E = {(SI,BK), (MH,BK), (MH,Q), (BK,Q), (MH,BX), (MX,Q), (CA,BO)}.

We have two distinct sets of nodes, those of New York and those of Boston,
which are only connected amongst one another. These two sets of nodes induce
connected components of the network topology (V, E). A connected component
is an induced subnetwork in which any two nodes are connected to each other
by a path through the network. The largest connected component (LCC) of a
network is the connected component with the most nodes.

The two connected components are the New York induced subnetwork:

1 The nodes VN : {SI,BK,Q,MH,BX}, and
2 The edges EN : {(SI,BK), (BK,MH), (MH,Q), (BK,Q), (MH,BX), (Q,BX)}.

and the Boston induced subnetwork:

1 The nodes VB : {CA,BO}, and
2 The edges EB : {(CA,BO)}.

We plot each individually in Figure 3.5.2(B) and Figure 3.5.2(C). If the net-
work and the largest connected component are equivalent, we can omit the term
component, and just say that the network is connected.

In our example, the New York connected component has five nodes, whereas
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Figure 3.5.2 (A) shows the New York boroughs with the added nodes for Boston and
Cambridge. (B) shows the connected component induced by the boroughs of New
York, which is also the LCC. (C) shows the connected component induced by Boston
and Cambridge.

the Boston connected component has two nodes. Therefore, the New York con-
nected component is the LCC of this simple network. We can compute the con-
nected components and plot the largest connected component using networkx

like this:

# returns a list of connected components, ordered

# by decreasing size (#nodes)

cc_withbos = nx.connected_components(G_withbos)

# return the connected components, as networks

CC_nets = [G_withbos.subgraph(cc).copy() for cc in cc_withbos]

# plot the LCC

nx.draw_networkx(CC_nets[0], with_labels=True, node_color="black", pos=pos,

font_color="white", edge_color="black")

Often our networks will already be in the form of adjacency matrices. We can
pass adjacency matrices directly into graspologic to obtain a LCC using:

from graspologic.utils import largest_connected_component as lcc

A_withbos = nx.to_numpy_array(G_withbos)

A_lcc, retained_nodes = lcc(A_withbos, return_inds=True)

This is one of the most common instances in which our warning about retaining
subnetwork indices arises. The return_inds argument returns the rows/columns
of A_withbos that were retained for the LCC. The default functionality is to not
return these indices, so proceed with caution.

3.5.2 Connected components in directed networks

Connected components for directed networks need to be defined differently than
for undirected networks. A directed subnetwork is strongly connected if directed
paths exist between every pair of nodes in the subnetwork.
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A directed subnetwork is weakly connected if the underlying directionalities
are ignored, and the resulting undirected subnetwork is a connected component.
Figure 3.1.3(C) shows an example of a strongly connected network, because we
can travel along a path from each node to every other node in the network.
On the other hand, Figure 3.1.3(B) shows an example of a weakly connected
component when the bridge from MH to BK is out of service. This is because
there is no longer a way to follow a path from SI or BK to MH, Q, and BX. When
we ignore the arrows entirely, the resulting undirected network is still connected,
as shown in Figure 3.1.3(A).
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3.6 Regularization and node pruning

In Sections 3.1 through 3.5, we built techniques to understand the prop-
erties of simple network observations. However, real-world observations of
networks are often noisy and biased. To build predictive models, we usually
preprocess and regularize our data. We now turn our attention to techniques
which do this to help mitigate overfitting and improve generalization.

This section covers:

1 The concept of regularization in network machine learning,
2 Node pruning as a regularization technique, and
3 Methods for removing nodes based on degree and other properties.

Regularization is crucial for reducing noise and improving the robustness
of network analyses. Node pruning, in particular, allows us to focus on the
most relevant parts of a network by removing nodes that may introduce
noise or instability.

Real world networks are often noisy, and so the analysis of one real world
network might not generalize very well to a similar real world network. Regular-
ization is the process by which we either:

1 Modify data for the purpose of mitigating overfitting due to idiosyncrasies of
the observed data, and/or

2 Modify the function we are estimating due to its fragility to the idiosyncracies
of the observed data.

We first focus our attention on node pruning, a regularization technique in
which we remove nodes for one reason or another. Typically, we will remove
nodes due to some property about their degrees, or other properties (such as
their connectedness with other nodes). These strategies are covered loosely in
the book [7], and can be found in more computation-heavy network papers.

For each section covering regularization, we will give an example, a simulation,
and code for how to implement the desired regularization approach. We might use
several of these techniques simultaneously in practice, or we might use techniques
that go outside of our working examples.

For node regularization, we will introduce a business network working example,
discussed in Example 3.6.1, and visualized in Figure 3.6.1.

from graphbook_code import heatmap

from matplotlib import pyplot as plt

from graspologic.simulations import er_np

import networkx as nx

n = 10

A_bus = er_np(n, 0.6)
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Example 3.6.1 Business network

There are 17 nodes in a network corresponding to local businesses. An edge
exists between a pair of businesses if they have business dealings with one
another (they buy or sell products from/with the company). Three of these
businesses operate in total exclusion and do not have any edges. Three of these
businesses only work with one other business. One businesses works with all
of the non-excluded businesses.

# add pendants

n_pend = 3

A_bus = np.column_stack([np.row_stack([A_bus, np.zeros((n_pend, n))]),

np.zeros((n + n_pend, n_pend))])

n = n + n_pend

# add pizza hut node

n_pizza = 1

A_bus = np.column_stack([np.row_stack([A_bus, np.ones((n_pizza, n))]),

np.ones((n + n_pizza, n_pizza))])

n = n + n_pizza

# add isolates

n_iso = 3

A_bus = np.column_stack([np.row_stack([A_bus, np.zeros((n_iso, n))]),

np.zeros((n + n_iso, n_iso))])

A_bus = A_bus - np.diag(np.diag(A_bus))

n = n + n_iso

# as a heatmap

node_names = [i for i in range(0, n)]

heatmap(A_bus.astype(int), title="Business Network Adjacency Matrix",

xticklabels=node_names, yticklabels=node_names)

# as a layout plot

G_bus = nx.from_numpy_array(A_bus)

node_pos = nx.shell_layout(G_bus)

plt.figure()

nx.draw(G_bus, pos=node_pos, node_color=’white’, edgecolors=’black’, with_labels=True,

node_size=1500)

3.6.1 Degree trimming removes nodes with unfavorable degrees

In our business network, there are several low-degree nodes which will impart
“strange” properties undesirable for downstream analysis. They may generate
numerical instability when we apply machine learning algorithms to them, for
instance. For this reason, it may be advantageous to remove nodes whose degrees
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Figure 3.6.1 The business network, where nodes are businesses and edges are whether
the pairs of businesses have a business relationship.

are very different from the other nodes in the network, sometimes called outlier
nodes.

One special case of degree trimming is removing isolates. An isolated node has
a degree of 0, meaning that it is not connected to any other nodes in the network.
See if you can spot the isolates in Figure 3.6.1.

Another special case of degree trimming is called the removal of pendants. A
pendant node has a degree of 1, meaning that it is only connected to one other
node in the network. Try spotting the pendants in 3.6.1.

We can easily remove isolates or pendants. We simply need to compute the
degree of each node in the network, and then retain the nodes with a degree above
our chosen threshold. To remove isolates, we would pick this threshold to be 0

(retain nodes with non-zero degree), and to remove both pendants and isolates,
we would pick this threshold to be 1 (retain nodes with a degree exceeding 1).
We can do this like follows:

def compute_degrees(A):

# compute the degrees of the network A

# since A is undirected, we can just sum

# along an axis.

return A.sum(axis=1)

def prune_low_degree(A, return_inds=True, threshold=1):

# remove nodes which have a degree under a given

# threshold. For a simple network, threshold=0 removes isolates,

# and threshold=1 removes pendants

degrees = compute_degrees(A)

non_prunes = degrees > threshold

robj = A[np.where(non_prunes)[0],:][:,np.where(non_prunes)[0]]

if return_inds:

robj = (robj, np.where(non_prunes)[0])

return robj

A_bus_lowpruned, nonpruned_nodes = prune_low_degree(A_bus)
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Next, we’ll plot the network as a layout plot. In Section 3.5, we discussed
that if we just “threw away” nodes without retaining their indices we would run
into trouble. Here is an example. If we had just pruned the low degree nodes,
we would have no idea which nodes were originally plotted where in the initial
layout plot. Fortunately, since we included this information, we can easily recover
the spatial position of each node, and replot the network with the nodes that
were not pruned in the same place that they were before:

# relabel the nodes from 0:10 to their original identifier names

node_names_lowpruned = {i: nodeidx for i, nodeidx in enumerate(nonpruned_nodes)}

G_bus_lowpruned = nx.from_numpy_array(A_bus_lowpruned)

G_bus_lowpruned = nx.relabel_nodes(G_bus_lowpruned, node_names_lowpruned)

nx.draw(G_bus_lowpruned, pos=node_pos, with_labels=True, node_color=’white’,

edgecolors=’black’, node_size=1500)

The resulting layout plot is shown in Figure 3.6.2(A).

Figure 3.6.2 (A) The business network after pruning nodes with a degree less-than or
equal to 1, which consists of isolates and pendants. (B) The business network after
pruning isolates and pendants followed by pizza-hut nodes.

A useful way to determine whether we have isolates or pendants is to look
at the degree distribution histogram of the network, which indicates the number
of nodes (y-axis) within a given range of degrees (x-axis, individual “buckets”
for the histograms). When the values we want a histogram for can only take a
limited number of possible values, we may choose to make each possible value
its own bucket. Sometimes, when there are a large number of possible values,
this might not be possible. We might have to bin similar values together to
make the plot appreciable. The degree distribution, before and after removing
pendants/isolates, looks like this:



Characterizing and preparing network data 83

degrees_before = compute_degrees(A_bus)

degrees_after = compute_degrees(A_bus_lowpruned)

and can be plotted like this:

from seaborn import histplot

fig, axs = plt.subplots(1,2, figsize=(15, 4))

ax = histplot(degrees_before, ax=axs[0], binwidth=1, binrange=(0, 14))

ax.set_xlabel("Node degree");

ax.set_ylabel("Number of Nodes");

ax.set_title("Business Network, before pruning");

ax = histplot(degrees_after, ax=axs[1], binwidth=1, binrange=(0, 14))

ax.set_xlabel("Node degree");

ax.set_title("Business Network, after pruning")

Removing pizza hut nodes
On the other end of the spectrum, it is often useful to remove nodes which tell
us nothing about the network because they are connected to everything. We
call these pizza hut nodes, because pizza hut can be delivered anywhere. After
pruning, we actually created a pizza hut node, which we can see from the low-
degree pruned network in Figure 3.6.2(A).

We can prune these nodes just as easily as before. This time, note that our
pruning threshold is simply set as the maximum possible node degree. Further,
since we pruned the pizza-hut node from the low-pruned network, we again need
to recover which nodes from the original network were retained.

def prune_high_degree(A, return_inds=True, threshold=0):

# remove nodes which have a degree over a given

# threshold. For a simple network, threshold=A.shape[0] - 1

# removes any pizza hut node

degrees = compute_degrees(A)

non_prunes = degrees < threshold

robj = A[np.where(non_prunes)[0],:][:,np.where(non_prunes)[0]]

if return_inds:

robj = (robj, np.where(non_prunes)[0])

return robj

# pruning nodes

A_bus_pruned, highpruned_nodes = prune_high_degree(A_bus_lowpruned,

threshold=A_bus_lowpruned.shape[0] - 1)

# relabel the nodes from 0:9 to their original identifier names,

# using the previous filters from node_names_lowpruned

node_names_highpruned = {i: node_names_lowpruned[lowpruned_idx] for

i, lowpruned_idx in enumerate(highpruned_nodes)}

G_bus_pruned = nx.from_numpy_array(A_bus_pruned)

G_bus_pruned = nx.relabel_nodes(G_bus_pruned, node_names_highpruned)

nx.draw(G_bus_pruned, pos=node_pos, with_labels=True, node_color=’white’,

edgecolors=’black’, node_size=1500)
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The result of both low-degree pruning (for isolates and pendants) and high-degree
pruning (for pizza hut nodes) is shown in Figure 3.6.2(B).

Again, we might want to visualize the degree distribution histogram to decide
whether we want to prune nodes with high degrees.

3.6.2 The Largest Connected Component is the largest subnetwork of connected
nodes

Section 3.5.1 explored the largest connected component. This is a node pruning
technique, because it “throws out” all of the nodes other than the ones which are
in the largest connected component.
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3.7 Edge Regularization

In Section 3.6, we introduced regularization techniques for networks, fo-
cusing on node pruning. This section extends those concepts to edge regu-
larization, which involves modifying the edges of a network to improve its
properties for analysis.

We cover the following edge regularization techniques:

1 Diagonalization methods to deal with loops,
2 Sparsification methods to reduce network density,
3 Thresholding approaches to convert weighted networks to unweighted

networks, and
4 Edge weight transformations to adjust the distribution of edge weights.

We use a hobby network and a friendship network as reference through-
out this section. Edge regularization is crucial for reducing noise, improv-
ing computational efficiency, and enhancing the interpretability of network
analyses. These techniques are particularly important for weighted and
dense networks where the number of edges can overwhelm traditional anal-
ysis methods. The concepts introduced here build upon earlier discussions
of network density (Section 3.3.1) and compliment other regularization ap-
proaches like the Regularized Laplacian (Section 3.4.4).

3.7.1 Running examples for regularization

To explore edge regularization, we will introduce some new examples from the
preceding business network. We have two non-simple networks, covered in Ex-
ample 3.7.1 and Example 3.7.2.

Our scientific question of interest is how well activities and hobbies align with
perceived notions of friendship. We want to use the networks of Examples 3.7.1
and 3.7.2 to learn about a hypothetical third network, whose nodes are identical
to these two networks, but whose edges are whether the two individuals are
friends (or not) on facebook. To answer this question, we have to do to some
work to make our networks better suited to the task. We will simulate some
example networks, with plots illustrated in Figure 3.7.1.

from graspologic.simulations import sbm

import numpy as np

wtargsa = [[dict(n=50, p=.09), dict(n=50, p=.02)],

[dict(n=50, p=.02), dict(n=50, p=.06)]]

# activity network as upper triangle matrix

A_activity_uppertri = sbm(n=[25, 25], p=[[1,1], [1,1]], wt=np.random.binomial,

wtargs=wtargsa, loops=False, directed=False)
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Example 3.7.1 Activity/hobby network

The nodes of this network are a group of 50 school students, the first 25 of
whom are athletes, and the second 25 are in marching band. To collect the
first network, we ask each student to select from a list of 50 school activities
and outside hobbies that they enjoy. For a pair of students i and j, the weight
of their interest alignment will be a score between 0 and 50 indicating how
many activities or hobbies that they have in common.
We will refer to this as the activity/hobby network. This network is undi-
rected, since if student i shares x activities or hobbies with student j, then
student j also shares x activities or hobbies with student i. It is also weighted,
since the score is between 0 and 50. Finally, this network is loopless, because
it would not make sense to look at the activity/hobby alignment of students
with themselves, since every student would have perfect alignment of activities
and hobbies with him or herself.
Because the network is undirected, the researchers have only saved the portion
of the adjacency matrix that includes the entries aij where j > i.

Example 3.7.2 Friendship network

This network is collected using the same 50 students as the activity/hobby
network. To collect the second network, we ask each student to rate how good
of friends they are with other students, on a scale from 0 to 1. A score of 0

means they are not friends with the student or do not know the student,
and a score of 1 means the student is their best friend. We will refer to
this network as the friendship network. This network is directed, since two
students may differ on their understanding of how good of friends they are.
It is also weighted, since the score is between 0 and 1. Finally, this network
is also loopless, because it would not make sense to ask students how good of
friends they are with themselves.

A_activity_uppertri = np.triu(A_activity_uppertri)

# friend network

wtargsf = [[dict(a=4, b=2), dict(a=2, b=5)],

[dict(a=2, b=5), dict(a=6, b=2)]]

A_friend = sbm(n=[25, 25], p=[[.8, .4], [.4, 1]], wt=np.random.beta, wtargs=wtargsf,

directed=True)

3.7.2 Symmetrizing adjacency matrices

If we wanted to learn from the friendship network about whether two people
shared similar hobbies/activities, a reasonable first place to start might be to
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Figure 3.7.1 A comparison of the two networks that we sampled to use in this section.
The activity/hobby network is shown in (A), and the friendship is shown in (B).

symmetrize the friendship adjacency matrix. The activity/hobby network is undi-
rected, which means that if a student i shares hobbies with student j, then stu-
dent j also shares hobbies with student i. On the other hand, the friendship
network is directed. Since our question of interest is about an undirected net-
work but the network we have is directed, it might be useful to take the directed
friendship network and build an undirected network from it.

We also might seek to symmetrize the friendship adjacency matrix because
we think that asymmetries that exist in the adjacency matrix are just noise. We
might assume that the adjacency entries aij and aji relate to one another, so
together they might be able to produce a single summary number that better
summarizes their relationship all together.

As a final reason, we might think that the asymmetries are meaningful, but
that they are not feasible to consider. Many statistical models for networks, and
many techniques developed to analyze networks, might only have interpretations
for undirected networks. This means that if we want to use these techniques, we
might have to settle for using undirected networks, even if our data are not
undirected.

Remember that in a symmetric matrix (for an undirected network), aij = aji,
so in an asymmetric adjacency matrix (for a directed network), aij 6= aji for at
least one pair of nodes i and j. To symmetrize the friendship network, we want
a new adjacency value, which we will call wij , which will be a function of aij
and aji. Then, we will construct a new adjacency matrix A′, where each entry
a′ij and a′ji are set equal to wij . The little apostrophe just signifies that this is a
potentially different value than either aij or aji. Note that by construction, A′

is in fact symmetric, because a′ij = a′ji due to how we built A′. For this matrix,
we will look at a generic adjacency matrix that looks like this:



88 Characterizing and preparing network data

A =


a11 a12 ... a1n

a21
. . . . . .

...
...

. . . . . . an−1,n
an1 ... an,n−1 ann

 ,

Ignoring a “triangle” of the adjacency matrix
The easiest way to symmetrize a network A is to just ignore part of it entirely.
In the adjacency matrix A, we have an upper and a lower triangular part of the
matrix. The upper triangle looks like this:

∆ =


a11 a12 ... a1n

0
. . . . . .

...
...

. . . . . . an−1,n
0 ... 0 ann

 .
This is called the upper triangle because if we look at the non-zero entries, they
form a triangular shape in the matrix when the matrix is in its row/column
orientation like this. Note this matrix is identical to A for any row i and column
j where j ≥ i, but is equal to 0 for any entries where j < i. The transpose of
this matrix is:

∆> =


a11 0 ... 0

a12
. . . . . .

...
...

. . . . . . 0

a1n ... an−1,n ann

 .
So when we add the two together, we get this:

∆ + ∆> =


2a11 a12 ... a1n

a12
. . . . . .

...
...

. . . . . . an−1,n
a1n ... an−1,n 2ann

 .
We just need to subtract back the diagonal of A, which we will do using the
matrix diag(A) which has values diag(A)ii = aii, and diag(A)ij = 0 for any
i 6= j:

A′ = ∆ + ∆> − diag(A) =


a11 a12 ... a1n

a12
. . . . . .

...
...

. . . . . . an−1,n
a1n ... an−1,n ann

 ,
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which leaves A′ to be a matrix consisting only of entries which were in the upper
right triangle of A. A′ is obviously symmetric, because a′ij = a′ji for all i and j.
Since the adjacency matrix is symmetric, the network A′ represents is undirected.

Box 3.7.3 When is “ignoring” a triangle appropriate?

When we have an undirected network, it is often the case that the network
will be stored only as a single “triangle” with the diagonal, since half of the
matrix is redundant. Therefore, we can potentially save space by only storing
a little over half of it (because we need to retain only one triangle + the
diagonal, and can ignore the other triangle of the matrix). So if we want the
actual adjacency matrix, we need to “ignore” the uninformative triangle, and
“retain” the informative one, like the procedure above.

So what does this mean in terms of the network itself? This means that the
network originally had edge weights aij , where aij might not be equal to aji.
Let’s consider this in terms of the activity/hobby network. The activity/hobby
network, which is undirected, perhaps has been stored in a representation where
the entire lower-left triangle is just zeros, for space purposes. When we then
upper-right symmetrize it, the network looks like this, using the graspologic

function symmetrize with method="triu" (upper triangular symmetrization):

from graspologic.utils import symmetrize

# upper-triangle symmetrize the upper triangle

A_activity = symmetrize(A_activity_uppertri, method="triu")

We plot the two heatmaps in Figure 3.7.2.

Figure 3.7.2 The matrices A_activity_uppertri and A_activity_triu_symmetrized

showing the (A) upper triangle, (B) and upper-right symmetrized adjacency
matrices.
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Likewise, if the network only had the lower triangle stored, we could do the
same thing but with method="tril" to retain the lower triangle of the matrix.

Taking a function of the two values
There are many other ways we use a function of aij and aji to get a symmetric
matrix (and an undirected network). One is to just average. That is, we can let
the matrix A′ be the matrix with entries a′ij =

aij+aji
2 for all i and j. In matrix

form, this operation looks like this:

A′ =
1

2
(A+A>)

=
1

2


a11 ... a1n

...
. . .

...
an1 ... ann

+

a11 ... an1
...

. . .
...

a1n ... ann




=


1
2 (a11 + a11) ... 1

2 (a1n + an1)
...

. . .
...

1
2 (an1 + a1n) ... 1

2 (ann + ann)



=

 a11 ... 1
2 (a1n + an1)

...
. . .

...
1
2 (an1 + a1n) ... ann


As we can see, for all of the entries, a′ij = 1

2 (aij + aji), and also a′ji = 1
2 (aji +

aij). These quantities are the same, so a′ij = a′ji, and A′ is symmetric. As the
adjacency matrix is symmetric, the network that A′ represents is undirected.

The asymmetry in the friendship network means student i might perceive their
friendship with student j as being stronger or weaker than student j perceived
about student i. Instead of just arbitrarily throwing one of those values away, we
can average if it would better represent their friendship. This produces a single
friendship strength a′ij where a′ij = a′ji.

We can implement this with graspologic as follows:

# symmetrize with averaging

A_friend_avg_sym = symmetrize(A_friend, method="avg")

We encourage readers to plot the outcome and convince themselves that it is,
in fact, symmetric using the is_symmetric() function.

We will will use the friendship network symmetrized by averaging (A_friend_avg_sym)
in several of the below examples, which we will call the “undirected friendship
network”.
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3.7.3 Diagonal augmentation

Numerous techniques which operate on adjacency matrices require them to be
positive semidefinite. We will explore this concept in Section 4.11.2. When we
have a loopless network, a common practice is to set the diagonal to zero. This
leads to adjacency matrices being indefinite (which means not positive semidefi-
nite). This means that many network machine learning techniques cannot operate
on these adjacency matrices. However, as we mentioned before, these entries are
not actually zero, but simply do not exist, and so we need a way to represent
them.
Diagonal augmentation is a procedure for imputing the diagonals of adjacency

matrices for loopless networks. This gives us “placeholder” values that do not
cause this issue of indefiniteness, and allow our techniques to work. For a simple
network, the adjacency matrix will look like this:

A =


0 a12 ... a1n

a21
. . .

...
...

. . . an−1,n
an1 ... an,n−1 0


What we do is impute the diagonal entries using the fraction of possible edges

which exist for each node. This quantity is simply the node degree di (the number
of edges which exist for node i) divided by the number of possible edges node i
could have (which would be node i adjacent to each of the other n − 1 nodes).
Remembering that the degree matrix D is the matrix whose diagonal entries are
the degrees of each node, the diagonal-augmented adjacency matrix is given by:

A′ = A+
1

n− 1
D =


d1
n−1 a12 ... a1n

a21
. . .

...
...

. . . an−1,n
an1 ... an,n−1

dn
n−1


When the matrices are directed or weighted, the computation is a little different,
but fortunately graspologic will handle this for us. Let’s see how we would apply
this to the directed friendship network:

from graspologic.utils import augment_diagonal

A_friend_aug = augment_diagonal(A_friend)

We will rotate back to the problem of positive semidefiniteness in Section 4.5 as
it relates to statistical models for networks, and will pivot back again in Section
5.3 for the implications of this concept on adjacency matrices.
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3.7.4 Regularizing the edges of weighted networks

We are often concerned with the bias/variance tradeoff. The bias/variance trade-
off is an unfortunate side-effect that concerns how well a learning technique will
generalize to new datasets [8].

1 Bias is an error from erroneous assumptions we make about the system that
we are learning about. For instance, if we have a friendship network, we might
make simplifying assumptions, such as an assumption that two athletes from
different sports have an equally likely chance of being friends with a member
of the band. This might be flat out false, as band members might be selectively
better friends with athletes depending on which sports they play.

2 Variance is the degree to which an estimate will change when given new data.
An assumption that a football player has a higher chance of being friends with
a band member might make sense if the band performs at football games.

The “trade-off” is that these two factors tend to be somewhat at odds, in that
raising the bias tends to lower the variance, and vice-versa:

1 High bias, but low variance: Whereas a lower variance model might be better
suited to the situation where the data we expect to see is noisy, it might not as
faithfully represent the underlying dynamics we think the network possesses.
A low variance model might ignore that athletes might have a different chance
of being friends with a band member based on their sport all together. This
means that while we won’t get the student relationships correct, we might still
be able to get a reasonable estimate that we think is not due to overfitting.
In this case, we have smoothed away signal from the data at the expense of
avoiding noise.

2 Low bias, but high variance: Whereas a low bias model might more faithfully
model true relationships in our training data, it might fit training data a little
too well. Fitting the training data too well is a problem known as overfitting.
If we only had three football team members and tried to assume that football
players were better friends with band members, we might not be able to well
approximate this relationship because of how few individuals we have who
reflect this situation.

Here, we show several strategies to reduce the variance (but, add bias) due to
edge weight noise in network machine learning.

3.7.5 Sparsification of the network

The procedure of sparsification is one in which we take a network remove edges
from it, which is described by [9] and [10]. Removing edges, in terms of the
adjacency matrix, is analogous to setting the corresponding adjacencies to zero.
A matrix with many zero entries is called a sparse matrix. So, the reason we call
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the removal of the edges from a network sparsification is that we are producing
a network with a sparse adjacency matrix.

Sparsification is a general class of edge regularization techniques, and includes
many flavors. Here, we discuss a few of them. In network sparsification, we will
often pick some property of the network (such as a particular edge weight) and
remove edges in an attempt to preserve something about this particular property.

A useful tool to study how we might want to go about sparsifying the network
is called the edge-weight distribution of our network sample, which is the distri-
bution of values that the edge weights of the network take. The most common
way to visualize the edge-weight distribution is an edge-weight histogram. This is
similar to the node-degree histogram we worked with in Section 3.6, but instead
of node degrees, we look at the edge-weights. Let’s take a look at the friendship
network, and then take a look at its edge-weight distribution. Because the friend-
ship network is undirected, we need to remove its diagonal elements before we
visualize the edge-weight distribution. We also remove edges with zero-weights
for visualization purposes:

def discard_diagonal(A):

"""

A function that discards the diagonal of a matrix,

and returns its non-diagonal edge-weights.

"""

# create a mask that is True for the non-diagonal edges

non_diag_idx = np.where(~np.eye(A.shape[0], dtype=bool))

return A[non_diag_idx].flatten()

# obtain the non-diagonal edge-weights

friend_nondiag_ew = discard_diagonal(A_friend)

# get the non-zero, non-diagonal edge weights

friend_nondiag_nz_ew = friend_nondiag_ew[friend_nondiag_ew > 0]

# plot the histogram, as above

histplot(friend_nondiag_nz_ew, bins=20, binrange=(0, 1))

We show this plot in Figure 3.7.3(C).

Truncation removes the smallest edges
The simplest way to reduce the variance due to edge weight noise is called edge
truncation. Edge truncation is a process by which we choose some threshold
value τ , and remove all of the weights which are smaller than τ but retain the
weights that are bigger than τ . For edges that are equal to τ , what we will want
to do depends on the strategy we are employing. We’ll arbitrarily set nodes ≤ τ
to zero in our case.
τ is typically chosen with one of the two strategies below:

1 Choose τ arbitrarily: after looking at our network and doing some preliminary
visualizations, we might determine that our edge weights tend to be “multi-
modal”. This means that when we look at the edge-weight distribution, we see
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Figure 3.7.3 (A) The adjacency matrix before truncation. (B) The adjacency matrix
after truncation. (C) The non-zero, non-diagonal edge weights before truncation. (D)
The non-zero, non-diagonal edge weights after truncation.

multiple “clusters” of edge weight bins which are larger, or smaller. For a lot
of networks, these small edges might be very noise induced; that is, the small
edges might just spuriously be close to, but not quite, zero, due to errors in
the measuring process. We might just want to remove these edges entirely for
subsequent analysis.

2 Choose τ using the quantile function: In this strategy, we start with a desired
fraction q. Then, we pick τ such that a q fraction of the edges have a weight
less than τ , and 1 − q fraction of the edges have a weight exceeding τ . Such
a value τ is picked through the quantile function, which we will learn more
about below. We then identify the edges whose edge-weights are below τ and
then set these edge weights to 0, while the remaining edge weights are left
unchanged. For instance, if we use a fraction of 0.5, this means that we take
the smallest 50% of edges and set the weights to zero, while the largest 50%

of edges retain their initial weights. There are two potential major pitfalls to
this process, which we elaborate on below.

This is called truncation because we are taking the edge-weight distribution, and
truncating (cutting it off) below the value τ .

With respect to what to do with edges that are equal to τ , when we choose
a threshold arbitrarily, we can do whatever we want with them, as long as we
are consistent if we have multiple networks we are truncating. What we mean
by this is that we can select to remove edges less than or equal to this threshold,
or retain edge weights greater than or equal to the threshold. When we truncate
on the basis of a percentile, however, this is not quite the case. We will want to
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remove all the edges below τ , and truncate away the remaining edges equal to τ
at random until we have truncated the desired fraction of edges in total.

Let’s see how this works in practice. In the edge-weight histogram, in Figure
3.7.3 we notice two “peaks” to the non-zero edge-weights.

If we think that the smaller peak edge-weights are spurious/noise, we might
want to threshold somewhere in between the smaller and the larger peaks, like
near 0.4, which is highlighted in 3.7.3(C).

def truncate_network(A, threshold):

A_cp = np.copy(A)

A_cp[A_cp <= threshold] = 0

return A_cp

tau = 0.4

A_friend_trunc = truncate_network(A_friend, threshold=tau)

The next thing to look at is the adjacency matrix, before and after truncation.
We show these plots in Figure 3.7.3(A) and 3.7.3(B). Notice that the smallest
weight edges in the network (in this case, the ones with edge weights ≤ 0.4) have
been replaced with zeros. As we can see, a lot of the edges in the upper right
and upper left, which were previously small, are now zero. This is reflected in
the edge-weight distribution:

friend_trunc_nondiag_ew = discard_diagonal(A_friend_trunc)

# get the non-zero, non-diagonal edge weights

friend_trunc_nondiag_nz_ew = friend_trunc_nondiag_ew[friend_trunc_nondiag_ew > 0]

histplot(friend_trunc_nondiag_nz_ew, bins=20, binrange=(0, 1))

which is shown in Figure 3.7.3(D). All of the edges with weights less than τ = 0.4

have been truncated away.
A slight caveat to this procedure is that, if we use the percentile approach

and the network is undirected, we need to exclude one triangle of the network
to obtain the appropriate percentile. This is because when aij = aji, we would
otherwise count an edge twice if we just used the adjacency matrix to obtain
percentiles. We will see this more in the example on thresholding below.

Thresholding converts weighted networks to unweighted
networks
Closely related to truncation is the process of thresholding. Like truncation, we
begin with a threshold τ , which is usually chosen arbitrarily or based on a quan-
tile, like for truncation. However, there is one key difference: when we threshold
a network, we set the edges below τ to zero, and the edges greater than τ to one.
This has the effect of taking a weighted network, and effectively transforming it
into an unweighted network.

We will show how to use the quantile approach to thresholding with the ac-
tivity/hobby network. A quantile is a value where q fraction of the data is less
than a value, and 1 − q fraction of the data exceeds a value. For instance, the
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0.5 quantile of a set of data would correspond to the median, where 50% of the
numbers are smaller than the median and 50% are larger than the median.

We will threshold by choosing τ such that τ is the median (0.5 quantile, or 50th

percentile) of the edge-weight distribution. Remember as we learned in Section
3.1, that if the network itself is loopless, the diagonal entries simply do not exist;
0 is simply a commonly used placeholder. For this reason, when we compute
quantiles of edge-weights, we need to exclude the diagonal if the network is
loopless.

Box 3.7.4 Why is thresholding with the quantile function desirable?

Remember that in Section 3.3.1, we defined the network density for a simple
network as:

density(A) =

∑
j>i aij(
n
2

) .

If we threshold this network at a percentile of p, this corresponds to using
the quantiling approach with a fraction of q = p

100 . Ideally, we will set 1 − q
fraction of the edges to 1, and a q fraction of the edges to zero. We will use
a placeholder q = p

100 to denote the fraction of edges that we are setting to
zero through a percentile.
If we are able to do this perfectly, then

∑
j>i aij = (1− q)

(
n
2

)
. Stated another

way, 1 − q fraction of all possible edges in the resulting unweighted network
will (ideally) exist.
Therefore:

density(A) =
(1− q)

(
n
2

)(
n
2

) = 1− q

So when we threshold the network at a percentile p, and we are actually able
to set a q = p

100 fraction of the edges to zero and a 1− q fraction of the edges
to one, we end with a network of density equal to 1−q. We will see conditions
as to when this will, and will not, be possible to do later on.

Since this network is undirected, we also need to restrict our attention to
one triangle of the corresponding adjacency matrix. We choose the upper-right
triangle arbitrarily, as the adjacency matrix’s symmetry means the upper-right
triangle and lower-right triangle have identical edge-weight distributions. We can
do this using numpy. This network is loopless and undirected, so we will want to
exclude both the diagonal and only perform our analysis on a single triangle of
the matrix:

# find the indices which are in the upper triangle and not in the diagonal

upper_tri_non_diag_idx = np.where(np.triu(np.ones(A_activity.shape), k=1).astype(bool))

q = 0.5 # desired percentile is 50, or a fraction of 0.5
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histplot(A_activity[upper_tri_non_diag_idx].flatten())

# use the quantile function with the desired fraction q

tau = np.quantile(A_activity[upper_tri_non_diag_idx], q=q)

So, let’s see what happens when we just compute τ using the q fraction of the
non-diagonal, upper triangular entries of A, and then threshold A using τ . To
do this, we will just check the number of edges greater than τ , and the number
less than or equal to τ . Since we used q = 0.5 as our desired quantile, we should
anticipate that these numbers should be very close to equal:

n_lteq_tau = np.sum(A_activity[upper_tri_non_diag_idx] <= tau)

n_gt_tau = np.sum(A_activity[upper_tri_non_diag_idx] > tau)

print("Number of edges less than or equal to tau: {}".format(n_lteq_tau))

print("Number of edges greater than to tau: {}".format(n_gt_tau))

The number of edges ≤ τ are likely not close to equal the number of edges
> τ : they should be about 50% larger than the number of edges > τ . So what
happened?

The duplicate value pitfall
Let’s imagine an array that was [1,2,3,4] and [1,2,2,4], and we chose to thresh-
old at the 50th percentile (the 0.5 quantile). The first array would give a 0.5

quantile of 2.5. If we thresholded with this value, we would get [0,0,1,1], and
the number of elements retained after thresholding would be 50% ones and 50%

zeros, like we expected. On the other hand, the 0.5 quantile of the second array
is 2, and if we used the thresholding approach above we would get [0,0,0,1],
which has 75% of the values taking 0 and 25% of the values taking one.

This means that if we pass in a quantile q and we expect that q fraction of
the points will have a value of 0 after truncation/thresholding, we are going to
need to be very careful with our data to handle points that are equal to the
corresponding value of τ . To do this, one way is to assign edges less than τ to
zero, and the edges greater than τ to one. Then, for edges equal to τ , we can
to randomly assign them to a zero or one, until we obtain the desired threshold.
This can be done with the pseudocode in Algorithm 1. We could write a similar
utility for truncating with the quantile function.

This algorithm adds a very small amount of noise to the matrix A that we
are thresholding. Note that we take care to ensure that if A is hollow and the
network is loopless, we do not add random noise to the diagonal. Otherwise, we
might end up setting some diagonal elements to 1 when we threshold. Further,
if A is symmetric and the network is undirected, we must add the same amount
of noise to both entries aij and aji by symmetrizing the “noise matrix” ε. This
noise is small enough that it is an order of magnitude (a factor of 10) smaller
than the smallest appreciable difference in any two non-zero elements of A.

After we add this matrix to A, there is a probability of zero that any two
elements of A will have the same value. Further, since we added noise that was
an order of magnitude smaller than any non-zero differences of elements of A, it
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Algorithm 1: Thresholding an adjcency matrix with random tiebreaking.
Data: A: an adjacency matrix

q: a fraction between 0 and 1

Result: an adjacency matrix thresholded at the q fraction.
1 Let d be the minimum non-zero difference between any two elements of A.
2 for i in 1 : n do
3 for j in 1 : n do
4 if i = j and A is hollow then
5 εii = 0 for all i.
6 else
7 Let εij be a random number between 0 and d

10 .
8 end
9 end

10 end
11 if A is symmetric then
12 ε = ε+ε>

2 , which makes ε a symmetric matrix.
13 end
14 Compute the augmented adjacency matrix, A′ = A+ ε

10 .
15 Compute the appropriate threshold τ using A′.
16 Threshold A′ by setting elements where a′ij > τ to one, and a′ij < τ to

zero.

is impossible for an item that was originally greater than τ to now be less than
the desired τ , and vice-versa. This strategy is called a random tiebreaking, since
we broke ties that occur at exactly τ randomly.

This can be implemented in python as follows:

from numpy import copy

def min_difference(arr):

b = np.diff(np.sort(arr))

return b[b>0].min()

def quantile_threshold_network(A, directed=False, loops=False, q=0.5):

# a function to threshold a network on the basis of the

# fraction q

A_cp = np.copy(A)

n = A.shape[0]

E = np.random.uniform(low=0, high=min_difference(A)/10, size=(n, n))

if not directed:

# make E symmetric

E = (E + E.transpose())/2

mask = np.ones((n, n))

if not loops:

# remove diagonal from E

E = E - np.diag(np.diag(E))

# exclude diagonal from the mask
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mask = mask - np.diag(np.diag(mask))

Ap = A_cp + E

tau = np.quantile(Ap[np.where(mask)].flatten(), q=q)

A_cp[Ap <= tau] = 0; A_cp[Ap > tau] = 1

return A_cp

A_activity_thresholded03 = quantile_threshold_network(A_activity, q=0.3)

A_activity_thresholded07 = quantile_threshold_network(A_activity, q=0.7)

We visualize these two thresholded adjacency matrices along with the unweighted
adjacency matrix in Figure 3.7.4.

Figure 3.7.4 (A) the weighted adjacency matrix of the activity/hobby network. (B)
the weighted adjacency matrix of the activity/hobby network after thresholding at a
fraction of 0.3. (C) the weighted adjacency matrix of the activity/hobby network
after thresholding at a fraction of 0.7.

Now, we confirm that we didn’t run into the duplicate value pitfall. We will do
this by writing a utility which computes the network density from an adjacency
matrix for a simple network, and then illustrate that the fraction q that we
indicated ends up being 1− the network’s density, based on Remark 3.7.4. Since
q = 0.3 for the network we are checking below, we should obtain a network
density of 1− q = 0.7:

from graspologic.utils import is_unweighted, is_loopless, is_symmetric

def simple_network_dens(X):

# make sure the network is simple

if (not is_unweighted(X)) or (not is_loopless(X)) or (not is_symmetric(X)):

raise TypeError("Network is not simple!")

# count the non-zero entries in the upper-right triangle

# for a simple network X

nnz = np.triu(X, k=1).sum()

# number of nodes

n = X.shape[0]

# number of possible edges is 1/2*n*(n-1)

poss_edges = 0.5*n*(n-1)

return nnz/poss_edges

print("Network Density: {:.3f}".format(simple_network_dens(A_activity_thresholded03)))

# Network Density: 0.700
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So our solution achieved the desired network density.
We call this the duplicate value pitfall because we can only run into it if our

adjacency matrix has the same value duplicated multiple times.

The “underly ambitious” pitfall
The next pitfall of using a fraction q is actually a special case of the duplicate
value pitfall listed above: we might choose an underly ambitious fraction to
truncate/threshold with. By underly ambitious, we mean that the adjacency
matrix does not even have a 1− q fraction of non-zero edges. When we threshold
A with a fraction of q, we can spot this pitfall fairly easily by simply checking
the fraction of 0-weight edges ahead of time.

For an example, let’s consider a network where 50% of the possible edges are
0, and the other 50% are 1 (the network density is 0.5). If we were to choose a
quantile of 0.3, quantiling will still only give us a network density of 0.5, and not
0.7 like we might have expected from Remark 3.7.4.

Unfortunately, there is no quick fix like there was for the duplicate value pitfall;
if we run into the underly ambitious pitfall and tried to use the randomization
procedure, the “solution” would end up setting edges with a value of zero in the
adjacency matrix to one, which does not make much sense. To avoid this pitfall,
we need to analyze our densities ahead of time if we want to use quantiling, and
ensure that the fraction we choose is not underly ambitious.

If we had a collection of weighted networks that we wanted to threshold or
truncate en masse using a fraction q, we could do this by plotting a histogram
of the unweighted network densities(e.g., the ratio of edges to potential edges,
ignoring weightedness), and ensuring that 1−q is less than all of the unweighted
network densities in our collection.

When can we ignore these pitfalls entirely?
If our network fulfills two properties, we are guaranteed that we will not run
into the quantiling pitfalls. First, if the network is dense (a network where all
possible entries aij are non-zero, with arbitrarily small or large edge-weights),
we cannot possibly run into the underly ambitious pitfall, since that will only
arise when there are zero-weight edges in the adjacency matrix. Second, if the
adjacency matrix does not have any duplicate values, we cannot run into the
duplicate value pitfall either, because we cannot have ties at the desired fraction
if there are no duplicated values in the edge weights.

When considering when a network might run into these pitfalls using the
adjacency matrix, be sure to only consider appropriate entries of the adjacency
matrix. This means restricting analysis to the upper triangle or the lower triangle
if the network is undirected, and removing the diagonal if the network is loopless.
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Box 3.7.5 With all these pitfalls, why would we quantile?

When we analyze networks using summary statistics, it is often the case that
we want to argue that our network summary statistic captures some sort of
property of the networks that will subsequently be informative. Let’s imagine
that we have a collection of networks that are in one of two groups (such as
brain networks from male worms and female worms), and we want to argue
that the brains of female worms tend to be more clustered than the brains of
male worms.
Many network summary statistics that we might be interested in tend to
be correlated with the network density. This means that when the network
density is high, other summary statistics that we could use (such as the corre-
lation coefficient) might be artificially higher or lower simply as a product of
the network having more (or less) edges, rather. For this reason, if we want to
analyze a collection of networks using summary statistics, it might make sense
to analyze a collection of networks with the same network density. This is be-
cause in some sense, analyzing the networks with a similar network density
will “decouple” this correlation with the network density, since the network
density will no longer be changing across the networks.

3.8 Edge-weight global rescaling

Sections 3.6 and 3.7 explored techniques for regularization. Building on this
foundation, we now turn our attention to methods for rescaling edge weights
in weighted networks. This section covers:

1 Z-score standardization of edge weights,
2 Ranking-based approaches for edge weight normalization, and
3 Logarithmic transformation of edge weights.

Edge-weight rescaling helps compare networks with different edge weight
distributions or scales. These techniques serve to normalize network data,
making it more suitable for comparative analyses and certain machine learn-
ing algorithms.

With weighted networks, it is often the case that we might want to reshape
the distributions of edge-weights to highlight particular properties. Notice that
the edge-weights for the friendship network takes values between 0 and 1, but
the activity network takes values between 0 and almost 15. How can we possibly
compare between these two networks where the edge-weights take such different
ranges of values? We might turn to standardization, which allows us to place
values from different networks on the same scale.



102 Characterizing and preparing network data

3.8.1 z-scoring standardizes edge weights using the normal distribution

The first approach to edge-weight standardization is known commonly as z-
scoring. Suppose that A is the adjacency matrix, with entries aij . With a z-score,
we will rescale the weights of the adjacency matrix, such that the new edge-
weights (called z-scores) are approximately normally distributed. The reason this
can be useful is that the normal distribution is pretty ubiquitous across many
branches of science, and therefore, a z-score is relatively easy to communicate
with other scientists. Further, many things that exist in nature can be well-
approximated by a normal distribution, so it seems like a reasonable place to
start to use a z-score for edge-weights. To use the z-score, we will construct the
z-scored adjacency matrix Z, whose entries zij are the corresponding z-scores of
the adjacency matrix’s entries aij . For a weighted, loopless network, we use an
estimate of the mean, µ̂, and the unbiased estimate of the variance, σ̂2, which
can be computed as follows:

µ̂ =
1

n(n− 1)

∑
i 6=j

aij ,

σ̂2 =
1

n(n− 1)− 1

∑
i 6=j

(aij − µ̂)2.

The z-score for the (i, j) entry is simply the quantity:

zij =
aij − µ̂
σ̂

Since our network is loopless, notice that these sums are for all non-diagonal
entries where i 6= j. If the network were not loopless, we would include diagonal
entries in the calculation, and instead would sum over all possible combinations of
i and j. The interpretation of the z-score zij is the number of stadard deviations
that the entry aij is from the mean, µ̂.

We will demonstrate on the directed friendship network. We can implement
z-scoring for a loopless directed network as follows:

from graspologic.utils import is_loopless, is_symmetric

from scipy.stats import zscore

def z_score_directed_loopless(X, undirected=False):

if not is_loopless(X):

raise TypeError("The network has loops!")

if is_symmetric(X):

raise TypeError("The network is undirected!")

# the entries of the adjacency matrix that are not on the diagonal

non_diag_idx = np.where(~np.eye(X.shape[0], dtype=bool))

Z = np.zeros(X.shape)

Z[non_diag_idx] = zscore(X[non_diag_idx])

return Z

ZA_friend = z_score_directed_loopless(A_friend)
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Note that in the above code snippet, we throw an error if the network is
undirected (and the adjacency matrix is symmetric): remember that we want
to be careful to restrict our analysis to the upper triangle if the network is
undirected and loopless. This won’t really change the estimate of the mean, but
the variance will be slightly different. The sums would be over j > i, and the
normalizing factors would be

(
n
2

)
instead of n(n− 1).

The theory for when, and why, to use z-scoring for network machine learning
tends to go something like this: many things tend to be normally distributed, so
perhaps that is a reasonable expectation for our network, too. Unfortunately, we
find this often to not be the case for network data. In fact, we often find that
the specific distribution of edge weights itself often might be almost infeasible to
identify in a population of networks, and therefore often irrelevant for subsequent
analyses. In this case, we turn to ranking the edges.

3.8.2 Ranking edges preserves ordinal relationships

The idea behind ranking is as follows. We often don’t know how the distribution
of edge weights varies between a given set of networks. For this reason, we may
want to virtually eliminate the impact of that distribution almost entirely. How-
ever, we know that if one edge-weight is larger than another edge-weight, we do
in fact trust that relationship. What this means is that we want something which
preserves ordinal relationships in our edge-weights, but ignores other properties
of the edge-weights. An ordinal relationship just means that we have a natural
ordering to the edge-weights. This means that we can identify a largest edge-
weight, a smallest edge-weight, and every position in between. When we want to
preserve ordinal relationships in our network, we pass the non-zero edge-weights
to ranks. We will often use the abbreviation ptr to define this function because
it is so useful for weighted networks. We pass non-zero edge-weights to ranks as
in Algorithm 2.

Algorithm 2: Passing an adjacency matrix to ranks
Data: A is an adjacency matrix.
Result: The adjacency matrix, after passing to ranks.

1 Identify all of the non-zero entries of the adjacency matrix A.
2 Let nnz be the number of non-zero entries of the adjacency matrix A.
3 Rank all of the non-zero edges in the adjacency matrix A, where for a

non-zero entry aij , rank(aij) = 1 if aij is the smallest non-zero
edge-weight, and rank(aij) = nnz if aij is the largest edge-weight. Ties
are settled by using the average rank of the tied entries.

4 Report the weight of each non-zero entry (i, j) as rij =
rank(aij)
nnz+1 , and for

eachh zero entry as rij = 0.

Below, we pass-to-ranks the directed friendship network using graspologic:
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from graspologic.utils import pass_to_ranks

RA_friend = pass_to_ranks(A_friend)

A plot of the adjacency matrices before and after passing to ranks, as well as
the edge-weight histograms before and after passing to ranks, is shown in Figure
3.8.1.

Figure 3.8.1 (A) the adjacency matrix before passing to ranks for the friendship
network. (B) the adjacency matrix after passing to ranks. (C) the edge-weight
histogram (including zero-weight edges) before passing to ranks. (D) the edge-weight
histogram (including zero-weight edges) after passing to ranks.

The edge-weights for the adjacency matrix R after ptr has the interpretation
that each entry rij which is non-zero is the fraction of non-zero edge weights
that aij exceeds. This is unique in that it is completely distribution-free, which
means that we do not need to assume anything about the distribution of the
edge-weights to have an interpretable quantity. On the other hand, the z-score
had the interpretation of the number of standard deviations from the mean,
which is only a sensible quantity to compare if the population of edge-weights
are normally distributed.

Another useful quantity related to pass-to-ranks is known as the zero-boosted
pass-to-ranks. Zero-boosted pass-to-ranks is conducted as in Algorithm 3.

The edge-weights for the adjacency matrix R′ after zero-boosted ptr have the
interpretation that each entry r′ij is the quantile of that entry amongst all of the
entries. Let’s instead use zero-boosted ptr on our network:

RA_friend_zb = pass_to_ranks(A_friend, method="zero-boost")
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Algorithm 3: Zero-boosted pass to ranks
Data: A is an adjacency matrix.
Result: The adjacency matrix, after passing to ranks.

1 Identify all of the non-zero entries of the adjacency matrix A and the
zero-weighted entries of the adjacency matrix A.

2 Let nnz be the number of non-zero entries of the adjacency matrix A, and
nz be the number of zero-weighted entries of the adjacency matrix A.
Note that nnz + nz = n2, since A has n2 entries.

3 Rank all of the non-zero edges in the adjacency matrix A, where for a
non-zero entry aij , rank(aij) = 1 if aij is the smallest non-zero
edge-weight, and rank(aij) = nnz if aij is the largest edge-weight. Ties
are settled by using the average rank of the two entries.

4 Report the weight of each non-zero entry (i, j) as r′ij =
nz+rank(aij)

n2+1 , and
for each zero entry as r′ij = 0.

We show the adjacency matrix after zero-boosted ptr, along with the edge-weight
histogram (including zero-weight edges), in Figure 3.8.2.

Figure 3.8.2 (A) the adjacency matrix, after zero-boosted ptr. (B) the edge-weight
histogram, after zero-boosted ptr. Compare this to Figure 3.8.1(B) and 3.8.1(D),
respectively.

3.8.3 Thresholding as a decimation of ranking

The thresholding approach we learned in Section 3.7.5 can be thought of as a
decimation of ranking, assuming that the ranking implementation handles ties
randomly (the implementation in graspologic does not, as ties are settled by
the average rank, but we would encourage you to implement one that does as an
exercise). This means that we are reducing the number of potential values that
the resulting network weights can take (here, from normalized ranks to binary
values). For instance, if we picked a threshold of 0.5, there is some corresponding
rank (or value in between two ranks), where all of the elements of the adjacency
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Figure 3.8.3 (A) The upper-triangle edge-weight histogram for the activity/hobby
network. Notice that the histogram “tails off” towards the right. (B) The value for
the base-10 logarithm function for given values of x.

matrix with a rank lower than a given threshold τr have corresponding weights
lower than τ and all of the elements of the adjacency matrix with a rank higher
than a given threshold τr have corresponding weights higher than τ . Then, we
can simply threshold the ranked adjacency matrix using τr.

3.8.4 Logging reduces magnitudinal differences between edges

When we look at the distribution of upper-triangle edge-weights for the activi-
ty/hobby network or the friendship network, we notice a strange pattern, known
as a right-skew. This is shown in Figure 3.8.3(A). Informally, a distribution is
right-skewed if a large fraction of the points take relatively small values, and then
a small portion of the points take relatively large values. Notice in this figure,
for instance, that most points have an edge weight between 0 and 2, but and
a small portion of points have an edge-weight between 2 and 10. This is called
a “right-skew” because the histogram “tails off” as the values go to the right
(increase).

What if we want to make these large values more similar in relation to the
smaller values, but we simultaneously want to preserve properties of the underly-
ing distribution of the edge-weights? Well, we can’t useptr‘, because ‘ptr will
throw away all of the information about the edge-weight distribution other than
the ordinal relationship between pairs of edges. To interpret what this means, we
might think that there is a big difference between sharing no interests compared
to three interests in common, but there is not as much of a difference in sharing
ten interests compared to thirteen interests in common.

To do this, we instead turn to the logarithm function. The logarithm function
log10(x) is defined for positive values x as the value cx where x = 10cx . In this
sense, it is the “number of powers of ten” to obtain the value x. The logarithm
function is shown in Figure 3.8.3(B).

As x increases, the log of x increases by a decreasing amount. Let’s imagine
we have three values, x = .001, y = .1, and z = 10. A calculator will give us that
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log10(x) = −3, log10(y) = −1, and log10(z) = 1. Even though y is only .099 units
bigger than x, its logarithm log10(y) exceeds log10(x) by two units. on the other
hand, z is 9.9 units bigger than y, but yet its logarithm log10(z) is still the same
two units bigger than log10(y). This is because the logarithm is instead looking
at the fact that z is one power of ten, y is −1 powers of ten, and z is −3 powers
of ten. The logarithm has collapsed the huge size difference between z and the
other two values x and y by using exponentiation with base ten.

We can use the logarithm function to reduce the huge size difference between
the values in our activity/hobby network. However, because log10(0) is not de-
fined, we need to augment the entries of the adjacency matrix if it contains zeros.
To do this, we will “inflate” these values by a negligibly small magnitude. We
show how to implement this in Algorithm 4.

Algorithm 4: Log transforming a network with zero-weight edges.
Data: A is an adjacency matrix.

b the base to log transform with.
Result: The adjacency matrix, after log transformation.

1 Identify the entries of A which take a value of zero.
2 Identify the smallest entry of A which is not-zero, and call it am.
3 Compute a value ε which is an order of magnitude smaller than am. Since

we are taking powers of b, a single order of magnitude would give us
that ε = am

b .
4 Take the augmented adjacency matrix A′ to be defined with entries

a′ij = aij + ε.
5 Log transform A′ with a base of b.

The first process of this procedure is called a zero augmentation. We can code
up the log transformation as follows:

def augment_zeros(X, base=10):

if np.any(X < 0):

raise TypeError("The logarithm is not defined for negative values!")

am = np.min(X[np.where(X > 0)]) # the smallest non-zero entry of X

eps = am/base # epsilon is one order of magnitude smaller than the smallest non-zero

entry

return X + eps # augment all entries of X by epsilon

def log_transform(X, base=10):

"""

A function to log transform an adjacency matrix X, which may

have zero-weight edges.

"""

X_aug = augment_zeros(X, base=base)

return np.log(X_aug)/np.log(base)

A_activity_log = log_transform(A_activity)
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We plot the untransformed and log-transformed activity/hobby network in
Figure 3.8.4.

Figure 3.8.4 (A) The weighted adjacency matrix for the activity/hobby network.
There are many small entries, and it is hard to discern which entries are zero from the
entries that are just small. (B) The activity/hobby network, after log transformation.
The edges which are zero are readily apparent in the plot, and we have a better sense
of the range of non-zero elements visually (they tend to fall between 0 and 1, so are
different by approximately a power of 10).

When we plot the augmented and log-transformed data, we see that many of
the edge-weights we originally might have thought were zero if we only looked
at a plot were, in fact, not zero (they were just small). In this sense, for non-
negative weighted networks, log transforming after zero-augmentation is often
very useful for visualization to get a sense of the magnitudinal differences that
might be present between edges, since we can get a better feel for how different
the big weights are from the smaller weights.
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4 Statistical Models of Random
Networks

In Chapter 3, we explored ways to describe observed networks through both their
representations (Section 3.4) and properties like density and degree distributions
(Section 3.1). Unraveling this system’s dynamics involves three steps: first, we
make assumptions about the system (Chapter 4); second, we learn useful repre-
sentations of the observed network(s) (Chapter 5); finally, we interpret how that
representation informs our assumptions about the system (Part III).

We make assumptions about the system by assuming statistical models for our
networks. A statistical model in network machine learning provides a mathemat-
ical framework describing how the underlying system generates the network we
see.

We call the statistical model of a network, rather than its observation, a ran-
dom network. The random network does not have edges, but edge probabilities.
The rest of the book will either explicitly or implicitly assume a particular ran-
dom network when we create representations in Chapter 5 and explore applica-
tions in Part III. These representations provide a framework from which we can
interpret the results we obtain when using later techniques.

This chapter covers:

1 Section 4.1 covers the Inhomogeneous Erdös Rényi (IER) random network,
the most general independent-edge network model.

2 Section 4.2 covers the Erdös-Rényi (ER) random network, the simplest network
model.

3 Section 4.3 covers the Stochastic Block Model (SBM), a model describing node
community structure.

4 Section 4.4 covers the Random Dot Product Graph (RDPG), which we use in
Part III to learn network representations.

5 Section 4.5 further explores the block matrix for SBMs, and when SBMs can
be represented by RDPGs.

6 Section 4.6 discusses statistical properties of random networks.
7 Section 4.7 covers the degree-corrected SBM (DCSBM), an augmented SBM
allowing for varying node connectivity.

8 Section 4.5 covers different types of block matrices for SBMs, and when these
can be conceptualized using an RDPG.

9 Section 4.8 covers the structured independent-edge model (SIEM), which will
later be used for investigating differences between groups of edges in a network.
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10 Section 4.9 covers models for more than one network.
11 Section 4.10 covers the signal subnetwork (SSN) model for network-specific

covariates.

We provide further technical discussion for statistical models in Appendix A.
Figure 4.0.1 illustrates the role of statistical models in the network learning
process. After data preprocessing, network machine learning methods compute
properties of the networks. Make assumptions about the network sample using
network models allows us to answer more specific questions about the network.

Figure 4.0.1 This chapter constructs assumptions about the random network
governing a network sample.

Defining statistical models
We will often explain statistical models through analogies with coin-flipping. A
biased coin lands on heads with a probability different from 0.5, meaning that
over many flips, it might show heads more often than tails, or vice versa. When
we flip a coin once, we don’t know beforehand whether it will land on heads or
tails, only the probability of each outcome.

By conceptualizing the coin as having a probability of heads, we assume a
statistical model. We then use properties of this model to learn things about our
underlying system. For instance, if we flip a coin 100 times and see 70 heads, we
might have high confidence that the coin does not land on heads with probability
0.5. However, what if landed on heads 7 times out of 10? Without having a
statistical model, it is difficult to ascribe meaning to things that we learn about
our data and confidence to conclusions we draw.

Network modeling follows a similar principle, especially for simple networks.
Throughout this chapter, we will think of each edge of the network as a weighted
coin. In a simple, unweighted network, edges either exist or don’t exist, analogous
to a coin landing on heads or tails. The probability of an edge existing might
differ from 0.5; there could be a 0.7 chance that one edge exists, and a 0.4 chance
for another.
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When we construct models for networks, we prescribe sets of assumptions
about how the "coin" for each edge behaves. We might ask: Do all edges in the
network have equal probabilities of existing? Are there groups of nodes whose
connecting edges share the same probabilities? What other ways can we describe
the existence probabilities of edges?

We begin with conceptually simple models by allowing each edge to have its
own probability. We then move into more complex models which can be used to
build the representations we see in Chapter 5.
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4.1 Inhomogeneous Erdös-Rényi Random Networks

This section introduces statistical models for random networks, beginning
with the Inhomogeneous Erdős-Rényi (IER) model. The IER model gener-
alizes simpler network models by allowing each potential edge to have its
own probability of existing, defined by a probability matrix.

We cover:

1 The Bernoulli model and its application to edge existence,
2 Probability matrices for describing edge probabilities,
3 Formal definition and properties of the IER model,
4 Simulating samples from IER random networks, and
5 Limitations of IER for practical modeling.

The IER model provides a foundation for understanding more structured
network models introduced in subsequent sections. Its flexibility in spec-
ifying edge probabilities makes it a useful theoretical tool, though often
impractical for real-world network modeling.

4.1.1 The Bernoulli Model

The “coin flip” model will be a foundational tool that will prove useful for con-
ceptualizing networks. When we flip a coin, it will land on heads with some
probability p, and on tails with a probability 1−p. Basic rules of probability tell
us that the sum of the probabilities of all possible outcomes of a flip must be 1;
therefore, if the coin lands on heads with probability p (so P (heads) = p):

1 = P (heads) + P (tails)

= p+ P (tails),

which implies that P (tails) = 1− p. The idea is that the flipped coins are either
heads or tails (they are outcomes, or realizations, which means that they have a
fixed value), but the coin itself can land on either of these outcomes with a given
probability. Unless p = 1 or p = 0, there is a non-zero chance of seeing either of
the possible outcomes (heads or tails) in a given coin flip.

This simple example is known as the Bernoulli model, which describes two
possible outcomes (1 or 0, which could be placeholders for heads and tails in our
coin flip experiment), either of which occur randomly with a fixed probability. In
this case, we would call the probability term the parameter, which is a value or
set of values that defines specific behaviors of the model. Therefore, we say that a
coin which lands on heads or tails with a fixed probability p is a Bernoulli random
variable with parameter p. This is typically denoted in shorthand in statistics
books by saying that the coin is Bernoulli(p), or Bern(p). This shorthand will
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typically include the model name (in this case, Bernoulli) and the parameters
that govern the model (in this case, a probability, p).

A note about statistical independence
Imagine that we have two random quantities; say, whether (or not) it is raining
outside, and whether (or not) the grass is wet. If we have not looked outside
(or checked the weather forecast), we might think that these things are random.
We could imagine a statistical model, like coin flips, describing what is going on.
However, these two random quantities are related. There are many reasons why
the grass could be wet; perhaps there is a sprinkler in the yard, or there could
be a pipe leak. Another reason is that it rained. If it did rain, the probability
that we see wet grass rises dramatically.

Because rain raises the probability of wet grass, these two random quantities
are related. In statistical terms, we would say that they are statistically depen-
dent, which informally means that the probability of one event (here, whether or
not the grass is wet) is related to the outcome of another event (here, whether
or not it rained).

On the other hand, let’s imagine that we have two coins (like above), which
each land on heads/tails with fixed probabilities. The two coins are different, so
whether one coin lands on heads or tails has no probabilistic implications for
whether the other coin lands on heads or tails. This gives us some intuition for
the concept of statistical independence.

Details and conventions for random quantities
When working with random quantities, it is important to clarify some conven-
tions so that we have a good working idea of what is going on. In our coin flip
example, we would use x to denote a random coin which has a scalar (univariate)
value.

First, x is bold-faced and has non-italic typesetting. Bold-face and non-italic
will be the convention that we use in this book to denote random quantities.
This departs from the convention of many introductory statistics books such as
[1], which often use capital letters (such as X) to denote random variables. We
have adopted this alternative convention since we will often work with matrices
or even random matrices, which are typically denoted with capital letters, so the
boldface gives us the flexibility to express random variables and matrices alike
without overloading notation. In the coin flip example, we would say that x (the
random process generating the result of the flip) is a Bernoulli(p) random vari-
able. This random variable has realizations x (note the lack of bold-face) which
take values of 0 (tails) or 1 (heads). By realizations, we mean specific, determin-
istic outcomes of the random variable: what we observe after the randomness is
gone. Realizations may also be referred to as samples or observations of random
variables.

Second, note that x is lower-case. Throughout this book, we will come across
univariate quantities (such as integers or decimals) and multivariate quantities



Statistical Models of Random Networks 115

(such as matrices or vectors). That x is lower-case denotes that its realizations x
are univariate quantities (they are integers or decimals; in this case, 0s and 1s).
If we write that x = 0 (we flipped the coin, and it landed on tails), this means
that the realization x of x has the value of 0 (tails); there is nothing random
about x since we already flipped the coin.

Vectors, matrices, and random matrices
Throughout many sections of this book, we will see matrices whose elements can
be random. While this might seem like it should be considerably more compli-
cated, the idea is simple. If X is an m × n matrix, it can be written down like
this:

X =

x11 . . . x1m
...

. . .
...

xn1 . . . xnm

 ,
where each entry xij is univariate (note the lower case). All the same, we can
have random matrices X, which have m × n realizations. Therefore, the easiest
thing to do would be to “denote” this random matrix the same way:

X =

x11 . . . x1m

...
. . .

...
xn1 . . . xnm

 ,
where each entry xij is a univariate random variable.

Analogously, we will often come across vectors. To denote vectors, we will
adopt the convention of an arrow over top of a lower-case letter; for instance, an
n-element vector might look like this:

~x =

x1...
xn

 .
with random vectors defined analogously to random matrices. For simplicity, we
will always assume that vectors behave like single-column matrices. For instance,
in the above example, we would say that ~x is a n-element vector, and has the
properties of a n× 1 matrix.

4.1.2 Probability matrices

In Section 3.1.1, we developed our intuition for the adjacency matrix of a network
with n nodes, which was an n×n matrix A. In the case of simple networks, each
entry aij had a value of 1 (the edge exists) or 0 (the edge does not exist). In
Section 1.3, we saw a number of reasons to think of A as imperfect. Like the
coin, one approach would be to model some level of randomness to our network.
Under this framework, we view an observed network A as a particular realization
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of a random network A, just like the outcome of a coin (heads or tails) x is the
realization of some underlying random process x (which is heads or tails with a
probability).

This feels like our basic coin flip setup, in that we have two outcomes for each
possible edge: it either exists, or it does not exist. We will commonly describe
this using the probability matrix P , where the probability of an edge between
two nodes i and j is described by pij .

If a network has n nodes, there are n× n possible potential edges. Therefore,
we will want to keep track of n×n possible probabilities. A probability matrix is
any matrix which has values between 0 and 1. Stated another way, a probability
matrix is just a matrix whose entries are probabilities.

Throughout this book, we will most often be concerned with probability ma-
trices for random networks. As there are n × n possible potential edges, the
probability matrix P for a random network with n nodes is therefore the n× n
matrix:

P =

p11 . . . p1n
...

. . .
...

pn1 . . . pnn

 ,
where each entry pij is a probability. An example probability matrix for a network
with n nodes is illustrated in Figure 4.1.1(A).

Now that we know about Bernoulli random variables and probability matrices,
we are ready to describe our first random network model.

4.1.3 The Inhomogeneous Erös-Rényi (IER) Random Network Model

The IER random network is parametrized by a matrix of edge-probabilities. In
an IER random network, a probability matrix P with n rows and n columns
defines each of the edge-existence probabilities for pairs of nodes in the network.
For each pair of nodes i and j, we conceptualize the edge existence (or not) as a
Bernoulli random variable, or coin flip, where the coin has a pij chance of landing
on heads and a 1− pij chance of landing on tails. For each pair of nodes in the
network, we think of flipping the coin, and if it lands on heads (with probability
pij), an edge exists. Each coin flip is performed independently of the coin flips for
all of the other edges. If A has independent Bernoulli edges with a probability
matrix P , we say that A is an IERn(P ) random network.

Conventions for directedness and looplessness
In a loopless network, aii = 0 for all nodes. Recall from Section 3.1.1 that this
value of 0 is a symbolic placeholder, and is different from the use of 0 to denote
the lack of existence of an edge. The edges on the diagonal do not “not exist”;
they are impossible. For this reason, if a network is loopless, we typically define
the network as such and ignore the diagonal of the probability matrix entirely.

In an undirected network, aij = aji. Likewise, random network models can
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Remark 4.1.1 Naming conventions for IER random networks

Sometimes, Inhomogeneous Erdös-Rényi Random Networks are referred to as
“Independent-Edge Random Networks”. This alternative name calls attention
to the fact that the only restriction placed by the model is the independent-
edge assumption. Conveniently, these two possible names for the same concept
both have the same first three letters for an abbreviation.

also be undirected. If our network model specifies explicitly that the network
is undirected, then aij = aji. If we assume that aij has a probability of pij ,
this means that aji will also have a probability of pij . Therefore, if we want the
random network to produce undirected realizations, the probability matrix must
be symmetric.

It is important to clarify that a symmetric probability matrix does not nec-
essarily imply undirected network samples. To understand why this is the case,
imagine if we have two coins which land on heads with the same probability.
When we flip them, just because the probability is the same does not necessarily
imply that they will both land on heads or both land on tails. Therefore, we need
to explicitly specify in the model if the network is undirected that the probability
matrix is symmetric and that aij = aji for all nodes i and j.

In Remark 4.1.2, we discuss the statistical model for a simple IER network.
A statistical model is a set of assumptions about how our data arose from a
random process. For a random network A following the IERn(P ) model, the
model specifies the general assumptions (independent edges and the existence
of edge probabilities), whereas the probability matrix P itself defines a specific
random network. If we have another network A′ following IERn(P ′) with a
different probability matrix, it adheres to the same IER model assumptions but
results in a distinct network due to the different P ′.

Statistical network models provide a framework (assumptions), while param-
eters (the probability matrix) determine specific instances of the model within
that framework.

Remark 4.1.2 What does a fully specified statistical model for a simple
IER random network look like?

For all pairs of nodes i and j where i > j, aij is a Bernoulli(pij) random
variable, which is independent of (does not depend on) the other potential
edges of the random network.
For all pairs of nodes i and j where i > j, aji = aij . This ensures that the
upper and lower triangles of the random adjacency matrix A are symmetric,
so the random network is undirected.
For all nodes i, aii = 0. This ensures that the diagonal of the random adja-
cency matrix A is 0, so the random network is loopless.
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Notice that the only thing that has really changed is that we explicitly specify
that the upper and lower triangles of the random adjacency matrix are symmet-
ric, and that the diagonal is by default 0.

4.1.3.1 Generating a realization from a simple IERn(P ) random
network
The approach we use to describe random networks is called a generative model,
which means that we have described a random object (the random network A)
in terms of the parameters of A. In the case of IER random networks, we have
described A in terms of a probability matrix, P .

Generative models for random objects are convenient in that we can easily
adapt them to tell us how to simulate realizations. For instance, take a coin that
lands on heads with some unknown probability p (the Bernoulli model). All that
we know about the coin is that it has a probability of landing on heads, but not
what that probability is. If we wanted to learn about this coin, how could we do
it?

The easiest answer is to flip it a bunch of times, and analyze the outcomes that
we observe. By flipping the coin, we are generating realizations: we generate some
set of outcomes (heads or tails) of the random object, and then we can use the
outcomes to estimate information about the generating process, the probability
of landing on heads.

Likewise, we can use the generating model that underlies a random network
A to generate a realization of A, which is an actual network A. The procedure
in Algorithm 5 will sample a network A from an IERn(P ) random network.

Algorithm 5: Simulating a sample from an IERn(P ) random network
Data: n a number of nodes

P a probability matrix with n rows and n columns
Result: The adjacency matrix of a sample from the random network.

1 for i in 1:n do
2 for j > i do
3 Obtain a weighted coin (i, j) which has a probability pij of landing

on heads, and a 1− pij probability of landing on tails.
4 Flip the (i, j) coin, and if it lands on heads, the corresponding

entry aij in the adjacency matrix is 1. If the coin lands on tails,
the corresponding entry aij is 0.

5 Set aji = aij .
6 end
7 end
8 return A

Let’s create an example. We will generate an unnecessarily complicated prob-
ability matrix to illustrate the flexibility of the IER model:
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import numpy as np

from graphbook_code import heatmap

def generate_unit_circle(radius):

diameter = 2*radius + 1

rx = ry = diameter/2

x, y = np.indices((diameter, diameter))

circle_dist = np.hypot(rx - x, ry - y)

diff_from_radius = np.abs(circle_dist - radius)

less_than_half = diff_from_radius < 0.5

return less_than_half.astype(int)

def add_smile():

canvas = np.zeros((51, 51))

canvas[2:45, 2:45] = generate_unit_circle(21)

mask = np.zeros((51, 51), dtype=bool)

mask[np.triu_indices_from(mask)] = True

upper_left = np.rot90(mask)

canvas[upper_left] = 0

return canvas

def smile_probability(upper_p, lower_p):

smiley = add_smile()

P = generate_unit_circle(25)

P[5:16, 25:36] = generate_unit_circle(5)

P[smiley != 0] = smiley[smiley != 0]

mask = np.zeros((51, 51), dtype=bool)

mask[np.triu_indices_from(mask)] = True

P[~mask] = 0

# symmetrize the probability matrix

P = (P + P.T - np.diag(np.diag(P))).astype(float)

P[P == 1] = lower_p

P[P == 0] = upper_p

return P

P = smile_probability(.95, 0.05)

heatmap(P, vmin=0, vmax=1, title="Probability matrix $P$")

The probability matrix is plotted in Figure 4.1.1(A). Next, we can generate a
random sample of the IERn(P ) random network, using the sample_edges func-
tion from graspologic:

from graspologic.simulations import sample_edges

A = sample_edges(P, directed=False, loops=False)

heatmap(A.astype(int), title="$IER_n(P)$ sample")

The heatmap is shown in Figure 4.1.1(B). We used this example to show that
the key idea behind the IER Network’s probability matrix is simple: the entries
can really be anything as long as they are probabilities (between 0 and 1) and
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Figure 4.1.1 (A) the probability matrix for the IERn(P ) random network. (B) an
adjacency matrix sampled from the IERn(P ) random network.

the resulting matrix is symmetric in the case of undirected networks. There are
no additional requirements nor parameters to add structure to the network.

4.1.4 The Independent-Edge Random Network Models

How many unique realizations are possible for a random
network with n nodes?
For one coin, there are two possible outcomes: heads or tails. If we have two
coins, the first coin could be heads or tails, and the second coin could be heads
or tails. If the first coin were heads, there are two possible outcomes for the
second coin. If the first coin were tails, there are two possible outcomes for the
second coin. The total number of possible outcomes is the sum of the number of
possible outcomes if the first coin is heads with the number of possible outcomes
if the first coin were tails. With two coins, this gives us four possible outcomes.
When we add a third coin, we repeat this calculation. If the first coin were heads,
the second two coins could take any of four possible outcomes. if the first coin
were tails, the second two coins could also take any of four possible outcomes.
Therefore, with three coins, there are eight possible outcomes. Inductively, we
see that with x coins, we have 2x possible outcomes.

In Section 3.3.1, we determined that there are 1
2n(n − 1) possible edges in a

simple network, which we could represent using the notation
(
n
2

)
. In a realized

network, each of these edges could exist or not exist, so, as in coin flips, there
are two possibilities. The number of possible networks with n nodes is 2 to the
power of the number of coin flips that are performed in the network.

Here, this is 2(n
2). This quantity grows extremely quickly. In the code below,

we calculate the number of possible networks for a given number of nodes in a
network, but in a log scale, as powers of 10.

import numpy as np
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Figure 4.1.2 A log-scale plot of the number of possible networks for a given number of
nodes.

from math import comb

node_count = np.arange(2, 51)

log_unique_network_count = np.array([comb(n, 2) for n in node_count])*np.log10(2)

Figure 4.1.2 illustrates how quickly the number of unique networks grows.
When n, the node count, is just 6, the number of possible networks is 2(6

2) = 26

which is over 32, 000. When n is 15, the number of possible networks balloons up
to 2(15

2 ) = 2105 which is over 1030. A naive approach to network learning might
be to describe each possible network that could be observed. However, this is
heavily impractical, as explained on Concept 4.1.3.

Why aren’t IERn(P ) random networks used in practice?
Instead of having 2(n

2) parameters to estimate, the IERn(P ) random networks
reduce this to an n× n probability matrix with

(
n
2

)
informative entries. This is

because if the network is simple, the diagonal of the probability matrix contains
no information (meaning n entries are not relevant), and the probability matrix
is symmetric (so, of the remaining n2 − n entries, half of them are redundant).
However, even this formulation is not particularly useful in practice, which is
discussed in Concept 4.1.4.

Throughout the remaining sections of this chapter, we will cover a family of
networks known as the independent-edge random network models [2]. These are
the random network models that can be specified with a probability matrix and
the independent-edge assumption; that is, that the existence or not existence of
edges does not impact the existence or not existence of other edges in the net-
works. Each network model, however, will place restrictions on the probability
matrix P to simplify the learning task ahead of us. The goal is that these restric-
tions will simplify the network such that there are fewer parameters than

(
n
2

)
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Concept 4.1.3 Why not just ascribe probabilities to each possible
network?

The reason that we need a statistical model in the first place is that if we want
to describe properties of the network, we need a framework in which we can
analyze it. For Bernoulli(p) coins, we affixed a probability to each possible
outcome: heads occurred with some probability (p) and tails occurred with
some probability (1− p).
All the same, we could repeat this for networks with n nodes: we could affix
a probability to each of the 2(n

2) possible networks we could observe.
Describing each possible observable network for a given number of nodes is
impossible, for the two reasons that we have given:

1 We could not possibly use a network with n nodes that we obtain to learn
things about every possible network with n nodes, because our network is
just one of many. If we flipped a coin once and obtained a result of heads,
would we say we are extremely confident that the coin will never land on
tails? This is the same problem we have with have with network data
when we do not have a sufficiently straightforward model.

2 Even if we had more network samples, we could not possibly analyze nor
even store this many possibilities, because for even modest choices of n, it
is simply too many elements to keep track of. 2(n

2) is a really big number
when n is just 15; many of the real networks you will want to analyze
might have hundreds, or thousands, of nodes.

These aspects are detailed at length in Appendix A.2.

to estimate, so that we can actually use observed networks to gain meaningful
insights about the probability matrix.

More technical details on Inhomogeneous Erdös Rényi Random Networks are
in Appendix A.2.
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Concept 4.1.4 Why not use IERn(P ) random networks for everything?

Ultimately, we want a network model wherein, for observed simple networks
A, we can use estimates of the parameters and properties of the network
model to learn something about the observed simple network. As-per the
above, remember that the probability matrix for an n-node simple random
network has

(
n
2

)
informative entries. However, the observed simple network

with n nodes also has
(
n
2

)
informative entries.

Therefore, if we wanted to learn about a probability pij , we would only have
a single observed edge aij to learn from. This presents a similar issue to that
of Concept 4.1.3: with one network observation, we would be attempting to
learn about the probability a coin lands on heads or tails from the outcome
of a single coin flip. We would need to use many network observations to
estimate pij reasonably.

4.2 Erdös-Rényi Random Networks

Building on the Inhomogeneous Erdös-Rényi (IER) model introduced in
Section 4.1, we now examine the simpler Erdös-Rényi (ER) random net-
work model. The ER model simplifies the IER by using a single probability
parameter for all edges. We cover:

1 Definition and properties of the ER model,
2 Relationship between ER and IER models,
3 Simulating samples from ER random networks,
4 Limitations and use cases for ER models, and
5 Concept of model generalization in network theory.

The ER model serves as a foundational concept in random graph theory,
providing a baseline for understanding more complex network structures. Its
simplicity makes it useful for developing intuition about random networks,
though it often fails to capture the complexity of real-world networks.

To motivate new network models, we begin with a simple example, related
to the friendship network which we learned about in Example 3.7.2. Consider a
social network, with 50 students. The network has 50 nodes, where each node
represents a single student in the network. Edges in the social network represent
whether or not a pair of students are friends. What is the simplest way we can
describe whether two people are friends?

Using the tools from Section 3.1, we represent this simple network as an ad-
jacency matrix A whose entries aij are one if the students i and j are friends on
the social networking site, and 0 if the students i and j are not friends on the
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social networking site. With 50 students the adjacency matrix A is going to be
50× 50.

4.2.1 The Erdös Rényi random network

The simplest random network model is called the Erdös Rényi (ER) model,
which was first described by [3] and [4]. In an ER random network, the edges
depend only on a single shared probability, p, and each edge is independent of all
other edges. For every edge aij , a coin has a probability p of landing on heads,
and 1 − p of landing on tails. Stated another way, every aij is a Bernoulli(p)
random variable; i.e., the same probability for all edges. If A has n nodes and
independent edges with a single common probability p, we will say that A is an
ERn(p) random network.

4.2.2 How do we simulate samples of ERn(p) random networks?

The procedure in Algorithm 6 will generate a simple network A, where the un-
derlying random network A is a simple ERn(p) random network.

Algorithm 6: Simulating a sample from a simple ERn(p) random net-
work
Data: n a number of nodes

p a probability of an edge existing
Result: The adjacency matrix of a sample from the random network.

1 Obtain a weighted coin which has a probability p of landing on heads,
and a probability 1− p of landing on tails. Note this probability p might
differ from the “traditional” coin with a probability of landing on heads
of approximately 0.5.

2 for i in 1:n do
3 for j > i do
4 Flip the coin once. If the coin lands on heads, let aij = 1. If the

coin lands on tails, let aij = 0.
5 Let aji = aij .
6 end
7 end
8 return A

4.2.3 When do we use an ERn(p) Network?

In practice, the ERn(p) model seems a little too simple to be useful. Why would
it ever be useful to think that the best we can do to describe our network is
to say that all connections exist with some shared probability? Does this not
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miss a lot of useful questions we might want to answer? Fortunately, there are
a number of ways in which the simplicity of the ERn(p) model is useful. Given
a probability and a number of nodes, we can easily describe the properties we
would expect to see in a network if that network were ER. For instance, we can
use statistical reasoning to describe the approximate degree for each node of an
ERn(p) random network, and we can easily characterize mathematical properties
of its adjacency matrix.

We can reverse this idea, too: given a network we think might not be ER, we
could check whether it’s different in some way from an ERn(p) random network.
It is often useful to start with the simplest random network models when analyz-
ing network data, and only turning to more complicated network models when
the need arises, because the types of network models we choose will directly de-
termine the types of questions we can answer later on. For instance, if half the
nodes have a high degree (lots of edges), and half don’t, the network is likely
poorly described by an ERn(p) random network. In this case, we might look for
more complex models that could describe our network.

In the next code block, we are going to sample a single ERn(p) network with
50 nodes and an edge probability p of 0.3:

from graphbook_code import draw_multiplot

from graspologic.simulations import er_np

n = 50 # network with 50 nodes

p = 0.3 # probability of an edge existing is .3

# sample a single simple adjacency matrix from ER(50, .3)

A = er_np(n=n, p=p, directed=False, loops=False)

# and plot it

draw_multiplot(A.astype(int), title="$ER_{50}(0.3)$ Simulation")

Our visualization is a heatmap and layout plot as in Section 3.4. The heatmap
is shown in Figure 4.2.1(A).

Next, let’s see what happens when we use a higher edge probability, like p =

0.7:

p = 0.7 # network has an edge probability of 0.7

# sample a single adjacency matrix from ER(50, 0.7)

A = er_np(n=n, p=p, directed=False, loops=False)

We show the same plot for p = 0.7 in Figure 4.2.1(B). As the edge probability
increases, the sampled adjacency matrix indicates that there are more connec-
tions in the network. This is because there is a higher chance of an edge existing
when p is larger. Correspondingly, the network density (Section 3.3.1) increases.
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Figure 4.2.1 (A) a sample with p = 0.3. (B) a sample with p = 0.7. Notice that with
higher probabilities, the samples from the random network have more edges.

4.2.4 Generalizing network models

We have discussed two random network models: the ERn(p) random networks,
which have a probability parameter p, and the IERn(P ) random networks, which
have a probability matrix P . Take an ERn(p) random network A(1), for some
fixed probability p. Remember that this means that for every pair of nodes i and
j, a

(1)
ij is Bernoulli(p): each edge is a coin-flip with probability p.

Next, take a second IERn(P (2)) random network A(2). What happens if every
entry of P (2) is just p (that is, for all i and j, p(2)ij = p)? For every pair of nodes i
and j, a

(2)
ij is Bernoulli(p), which is exactly what we saw above for the ERn(p)

random network.
The word stochastic just means random, so a

(1)
ij and a

(2)
ij can be said to be

stochastically equivalent : they have exactly the same governing rules (specified
by a Bernoulli(p) random variable) for all nodes i and j. Because both models
make the same independence assumption (that the edges existing/not existing do
not effect the existence/not existence of other edges), the random networks A(1)

and A(2) themselves are also stochastically equivalent. We discuss more about
how to identify stochastic equivalence in independent-edge random networks in
Concept 4.2.1.

We could repeat this argument for any possible choice of p for the random
network A(1): it does not matter if the probability is 0, 1, or any number in
between, we could always find a stochastically equivalent IERn(P (2)) random
network A(2). This motivates additional terminology: we say that a random net-
work model is contained in another random network model if for every network
in the first model, we can find a stochastically equivalent random network in the
second model. In the above example, for instance, we would say that the ERn(p)

random networks are contained in the IERn(P ) random networks.
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Concept 4.2.1 Determining stochastic equivalence in independent-edge
random networks

When dealing with independent-edge random networks, we can make deter-
minations about stochastic equivalence most by estimating the probability
matrix. Two independent-edge random networks A(1) and A(2) are stochas-
tically equivalent if their underlying probability matrices P (1) and P (2) are
equal.

Conversely, we say that a random network model generalizes another random
network model if for every network in the second model, we can find a stochas-
tically equivalent random network in the first model. In the above example, we
would say that the IERn(P ) random networks from Section 4.1 generalize the
ERn(p) random networks. More broadly, the IERn(P ) random networks will
generalize every random network model that we will learn in the upcoming sec-
tions.
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4.3 Stochastic Block Models

Building on the Erdős-Rényi (ER) model from Section 4.2, we introduce the
Stochastic Block Model (SBM), which incorporates community structure
into random networks. We cover:

1 Definition and components of the SBM,
2 Community assignment vectors and block matrices,
3 Simulating samples from SBM random networks,
4 Probability matrices for SBMs, and
5 Relationship between SBMs and ER models.

The SBM provides a more flexible framework for modeling networks with
distinct node groups, or communities, addressing a number of limitations
of simpler models like ER.

Let’s imagine that we have 100 students, each of whom can go to one of two
possible schools: school one or school two. We define a 100-node network, and
each node represents a single student. The edges represent whether a pair of
students are friends. It seems likely that if two students go to the same school,
they have a higher chance of being friends than if they do not go to the same
school. If we were to try to characterize this using an ER random network, we
would run into a problem: we have no way to capture the impact that school
has on friendships. To do this, we modify our ERn(p) model to include this
complication.

The Stochastic Block Model, or SBM, was first introduced by [5]. It captures
the idea that edges are more likely to form within certain groups of nodes by
assigning each of the n nodes in the network to one of K communities. A commu-
nity is a group of nodes within a network which have similar properties. In our
example, the communities would represent the two schools that students are able
to attend. K here is a natural number which is typically greater than 1 (in the
school example, K is 2). In general, communities are often nominal categories,
which is detailed in Concept 4.3.1.

In an SBM, instead of describing all pairs of nodes with a fixed probability
like with the ER model, we describe properties that hold for edges between pairs
of communities.

4.3.1 The community assignment vector

To describe an SBM random network, we proceed similarly to an ER random
network, but with some extra information. An SBM random network has a pa-
rameter ~z, a vector with a single element for each of the nodes. We call ~z the
community assignment vector. For each node of our random network, zi tells us
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Concept 4.3.1 Categorical values

In machine learning, we will often come across categorical values: variables
which can take on any one of K possible values. One example might be the
primary colors (red, yellow, and blue). It is practically useful to denote each
category with a number; e.g., red=1, yellow=2, and blue=3.
These numbers are often placeholders: their numerical value holds no meaning.
For instance, blue is not “two units” bigger than red; it is simply a different
group. In this case, the set of possible categories is called nominal, which
means that the only important feature of the categorical labels is that they
are different.
In other settings, the numbers might be meaningful. For instance, we could
imagine asking people to rank preferred electoral candidates on a scale of un-
favorable, neutral, and favorable. We can denote unfavorable=1, neutral=2,
and favorable=3. In this case, the numerical value holds meaning: these cat-
egories preserve favorability. Neutral (2) is greater than unfavorable (1), and
neutral indicates that someone likes the candidate more than if they were
unfavorable. These types of categories are referred to as ordinal, which means
“order matters”.
In network machine learning, we often come across categorical values when
dealing with communities of nodes. These are usually nominal categories, in
that the main thing we convey via the community label is that the groups of
nodes are different.

which community the node is in. Specifically, ~z is a nominal categorical vector
where each element zi can take one of K possible values, where K is the total
number of communities in the network.

For example, if we had an SBM random network with four nodes in total and
two total communities, each element zi can be either 1 or 2. If the first two nodes
were in community 1, and the second two in community 2, we would say that
z1 = 1, z2 = 1, z3 = 2, and z4 = 2, which means that ~z looks like:

~z =


1

1

2

2



4.3.2 The block matrix

The other parameter for an SBM random network is called the block matrix,
for which we will use the capital letter B. This matrix defines edge existence
probabilities between communities in the random network, and is therefore also
a probability matrix. However, we will use the term block matrix to specifically
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Box 4.3.2 Simple SBMs have symmetric block matrices

In the case of the simple networks, remember from Section 4.1 that since
the adjacency matrix of a simple random network A is symmetric, that the
probability matrix must also be symmetric; that is, pij = pji for all i and j.
For SBMs, notice that pij = bzizj , and pji = bzjzi . Therefore, if the network
is simple, bzizj = bzjzi for all i and j, and the block matrix B is symmetric.

mean a probability matrix which defines edge-existence probabilities between
communities.

If there are K communities in the SBM random network, then B is a K ×K
matrix, with one entry for each pair of communities. For instance, if K were 2,
B would be a 2× 2 matrix, and would look like this:

B =

[
b11 b12
b21 b22

]

Each of the entries of B, which we denote as bkl, is the probability of an edge
existing between a node in community k and a node in community l.

4.3.3 Conceptualizing the SBM

We can also think about the SBM using coin flips. In our 2× 2 example, if node
1 is in community 1 (since z1 = 1) and node 2 is in community 1 (since z2 = 1),
we have a weighted coin which has a probability b11 (the first row, first column
of the block matrix) of landing on heads, and a 1−b11 chance of landing on tails.
An edge between nodes one and two exists if the weighted coin lands on heads,
and does not exist if that weighted coin lands on tails. If we wanted to describe
an edge between nodes one and three instead, note that z3 = 2. Therefore, the
entry b12 is the probability of obtaining a heads for the weighted coin we flip this
time.

The probability that an edge exists between nodes i and j is given by the block
matrix entry bzizj . We will say that the random network has Bernoulli(bzizj )

adjacency matrix entries aij , where zi is the community assignment for the ith

node and zj is the community assignment for the jth node. Therefore, the en-
tries aij in the random network depend on both the block matrix B, as well as
the communities of each node, given by zi and zj . As before, these entries are
independent of all of the other entries in the random adjacency matrix. If A has
n nodes with independent edges, a community vector ~z, and a block matrix B,
we say that A is an SBMn(~z,B) random network.
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4.3.4 Simulating samples of SBMn(~z,B) random networks

The procedure in Algorithm 11 will generate a simple network A, where the
underlying random network A is a simple SBMn(~z,B) random network.

Algorithm 7: Simulating a sample from a simple SBMn(~z,B) random
network
Data: n a number of nodes

~z a community assignment vector for each of the n nodes to one of
K communities
B a K ×K probability matrix for each pair of the K communities

Result: The adjacency matrix of a sample from the random network.
1 For each pair of communities k and l, obtain a weighted coin (which we

will call the (k, l) coin). This coin should have a bkl chance of landing on
heads, and a 1− bkl chance of landing on tails.

2 for i in 1 : n do
3 for j > i do
4 Flip the (zi, zj) coin, and if it lands on heads, the corresponding

entry aij in the adjacency matrix is 1. If it lands on tails, the
corresponding entry aij in the adjacency matrix is 0.

5 Let aji = aij .
6 end
7 end
8 return A

Let’s work through the school example from the beginning of this section. We
have 100 students, and each student goes to one of two possible schools. We
already know the community assignment vector ~z. We can assign node indices
to students arbitrarily, so we assume that the first 50 students all go to the first
school, and the second 50 students all go to the second school.

Let’s plot what the community assignment vector looks like for the network:

from graphbook_code import plot_vector

import numpy as np

n = 100 # number of students

# z is a column vector of 50 1s followed by 50 2s

# this vector gives the school each of the 100 students are from

z = np.repeat([1, 2], repeats=n//2)

plot_vector(z, title="$\\vec z$, Node Assignment Vector",

legend_title="School", color="qualitative",

ticks=[0.5, 49.5, 99.5], ticklabels=[1, 50, 100],

ticktitle="Student")

The community assignment vector is shown in Figure 4.3.1(A).
Let’s assume that the students from the first school are more friendly than the
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Figure 4.3.1 (A) the community assignment vector for each node (students). (B) the
block matrix, which defines the probabilities of a pair nodes (students) from a given
community having an edge.

students from the second school, so we’ll say that the probability of two students
who both go to the first school being friends is 0.6, and the probability of two
students who both go to school 2 being friends is 0.4. Finally, let’s assume that
if one student goes to the first school and the other student goes to school 2,
the probability that they are friends is 0.1. This gives us the ingredients that we
need to define the block matrix B.

We can make a block matrix and plot it using our heatmap() utility. When
working with probabilities or probability matrices, we usually want to visualize
these on a [0, 1] scale, which we can accomplish with the vmin, vmax arguments:

from graphbook_code import heatmap

K = 2 # community count

# construct the block matrix B as described above

B = np.array([[0.6, 0.1],

[0.1, 0.4]])

heatmap(B, xticklabels=[1, 2], yticklabels=[1,2], vmin=0,

vmax=1, annot=True, xtitle="School",

ytitle="School", title="Block Matrix $B$")

Figure 4.3.1(B) shows that the matrix B is a symmetric block matrix, since
our network is undirected.

Finally, let’s sample and plot a single network from the SBMn(~z,B) with
parameters ~z and B:

from graspologic.simulations import sbm

from graphbook_code import draw_multiplot
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# sample a graph from SBM_{100}(tau, B)

A, labels = sbm(n=[n//2, n//2], p=B, directed=False, loops=False, return_labels=True)

draw_multiplot(A, labels=labels, title="$SBM_n(z, B)$ Simulation");

The adjacency matrix is shown in Figure 4.3.2(A).
The students in the network are ordered by the school they are in (first school

and the second school, respectively). People from the first school are more con-
nected than people from the second. This heatmap is modular : it has clear
and apparent community structure. Connections between people from different
schools appear to be less frequent than connections between people from the
same school.

When the nodes are ordered by community, we will often observe a “patchy”
structure. These visually-salient subnetworks (see Section 3.5) are known asmod-
ularity!community subnetworks. The (k, l) community subnetwork of the adja-
cency matrix corresponds to the connections between nodes in community k

with nodes in community l. For instance, the (1, 1) community subnetwork cor-
responds to the upper-left subnetwork of the adjacency matrix, induced by the
nodes from community 1. The (1, 2) community subnetwork of the adjacency
matrix corresponds to the upper-right subnetwork, which consists of nodes in
communities 1 and 2, but only the edges from nodes in community 1 to nodes in
community 2. The blocks (k, k) will be referred to as the on-diagonal community
subnetworks, in that they are blocks occuring along the diagonal of the adjacency
matrix. The community subnetworks (k, l) where k 6= l will be referred to as the
off-diagonal community subnetworks, in that they do not fall right along the di-
agonal of the adjacency matrix. Here, the on-diagonal community subnetworks
have far more connections than the off-diagonal community subnetworks.

4.3.5 Modularity is not a pre-requisite for SBMn(~z,B) random networks

Something easy to mistake about a sample of an SBM is that it will not always
have the obvious modular structure we can see in Figure 4.3.2(A) when we look at
a heatmap. Rather, this modular structure is only obvious because the students
are ordered according to the school they are in. What will happen if we look at
the students in a random order? Will the structure in this network be obvious?

The answer is: No! Let’s see what happens when we reorder the nodes ran-
domly, and pretend we don’t know the true community labels ahead of time:

import numpy as np

# generate a reordering of the n nodes

permutation = np.random.choice(n, size=n, replace=False)

Aperm = A[permutation][:,permutation]

yperm = labels[permutation]

heatmap(Aperm, title="Nodes randomly reordered")
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Figure 4.3.2 (A) the adjacency matrix for an SBMn(~z,B) simulation. The
parameters are shown in Figure 4.3.1. (A) the same adjacency matrix, but with the
nodes randomly reordered.

In Figure 4.3.2(B), the students are not organized according to school, because
they have been randomly reordered. It becomes difficult to figure out whether
there are communities just by looking at the adjacency matrix, unless we are
looking at a network in which the nodes are already arranged in an order which
respects the community structure. By an order that respects the community
structure, we mean that all of the nodes in the first community come first,
followed by all of the nodes in the second community, followed by all of the nodes
in the third community, so on and so forth up to the nodes of the community K.

In practice, this means that if we know ahead of time natural groupings of
the nodes (such as knowing which school each student goes to) by way of node
attributes, we can visualize our data according to that grouping. This property
is covered more in depth by [6]. If we don’t know anything about natural group-
ings of nodes, however, we are left with the problem of estimating community
structure. A method called the spectral embedding which we will discuss in Sec-
tion 5.3 can be paired with clustering techniques to allow us to estimate node
assignment vectors. If we want, we can then use these estimates to reorganize
the adjacency matrix into a more visually discernible modular structure.

4.3.6 Probability matrix for SBM random networks

We can use the probability matrix to determine whether networks are stochasti-
cally equivalent (Concept 4.2.1). We want a procedure which takes a community
assignment vector ~z and a block matrix B, and produces a probability matrix P
where each entry pij = bzizj . We could do this by brute force, checking over each
pair of nodes in an extremely lengthy for-loop. However, remember that in a
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Concept 4.3.3 One-hot encodings

When dealing with nominal categorical vectors such as a community assign-
ment vector ~z, remember that the vector has values zi which take one-of-K
possible values. While this defines the categories (which, here, are communi-
ties of nodes), we often cannot directly use the vector ~z mathematically since
it is nominal (and therefore, the actual numbers themselves are not relevant).
For this reason, we will typically resort to what is known as the one-hot
encoding. A one-hot encoding of a nominal value zi which takes one-of-K
possible values is a length-K vector (one element for each category) ~ci, and
has a value of 1 in the position corresponding to the category of zi.
For instance, let’s imagine an SBM with two communities, where the first
node is in community 1, so z1 = 1. The one-hot encoding of z1 will be a
length-two vector, and will have the value:

~c1 =

[
1

0

]
.

Likewise, if z2 = 2, the one-hot encoding of z2 would be:

~c2 =

[
0

1

]
.

In general, the vector ~ci will be such that cizi = 1, and cij = 0 for all other
entries.

simple network there are
(
n
2

)
possible pairs of nodes, which is a large number for

even modest choices of n. When n = 1000, for instance, this would be a for-loop
with 499,500 iterations.

In practice, this can be accomplished more rapidly by exploiting the fact that
the communities are nominal categories. We will begin by introducing the idea
of the one-hot encoding, in Concept 4.3.3. Then, we will use this idea to express
the probability matrix as a matrix product, which allows us to take advantage of
accelerated libraries for matrix multiplication featured in modern programming
languages.

We can leverage one-hot encodings to produce an interesting result. Using the
rules of matrix multiplication, if ~ci is a length-K vector and B is a K ×K block
matrix, then the product ~c>i B is a 1 ×K-dimensional matrix, consisting of the
element-wise sum of the products of the rows of ~ci with the columns of B:

~c>i B =
[
ci1 . . . ciK

]  b11 . . . b1K
...

. . .
...

bK1 . . . bKK


=
[∑K

k=1 cikbk1 . . .
∑K
k=1 cikbkK

]
.
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Let’s take a look at this first value. The first entry is
∑K
k=1 cikbk1. However,

remember that the community assignment vector ~ci takes a value of zero every-
where except at cizi , where it has a value of 1. Therefore:

K∑
k=1

cikbk1 = cizibzi1 +
∑
k 6=zi

cikbk1

= 1bzi1 +
∑
k 6=zi

0bk1

= bzi1.

If you duplicate this argument over every entry of ~c>i B, it will become apparent
that the result is:

~c>i B =
[
bzi1 . . . bziK

]
. (4.1)

In effect, the product ~c>i B has simply “pulled out” the appropriate row of B
corresponding to the community of the node i. The product ~c>i B can therefore
be thought of as the “the block probabilities between the community of node i
and any of the K possible communities”.

What happens if we repeat the same procedure, but in reverse? This time, we
will post-multiply ~c>i B by the one-hot encoded community assignment vector
~cj for some other node j. Remember that this one-hot encoding vector has K
elements, so the product will just be a 1 × 1 matrix (it is just a scalar). When
we do this multiplication, we obtain:

~c>i B~cj =
[
bzi1 . . . bziK

]  cj1. . .
cjK


=

K∑
k=1

bzikcjk.

Again, remember that the community assignment vector ~cj takes a value of zero
everywhere except at cjzj , where it has a value of 1. Therefore, we get that:

K∑
k=1

bzikcjk = cjzj bzizj +
∑
k 6=zj

cjkbzik

= 1bzizj +
∑
k 6=zj

0bzik

= bzizj ,

So:

~c>i B~cj = bzizj (4.2)

This gives us a mathematical procedure that we can use to take an arbitrary
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pair of nodes in our network, and extract the appropriate block matrix entry
from B corresponding to the communities i and j of these nodes.

The elegance of this result becomes apparent when we instead “stack” the one-
hot encoded community assignment vectors for each node into a one-hot encoded
community assignment matrix C, which is the n×K matrix:

C =

` ~c>1 a
...

` ~c>n a

 .
When we pre-multiply the block matrix B by C, the resulting product is a n×K
matrix, where:

CB =

` ~c>1 a
...

` ~c>n a

B.
Remember that matrix multiplication is performed by multiplying across the
rows of the first matrix and down the columns of the second. Therefore, this
product will be:

CB =

c
>
1 B
...

c>nB

 ,
Which means that the K-element rows of this matrix are given by Equation 4.1.

Post-multiplication by C> gives us:

CBC> =

c
>
1 B
...

c>nB


> >
~c1 . . . ~cn
⊥ ⊥

 .
Again, going across the rows of the first matrix and down the columns of the
second gives us:

CBC> =

~c
>
1 B~c1 . . . ~c>1 B~cn
...

. . .
...

~c>nB~c1 . . . ~c>nB~cn

 .
Note that the (i, j)th entry of this matrix has the form ~c>i B~cj , which we learned
in Equation (4.2) was just bzizj . This corresponds exactly to the probability of
an edge between nodes i and j, from Section 4.3.3.

This gives us a procedure to construct a probability matrix for an SBM, using
the result:

P = CBC>,
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where C is the one-hot encoding matrix of the community-assignment vector ~z,
and B is the corresponding block matrix.

Pseudocode is outlined in Algorithm 8 to perform this algorithmically.

Algorithm 8:Generating a probability matrix for a SBMn(~z,B) random
network
Data: ~z a community assignment vector for each of the n nodes to one of

K communities
B a block matrix with K rows and K columns

Result: The probability matrix associated with the SBMn(~z,B).
1 Construct a matrix C with n rows and K columns; one row for each

node, and one column for each community.
2 for i in 1:n do
3 for k in 1:K do
4 If zi = k, let cik = 1. If zi 6= k, let cik = 0.
5 end
6 end
7 Let P = CBC>. return A

Let’s work through this using our school example, because it comes up a few
times over the course of the book. We have 50 students attending school one (the
first community), and 50 students attending school two (the second community).
First, we need the code to produce the one-hot encoded community assignment
matrix:

def ohe_comm_vec(z):

"""

A function to generate the one-hot-encoded community

assignment matrix from a community assignment vector.

"""

K = len(np.unique(z))

n = len(z)

C = np.zeros((n, K))

for i, zi in enumerate(z):

C[i, zi - 1] = 1

return C

And then we can use this to generate the probability matrix:

def generate_sbm_pmtx(z, B):

"""

A function to generate the probability matrix for an SBM.

"""

C = ohe_comm_vec(z)

return C @ B @ C.T
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Figure 4.3.3 (A) the community assignment vector ~z and (B) the community
assignment matrix C. Notice that each node has a value of 1 in the corresponding
column in which the node is a community. The first 25 nodes have a value of 1 in
column 1, and the second 25 nodes have a value of 1 in column 2. (C) the block
matrix. (D) the probability matrix for each node pair.

# the community assignment vector

z = np.repeat([1, 2], 50)

# block matrix

B = np.array([[0.6, 0.1],

[0.1, 0.4]])

# probability matrix

P = generate_sbm_pmtx(z, B)

The relationship between the community assignment vector, the one-hot en-
coded community assignment matrix, the block matrix, and the probability ma-
trix is illustrated in Figure 4.3.3.

4.3.7 SBMs generalize ER networks

To show that the SBMs generalize the ER networks from Section 4.2, we can
use the logic that we developed in Section 4.2.4. If the SBM random networks
generalize the ER random networks, this means that for any ER random network,
we could find a stochastically equivalent SBM.

Take an ERn(p) random network A(1). The probability matrix P (1) for A(1)

has entries p(1)ij = p. Our goal is to find another network (an SBM) that is stochas-
tically equivalent to A(1), for any choice of p. From Concept 4.2.1, we learned
that this means that we need to find another SBMn(~z,B) random network A(2),
where P (2) = P (1).

The simplest possible SBM would have a single community: zi = 1 for every
node i. Therefore, the one-hot encoded community assignment matrix C is just
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an n× 1 matrix (it is a column-vector with n elements):

C = 1n =

1
...
1

 .
The symbol “1n” is used to denote a vector of n-ones repeated.

With a single community, the block matrix B is just 1×1, also called a number.
If we let B = b11 = [p], applying the procedure from Section 4.3.6 gives us:

P (2) = CBC>

= 1n[p]1>n ,

where C = 1n, and B = [p] is just a 1 × 1 matrix (it is a scalar number).
Remember that with matrix multiplication, scalar numbers can be brought to
the front, so:

P (2) = p1n1>n

Notice that the product 1n1>n is an n× n matrix, where:

1n1>n =

1
...
1

 [1 . . . 1
]

=

1 . . . 1
...

. . .
...

1 . . . 1

 . (4.3)

Putting this together means that:

P (2) =

p . . . p
...

. . .
...

p . . . p

 ,
so p(2)ij = p = p

(1)
ij for all i and j, and P (1) = P (2). This result can be applied

for any choice of p. Therefore, the ERn(p) random networks are contained in
the SBMn(~z,B) random networks, and conversely, the SBMn(~z,B) random
networks generalize the ERn(p) random networks.

4.3.8 SBMs can (uselessly) generalize IER random networks

By the above formulation, we can also characterize the IERn(P ) random net-
works using an SBMn(~z,B) random network: choosing the number of communi-
ties to be equal to n (each node is in its own community) would yield the block
matrix B being a n×nmatrix of block probabilities. In this case, the “block prob-
abilities” are probabilities for “blocks” of single nodes; it behaves identically to an
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edge probability matrix P . Therefore, if B = P , then the SBMn(~z,B) random
network with n communities is equivalent to an IERn(P ) random network.

Such a random network is not particularly useful. The characterization of a
simple network as an SBM still leaves us with

(
n
2

)
probability terms to estimate,

from a network with
(
n
2

)
unique entries, which is the same problem from Concept

4.1.4. For this reason, later sections of this book will typically focus on SBMs
where K < n, and we do not run into the problem of having a block matrix B
equally as complicated as the probability matrix P .
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4.4 Random Dot Product Graphs

Extending the concept of community structure from the SBM in Section
4.3, we introduce the Random Dot Product Graph (RDPG) model. In an
RDPG, the manner in which a given node “behaves” in the greater network
can be succinctly summarized with a single vector (of which there will
be one per node in the network). Edge probabilities are defined using dot
products between node-vectors.

We cover:

1 Definition and properties of the RDPG model,
2 Latent position matrices and their interpretation,
3 Simulating samples from RDPG random networks,
4 Probability matrices for RDPGs, and
5 Relationship between RDPGs and other network models.

The RDPG model defines a framework for representing complex network
structures and relationships between nodes in a continuous vector space.
Whereas we cannot use traditional machine learning techniques on sets of
nodes and edges, we can use traditional machine learning techniques with
data represented in continuous vector spaces. Because an RDPG expresses
nodes as elements of this space, this framework will dominate much of the
discussion in later parts of this book.

Take 100 people who live along a 100 mile long road, and each person is 1 mile
apart. We create a network with nodes representing the people who live along
this road, and the edges representing whether a given pair of people along the
street are friends. However, there’s a slight twist: the people at the ends of the
road are party hosts. If someone lives closer to one party host, they are going
to tend to more frequently go to that host’s parties than the other party host.
Consequently, when someone lives near a party host, they are going to tend to
be better friends with other people who go to that host’s parties more frequently.
How could we model such a situation?

For each person i, we could have a vector ~xi, that looks like this:

~xi =
[
100−i
100

i
100

]
We could model the probability of two people i and j being friends with the

inner product of the two vectors ~x>i ~xj . This quantity is the element-wise sum of
the elements of each vector; that is:

~x>i ~xj =

d∑
u=1

xidxjd
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For instance, ~x1 =

[
1

0

]
, and ~x100 =

[
0

1

]
. Note that:

p1,100 = ~x>1 ~x100 = 1 · 0 + 0 · 1 = 0

What happens in between?
Let’s consider another person, person 30, who lives closer to person 1 than to

person 100. Here, ~x30 =

[
7
10
3
10

]
. This gives:

p1,30 = ~x>1 ~x30 =
7

10
· 1 + 0 · 3

10
=

7

10

p30,100 = ~x>30x100 =
7

10
· 0 +

3

10
· 1 =

3

10

So this means that person 1 and person 30 have a 70% probability of being
friends, but person 30 and 100 have only a 30% probability of being friends.

The Random Dot Product Graph (RDPG), the formalization of this intuition,
was first introduced by [7]. With the RDPG, we can generalize ERn(p) and
certain SBMn(~z,B) random networks while retaining a discernable structure.

4.4.1 The latent position matrix

We parameterize the RDPG using a matrix X called the latent position matrix.
Each row ~xi will be called the latent position of the node i. In matrix form, X
looks like this:

X =


` ~x>1 a
` ~x>2 a

...
` ~x>n a


We will call the columns of X the latent dimensions, and the total number of

columns the latent dimensionality. We will often use the letter d to denote the
latent dimensionality of X. X has n rows (one for each node) and d columns (one
for each latent dimension). The latent position of the node i, ~xi, is therefore a
d-dimensional vector.

4.4.2 Conceptualizing the RDPG

We call this model the RDPG because the probabilities of edges existing are
based on dot products between pairs of latent positions for the different nodes in
the network. We will say that the random network has adjacency matrix entries
aij which are Bernoulli(~x>i ~xj), where ~xi is the latent position for node i and ~xj is
the latent position for node j. Therefore, the entries aij depend only on the latent
positions of the nodes i and j. As before, these entries are independent of all of
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the other entries in the adjacency matrix. If A has n nodes with independent
edges and a latent position matrix X, we say that A is an RDPGn(X) random
network.

4.4.3 How do we simulate samples of RDPGn(X) random networks?

The procedure in Algorithm 9 will produce a simple network A, where the un-
derlying random network A is a simple RDPGn(X) random network.

Algorithm 9: Simulating a sample from a simple RDPGn(X) random
network
Data: n a number of nodes

~X a latent position matrix whose rows indicate the d-dimensional
latent position vectors for each node

Result: The adjacency matrix of a sample from the random network.
1 for i in 1:n do
2 for j > i do
3 Obtain a weighted coin (i, j) which has a probability of ~x>i ~xj of

landing on heads, and a 1− ~x>i ~xj probability of landing on tails.
4 Flip the (i, j) coin, and if it lands on heads, the corresponding

entry aij in the adjacency matrix is 1. If the coin lands on tails,
the corresponding entry aij = 0.

5 Let aji = aij .
6 end
7 end
8 return A

Let’s return to the party example. We first must determine what our latent
position matrix looks like:

import numpy as np

from graphbook_code import lpm_heatmap

n = 100 # the number of nodes in our network

# design the latent position matrix X according to

# the rules we laid out previously

X = np.zeros((n,2))

for i in range(0, n):

X[i,:] = [(n - i)/n, i/n]

lpm_heatmap(X, ytitle="Person", xticks=[0.5, 1.5], xticklabels=[1, 2],

yticks=[0.5, 49.5, 99.5], yticklabels=[1, 50, 100],

xtitle="Latent Dimension", title="Latent Position Matrix, X")

This latent position matrix is shown in Figure 4.4.1(A). Next, we can use
graspologic with this latent position matrix to sample an RDPGn(X) random
network:
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from graspologic.simulations import rdpg

from graphbook_code import heatmap

# sample an RDPG with the latent position matrix

# created above

A = rdpg(X, loops=False, directed=False)

# and plot it

heatmap(A.astype(int), xtitle="Person", ytitle="Person",

title="$RDPG_{100}(X)$ Simulation")

A sample from the RDPGn(X) random network is shown in Figure 4.4.1(B).

Figure 4.4.1 (A) the latent position matrix. (B) a sample of an RDPGn(X) random
network.

4.4.4 Probability matrix for RDPG random networks

In Concept 4.2.1, we learned that we can use the probability matrix to determine
whether networks are stochastically equivalent. We want a procedure which takes
a latent position matrix X whose rows are the latent positions ~xi of each node i,
and will produce a probability matrix P where each entry pij = ~x>i ~xj . As before,
the brute force approach would work here, but we would strongly prefer to lever-
age matrix multiplication accelerations where possible due to the fact that most
modern programming languages have accelerated matrix multiplication routines.

Fortunately, this is much more obvious than it was for the SBMs in Section
4.3.6. Notice that our goal is a procedure where we obtain P where pij = ~x>i ~xj .
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Remember that the latent position matrix looks like this:

X =

` ~x>1 a
...

` ~x>n a

 .
When we multiply X with its transpose, X>, the product ends up being this:

XX> =

` ~x>1 a
...

` ~x>n a


> >
~x1 . . . ~xn
⊥ ⊥


The elements after matrix multiplication produce the (i, j)th value as the dot
product of the ith row of the first matrix with the jth column of the second
matrix. This product is:

XX> =

~x
>
1 ~x1 . . . ~x>1 ~xn
...

. . .
...

~x>n ~x1 . . . ~x>n ~xn

 .
The (i, j)th entry (XX>)ij = ~x>i ~xj , which was exactly our goal. Therefore:

P = XX>,

which gives us our expression for the probability matrix of an RDPG.

4.4.5 RDPGn(X) random networks generalize a broad class of problems

To show when the RDPGs generalize the ER and SBM random networks, we
can turn to the logic that we developed in Section 4.2.4.

RDPG random networks generalize the ER random networks
If the RDPG random networks generalize the ER random networks, then for any
ER random network, we could find a stochastically equivalent RDPG.

Take an ERn(p) random network A(1). The probability matrix P (1) for this
network has entries p(1)ij = p. Our goal is to find another network A(2) (an
RDPG, with some latent position matrix X) that is stochastically equivalent to
this network, for any choice of p. That is, we want a choice of ~xi and ~xj , such
that ~x>i ~xj = p, for all i and j.

This is quite easy to do. If the latent dimensionality d = 1, we can take
~xi = [

√
p] for all nodes. That is, each latent position is just a scalar (the square-

root of p), and the “latent position matrix” is the n×1 matrix (a column-vector):

X =
√
p1n,

where 1n is the n-dimensional column-vector of 1s. Using the same logic that we
used in Section 4.3.7:

P (2) = XX>
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=
√
p1n
√
p1>n

= p1n1>n ,

which works because √p is a scalar and therefore can be directly multiplied with
the other √p. From Equation (4.3), we remember that:

P (2) =

p . . . p
...

. . .
...

p . . . p

 ,
so p

(2)
ij = p = p

(1)
ij for all i and j, and P (1) = P (2). This result can be ap-

plied for any choice of p. Therefore, the ERn(p) random networks are contained
in the RDPGn(X) random networks, and conversely, the RDPGn(X) random
networks generalize the ERn(p) random networks.

RDPG random networks generalize some SBM random networks
In certain situations, the RDPGn(X) model can generalize the SBMn(~z,B)

model in Section 4.3. Imagine an SBMn(~z,B) random network A(1), where C
is the n × K one-hot encoded community assignment matrix with rows corre-
sponding to nodes. Remember from Section 4.3.6 that the probability matrix
is:

P (1) = CBC>.

Likewise, if A(2) is an RDPGn(X) random network, the probability matrix
would be:

P (2) = XX>,

If the matrix B was “somehow” a product of another matrix (called a square-root
matrix, written

√
B) with its transpose; that is:

B =
√
B
√
B
>
, (4.4)

Then finding an RDPGn(X) random network that is stochastically equivalent
to A(1) would be possible. Notice that in this case:

P (1) = C
√
B
√
B
>
C>.

If U and V are two matrices, then (UV )> = V >U>. Therefore, if we set X =

C
√
B:

P (2) = XX>

= C
√
B
(
C
√
B
)>

= C
√
B
√
B
>
C>

= CBC> = P (1), (4.5)



148 Statistical Models of Random Networks

Concept 4.4.1 The bigger picture of network generalization

The reason that we are discussing generalizations can be given most clearly
through example. Imagine that you are learning how to knit, and that you
want to knit a sweater. As you learn, you pick up many skills and abilities
that also apply to simpler things. After finishing the sweater, you might want
to knit a scarf, which is simpler than a sweater. The skills that you picked up
to knit the sweater will probably generalize to your attempt to knit the scarf.
Similarly, for many sections of this book the RDPG will be a foundational
model that we will build upon. In Chapter 5, we will focus most of our atten-
tion on developing machinery for estimating latent position matrices from net-
work observations. The idea is that, just like knitting a sweater will give skills
that generalize to knitting a scarf, developing machinery for one class of net-
works will generalize to other classes. If we develop machinery for the RDPGs
and the RDPGs generalize a second random network model, the machinery
we developed for the RDPGs generalizes to random networks described by the
second random network model. We are working towards developing intuition
that will give us a tool set that can deal with many problems, rather than a
tool set which only applies to one problem. Chapters 7 through 9 will explore
how to apply many of these techniques to real network learning problems and
refine them for more specific network models.

and our job would be done. Stated another way, if the relationship in Equa-
tion (4.4) is true, and the block matrix B has a square root, then the RDPG
random networks would generalize the SBM random networks, and the SBM
random networks would be contained by the RDPG random networks. However,
the requirement that B has a square root is a bit more nuanced, and provides
motivation for discussion in Section 4.5.

Concept 4.4.1 roadmaps our discussions about network generalizations, and
describes how the RDPG fits in to that picture.
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4.5 Positive semidefinite Matrices

We now take a break from defining new statistical models to explore the
properties of positive semidefinite (PSD) matrices, which are symmetric,
have non-negative eigenvalues, and importantly, have square roots.

We cover:

1 Definition and properties of PSD matrices,
2 PSD block matrices in SBMs and their implications,
3 Relationship between PSD matrices and RDPGs,
4 Types of block matrices: homophilic, planted partition, kidney-egg, core-

periphery, and disassortative, and
5 Generating latent position matrices for SBMs with PSD block matrices.

Positive semidefiniteness is a key property because any model with a PSD
probability matrix can be thought of as an RDPG, motivating many of the
representations we will discuss in Chapter 5.

In Section 4.4, we said that the probability matrix P = XX> for RDPGn(X)

random networks, where X was the latent position matrix. This means that P
must be positive semidefinite for an RDPG.

There are multiple equivalent ways to define positive semidefiniteness (typi-
cally abbreviated PSD). In this book, we will borrow two definitions:

1 if M is a real square symmetric matrix (that is, M has n rows and n columns,
and M = M>), we say that M is positive semidefinite if and only if there
exists another matrix

√
M where M =

√
M
√
M
>
. In this case, understanding√

M to be the “square-root matrix” provides a reasonable level of intuition.
2 If M is a real square symmetric matrix, we say that M is positive semidefinite
if and only if all of the eigenvalues are non-negative.

The words “if and only if” can be taken to mean that the two statements are
“equivalent characterizations” of one another. We could characterize a matrix as
positive semidefinite either if it has a square-root matrix, or if all of its eigen-
values are non-negative. Conversely, if we start by knowing that a real matrix is
positive semidefinite, we also know that it has a square root matrix and that its
eigenvalues are non-negative. Starting with

√
M is often a more useful approach

to construct positive semidefinite matrices, and checking for non-negative eigen-
values is useful for verifying whether M is positive semidefinite. Concept 4.5.1
introduces the concept of a matrix factorization (or decomposition), which will
be crucial for later sections.

To begin, we will work through a quick example. For RDPGn(X) random
networks, if P = XX>, X is a square-root matrix for P . Therefore, we could
say that the probability matrix P is positive semidefinite, and is factorized by
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Concept 4.5.1 Matrix factorizations/decompositions

If we have a matrix M , we say that M is factorized or decomposed if it can
be expressed as a product of other matrices. For instance, if M is positive
semidefinite, we can factorize or decompose it using the square-root matrix√
M :

M =
√
M
√
M
>
.

There are many approaches with which we can obtain factorizations or de-
compositions of matrices, several of which will be useful for network learning
problems.

the latent position matrix X and its transpose. Equivalently, we could check this
with the following utility, which we will use in several sections of the book going
forward:

import numpy as np

def block_mtx_psd(B):

"""

A function which indicates whether a matrix

B is positive semidefinite.

"""

return np.all(np.linalg.eigvals(B) >= 0)

4.5.1 Positive semidefiniteness and Block Matrices

SBMn(~z,B) random networks can often share the positive semidefinite property,
particularly with respect to the block matrix B.

We will restrict ourselves to the 2×2 case, in which we have two communities,
so that we can build intuition for what a positive semidefinite block matrix looks
like. In this case, the block matrix is:

B =

[
b11 b12
b21 b22

]
,

The existence of the square-root matrix
√
B (in other words, that B is positive

semidefinite) in the 2×2 case can be summarized succinctly with two conditions:

1 b11 ≥ 0, and
2 the determinant of the block matrix is non-negative; that is, det(B) ≥ 0.

Since the block matrix B is also a probability matrix, condition 1 applies au-
tomatically: a probability cannot be negative. The determinant of a 2×2 matrix
B is b11b22 − b21b12. For this section, we will consider only simple SBMn(~z,B)

random networks; from Remark 4.3.2, remember that this means that the block
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matrix will be symmetric, so b12 = b21. Therefore, the determinant of a 2 × 2

symmetric matrix B is b11b22 − b221. So, condition two gives us that the block
matrix will be positive semidefinite any time b11b22 ≥ b221. When a matrix has
all positive entries but is not positive semidefinite, we refer to the matrix as
indefinite.

The power of RDPGs
When this block matrix is positive semidefinite, as we explained in Equation 4.5,
we could find a latent position matrix for the SBM:

P = XX>,

which illustrates that the probability matrix for an SBM with a positive semidefi-
nite block matrix is also positive semidefinite. This is because it can be factorized
with a square-root matrix (here, the latent position matrix). So, to answer the
question we left “hanging” at the end of Section 4.4.5, the RDPGs generalize
SBMs with positive semidefinite block matrices (and conversely, the SBMs with
positive semidefinite block matrices are contained by the RDPGs).

More broadly, to determine stochastic equivalence, we always will use a proba-
bility matrix. Imagine we have A(1), a random network with a probability matrix
P (1). If P (1) is positive semidefinite, we can find

√
P (1) where:

P (1) =
√
P (1)

√
P (1)

>
.

Now, imagine that we have some RDPG A(2), where the latent position matrix
X =

√
P (1). Then the probability matrix for A(2) is:

P (2) = XX> =
√
P (1)

√
P (1)

>
= P (1).

Since P (1) = P (2), A(1) and A(2) are stochastically equivalent by Concept 4.2.1.
What this shows is that the RDPG random networks will generalize the entire
class of random networks with positive semidefinite probability matrices, which
is an extremely useful property and will be very handy later on. This further
solidifies the intuition that we developed in Concept 4.4.1, and is solidified by
Concept 4.5.2.

Concept 4.5.2 The importance of RDPGs

By now, you should be starting to see the picture of why positive semidef-
initeness matters, which we originally introduced in Concept 4.4.1: random
networks with positive semidefinite probability matrices are generalized by
RDPGs, which means that all machinery we will later develop for RDPGs
applies (for free) to any random network with a positive semidefinite proba-
bility matrix.
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A more nuanced question: what is a random network with a positive semidef-
inite probability matrix? To conceptualize what this means intuitively, we’ll in-
troduce various types of SBMs with two communities. These are covered in more
technical depth in [8]. With the insight that we developed in Section 4.5.1, we
will build intuition by classifying these block matrices as positive semidefinite
(or not).

4.5.2 Erdös-Rényi block matrix

An SBM’s block matrix is called Erdös-Rényi if all entries are equal. In the 2×2

symmetric case, this means that b11 = b22 = b12 = p:

B =

[
p p

p p

]
If B has only one unique entry, and ~z is any community assignment vector, the
resulting probability matrix will also have 1 unique entry. This is equivalent
to the probability matrix for an ERn(p) network: we technically still have two
communities, but they are completely indistinguishable.

Since we already showed that ERn(p) random networks are contained in the
RDPGn(X) random networks, and RDPGn(X) can only have positive semidef-
inite probability matrices, this B matrix must be positive semidefinite.

To see this formally, notice that b11 = b22 = b12 implies that b11b22 = b212, so
the determinant of B is non-negative.

4.5.3 Homophilic block matrices

An SBM’s block matrix is called homophilic when the diagonal entries, bkk for
all communities k are greater than the off-diagonal entries bkl where k 6= l:

B =

[
b11 b12
b21 b22

]
with b11, b22 > b12, b21

“Homophilic” roughly means “tending to form relationships with objects similar
to oneself.” In the context of a network, the nodes of a SBM with a homophilic
block matrix are more probable to have connections with nodes from the same
community than with different communities.

Homophilic block matrices are positive semidefinite in general. We can see this
easily for the 2×2 case using the determinant condition for B. Notice that since
b11 and b22 are each greater than b21 and are non-negative, their product will be
greater than b221.

Next, let’s generate and plot a homophilic block matrix:

import numpy as np

from graphbook_code import heatmap
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B = np.array([[0.6, 0.2],

[0.2, 0.4]])

heatmap(B, title="A homophilic block matrix", annot=True, vmin=0, vmax=1)

block_mtx_psd(B)

# True

This block matrix is shown in Figure 4.5.1(A).

Figure 4.5.1 (A) a homophilic block matrix. (B) a positive semidefinite kidney-egg
block matrix. (C) a positive semidefinite core-periphery block matrix.

4.5.4 Planted partition block matrices

A planted partition block matrix has equal on-diagonal entries; that is, b11 =

b22 = . . . = bKK for all K communities. Similarly, planted partition block ma-
trices have equal off-diagonal entries; that is, b12 = . . . b1K = b21 = . . . b2K =

. . . bK1 = . . . = bKK−1:

B =

[
b11 b12
b21 b22

]
with b11 = b22, b12 = b21

In our case, since we already know B is symmetric, this just means that b11 = b22.
Using the determinant condition and the fact that b11 = b22, this implies that

a planted partition is positive semidefinite when b211 ≥ b212. Since the entries
of B are probabilities and therefore non-negative, we can take square roots of
both sides, and a sufficient condition is that b11 ≥ b12. When this condition
is satisfied, we further clarify that the planted partition is homophilic, since it
fulfills the homophily criterion given in Section 4.5.3.

We can generate an indefinite planted partition block matrix with an exam-
ple where the block matrix has off-diagonal entries that exceed the on-diagonal
entries:

B_indef = np.array([[.1, .2],

[.2, .1]])

block_mtx_psd(B_indef)
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# False

Which is shown in Figure 4.5.2(A).

Figure 4.5.2 (A) an indefinite planted partition block matrix. (B) an indefinite
kidney-egg block matrix. (C) an indefinite core-periphery block matrix. (D) a
disassortative block matrix.

4.5.5 Kidney-egg block matrices

A kidney-egg block matrix is a 2× 2 block matrix where b12 = b21 = b22:

B =

[
b11 b12
b21 b22

]
with b12 = b21 = b22

For this matrix to be positive semidefinite, the determinant condition along
with b12 = b21 = b22 gives us that b11b12 ≥ b212. Dividing through by b12, we
can see that the kidney-egg block matrices are positive semidefinite with the
same conditions as planted partition block matrices; that is, b11 ≥ b12. Next,
we generate two kidney-egg block matrices, one of which is indefinite and one of
which is positive semidefinite.

# a positive semidefinite kidney-egg block matrix

B_psd = np.array([[.6, .2],

[.2, .2]])

block_mtx_psd(B_psd)

# True

# an indefinite kidney-egg block matrix

B_indef = np.array([[.1, .2],

[.2, .2]])

block_mtx_psd(B_indef)

#False

We plot the positive semidefinite block matrix in Figure 4.5.1(B), and the
indefinite block matrix in Figure 4.5.2(B).
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4.5.6 Core-periphery block matrices

Core-periphery block matrices have either b11 or b22 which are greater than all
of the other entries of the block matrix:

B =

[
b11 b12
b21 b22

]
with b11 > b22, b12, b21

or b22 > b11, b12, b21

This is called the core-periphery model because there are a group of nodes from
a particular community (the core) that tend to be more strongly connected than
nodes that are not in that community (the periphery). For instance, if community
1 were the core community, b11 > b22 and b11 > b12, then the nodes of community
1 would tend to heavily associate with other core nodes. However, the nodes of
community 2 (the peripheral community) would have far fewer connections both
with other peripheral nodes and with core nodes.

Core-periphery block matrices are a little bit harder to tie directly to positive
semidefiniteness; the most precise that we can be is simply to say that b11b22 ≥
b12b21, which isn’t particularly informative since that’s just the criterion for
positive semidefiniteness.

Let’s show how this condition works with some more examples:

# a positive semidefinite core-periphery block matrix

B_psd = np.array([[.6, .2],

[.2, .1]])

block_mtx_psd(B_psd)

# True

# an indefinite core-periphery block matrix

B_indef = np.array([[.6, .2],

[.2, .05]])

block_mtx_psd(B_indef)

# False

The positive semidefinite core-periphery block matrix is shown in Figure 4.5.1(C),
and the indefinite core-periphery block matrix is shown in Figure 4.5.2(C).

4.5.7 Disassortative block matrices

A block matrix is disassortative if b12 and b21 are greater than b11 and b22:

B =

[
b11 b12
b21 b22

]
with b11, b22 < b12, b21

By definition, disassortative block matrices are not positive semidefinite. This
is because b11b22 < b12b21, since all of the entries of B are positive. There is
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no possible way that we could use a disassortative block matrix to construct an
equivalent RDPGn(X).

Imagine that we have a simple network where the nodes are businesses, and
each node is either a producer or a retailer (the two communities). An edge
exists in the network if a relationship exists between two businesses. In general,
producers will have business relationships with retailers, so the cross-community
block probability b12 is high. However, producers will not tend to have business
relationships with their competitor producers, and retailers will not tend to have
business relationships with their competitor retailers, so the within-community
block probabilities b11 and b22 are comparatively low.

We can generate a disassortative block probability matrix like this:

# an indefinite disassortative block matrix

B = np.array([[.1, .5],

[.5, .2]])

block_mtx_psd(B)

# False

A plot of an indefinite block matrix is shown in Figure 4.5.2(D), and another
example of a disassortative block matrix would be the indefinite planted partition
block matrix shown in Figure 4.5.2(B).

4.5.8 How do we generate latent position matrices for SBMn(~z,B) random
networks with positive semidefinite block matrices?

When a real matrix M is positive semidefinite, we can obtain a square-root
matrix

√
M where M =

√
M
√
M
>
. This matrix can be generated through a

process known as the Cholesky Decomposition [9]. This matrix
√
M is also a

square matrix; that is, it has K rows and K columns. This process will come in
handy over the next few sections when we are dealing with positive semidefinite
SBM block matrices and probability matrices, and we want to obtain a latent
position matrix. We can do this with numpy, like so:

# homophilic, and hence positive semidefinite, block matrix

B = np.array([[0.6, 0.2],

[0.2, 0.4]])

# generate square root matrix

sqrtB = np.linalg.cholesky(B)

# verify that the process worked through by equality element-wise

# use allclose instead of array_equal because of tiny

# numerical precision errors

np.allclose(sqrtB @ sqrtB.T, B)

# True

Next, we’ll generate a community-assignment vector, and then use the code
that we first produced in Section 4.3.6 to obtain a one-hot-encoding of the
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community-assignment vector. We can then use that to produce a latent po-
sition matrix, using the instructions from Equation (4.5), by taking X = C

√
B:

from graphbook_code import ohe_comm_vec

def lpm_from_sbm(z, B):

"""

A function to produce a latent position matrix from a

community assignment vector and a block matrix.

"""

if not block_mtx_psd(B):

raise ValueError("Latent position matrices require PSD block matrices!")

# one-hot encode the community assignment vector

C = ohe_comm_vec(z)

# compute square root matrix

sqrtB = np.linalg.cholesky(B)

# X = C*sqrt(B)

return C @ sqrtB

# make a community assignment vector for 25 nodes / community

nk = 25

z = np.repeat([1, 2], nk)

# latent position matrix for an equivalent RDPG

X = lpm_from_sbm(z, B)

The resulting latent position matrix is shown along with the community as-
signment vector and the block matrix in Figure 4.5.3. Note that nodes with
the same community have the same latent positions (rows of the latent position
matrix X in Figure 4.5.3(C)).

Figure 4.5.3 (A) the community-assignment vector. (B) a homophilic block matrix,
which is positive semidefinite. (C) the latent positions for an equivalent RDPG.

Finally, we can verify that the latent position matrix and the process described
in Section 4.3.6 to generate the probability matrix for an SBM produce the same
probability matrix:
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from graphbook_code import generate_sbm_pmtx

# generate the probability matrices for an RDPG using X and SBM

P_rdpg = X @ X.T

P_sbm = generate_sbm_pmtx(z, B)

# verify equality element-wise

np.allclose(P_rdpg, P_sbm)

# True

By Concept 4.2.1, this implies that the RDPGn(X) random network and the
SBMn(~z,B) random network are the same.

4.5.9 The latent positions of nodes in SBMs with positive semidefinite block
matrices

In Figure 4.5.3(C), we made a particular note: the nodes in the same community
of the network that we designed above appear to have the same latent positions.
This is no fluke, and is more broadly a characteristic of nodes in the same com-
munity of any SBM random network with a positive semidefinite block matrix.

Suppose that we have an SBMn(~z,B) random network A, where the block
matrix B is positive semidefinite, and the SBM has K communities. Since B
is positive semidefinite, A has a positive semidefinite probability matrix, which
means that there is a stochastically equivalent RDPGn(X) random network.
This is the conclusion that we reached in Section 4.5.1.

If C is the one-hot encoded community assignment matrix of A, and
√
B is

the square-root matrix of B (which exists because B is positive semidefinite), a
latent position matrix for such an RDPG would be:

X = C
√
B.

When we write out the rows of X and C, it looks like this:` ~x>1 a
...

` ~x>n a

 =

` ~c>1 a
...

` ~c>n a

√B,
where ~x>i is the d-dimensional latent position for the node i, and ~c1 is the one-hot
encoding of the community assignment for node i.

Matrix multiplication is performed by multiplying across the rows of the first
matrix and down the columns of the second. Therefore, this product will be:` ~x>1 a

...
` ~x>n a

 =

` ~c>1
√
B a

...
` ~c>n

√
B a

 . (4.6)
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Looking at each row of the left and right, this gives us that:

~x>i = ~c>i
√
B,

which we can transpose to obtain:

~xi =
√
B
>
~ci.

Remember that ~ci is the one-hot encoding of the community-assignment zi;
stated another way, cizi = 1, and 0 otherwise. This means that for any other
node j where zj = zi (the nodes i and j are in the same community), ~ci = ~cj ,
because the community assignments are the same. Therefore:

~xi =
√
B
>
~ci

=
√
B
>
~cj

= ~xj

which is because ~ci = ~cj . Therefore, ~xi = ~xj when zi = zj . Stated another way,
nodes in the same community also share the same latent positions. This property
will be useful for us in many future sections. In particular, this intuition will allow
us to learn community labels for nodes (when we do not know community labels
ahead of time) through community detection in Section 6.1, and will allow us to
“untangle” the community structure from networks like those in Figure 4.3.2.

We show an example of a homophilic block matrix in Figure 4.5.3(A); the
fact that it is homophilic also means that it is positive semidefinite. When we
apply the conversion utility lpm_from_sbm(), we produce a latent position matrix
in Figure 4.5.3(C). Notice that the rows for all of the nodes each of the two
communities are equal.

Not all RDPGs can be represented as SBMs, and vice-versa
Section 4.5.9 provides us with insights into which situations SBMs can generalize
RDPGs. The street example from the introduction of Section 4.4 provides a
counter example indicating that not all RDPGn(X) random networks can be
represented as SBMn(~z,B) random networks with fewer communities than nodes
(that is, K < n communities): in this example, all of the latent positions are
different for each node. If it were possible to represent the street example as an
SBMn(~z,B) random network with K < n communities, a group of nodes with
the same latent position vector would need to exist.

Likewise, as discussed earlier, RDPGs only generalize positive semidefinite
RDPGs. This means that if we were to have an SBM with any of the indefinite
block matrices from Figure 4.5.2, we would not be able to identify a latent
position matrix for a corresponding RDPG such that the SBM with an indefinite
block matrix and the RDPG have the same probability matrix. For the remainder
of this book, when dealing with positive semidefinite matrices, we will abbreviate
them as “PSD.”
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4.6 Properties of random networks

We now continue our break from defining new random network models
to explore useful properties of random networks, extending the concepts
introduced in Chapter 3 in the context of observed networks to random
networks.

As we have discussed, unlike observed networks, random networks have
nodes and random adjacency matrix entries aij , which we describe using
probability models (such as the Bernoulli(pij) random variable). In Sec-
tions 4.1, 4.2, 4.3, and 4.4, we introduced fundamental network models.
This section clarifies the statistical properties of networks embodied by
these assumptions. We cover:

1 Expected values for random quantities in networks,
2 Random node degree and expected degree,
3 Random network density and expected density, and
4 The population network Laplacian.

Understanding these properties helps with model selection and interpre-
tation for real-world networks. Furthermore, understanding how the prop-
erties of networks behave under typical or atypical settings is crucial for
developing downstream statistical inference techniques.

4.6.1 Expected values

The principal result that we will use for this section is the expected value of
binary quantities. If x is a random quantity that has the value 1 with probability p
and 0 with probability 1−p, remember from Section 4.1.1 that x is a Bernoulli(p)
random variable. This is the equivalent of a coin flip experiment, where a value
of heads is recorded as a 1, and a value of tails is recorded as a 0. The coin may
or may not be fair, in that the probability that it lands on heads might differ
from 0.5.

In this Section, the outcome is not yet realized for the random quantity. In-
stead, we describe properties about the random quantity, which tell us informa-
tion about how we expect it to behave. The expected value, denoted as E[·], of
a binary (0 or 1)-valued quantity x is:

E[x] = 0Pr(x = 0) + 1Pr(x = 1)

= Pr(x = 1). (4.7)

This can be informally thought of as the average value that the random quantity
takes over infinitely many trials.
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So, if a coin lands on heads (a value of 1) with probability 0.75, its expected
value is 0.75.

Expected values behave linearly under finite sums. This means that if x and
y are two random quantities, that:

E[x + y] = E[x] + E[y]. (4.8)

So, if x is a coin flip that lands on heads with probability 0.75 and y is a flip of
a different coin that lands on heads with probability 0.25, the expected value of
their sum is 1.0.

Next up is the rescaling property of expected values. If α is a constant (a
non-random quantity), then:

E[αx] = αE[x]. (4.9)

To make this more concrete, let’s imagine that x is a coin flip that lands on
heads with probability 0.75, and let’s say that we decide to play a game where,
if the coin lands on heads, we get $5, but if it lands on tails we get $0. Using
this rule, we could just multiply the value of the coin flip outcome by 5 (if the
coin lands on a 1, or heads, the outcome is 5, and if it lands on a 0, or tails, the
outcome is 5 · 0 = 0). Stated another way, our profit from the game is 5x. Then
the expected profit is:

E[5x] = 5E[x]

= 5 · .75 =
15

4
,

and we are expected to make $3.75 from this game.

4.6.2 Edge probabilities as expected values

In a random network, the edge aij is just a binary random variable, like x.
Furthermore, if A is a IERn(P ) random network, the probability matrix P

has entries pij for each pair of nodes i and j that describe the probability that
aij has a value of 1. Remember from Section 4.1.3 that this meant that aij was
a Bernoulli(pij) random variable.

This means that we can compute the expected value of each adjacency in the
network using the formula, as:

E[aij ] = pij . (4.10)

Crucially, this gives us the insight that the probability matrix can also be
thought of as the expected value of the adjacency matrix for a random network:

E[A] =

E[a11] . . . E[a1n]
...

. . .
...

E[an1] . . . E[ann]

 = P.
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4.6.3 Random node degree

In 3.2.2 we defined the degree of a node i as:

di = degree(i) =
∑
j 6=i

aij .

Similarly, we define the random node degree for a random network A as:

di =
∑
j 6=i

aij .

This quantity is random, in that it is not necessarily any particular value: it takes
a number of possible values with a probability. We can use (4.8) to compute the
expected degree:

E[di] = E

∑
j 6=i

aij


=
∑
j 6=i

E[aij ], (4.11)

Let’s imagine that there are n > 3 nodes in the network, and i = 1. This means
that:

E[d1] = E

∑
j 6=1

a1j

 = E

∑
j≥2

a1j


= E[a12] + E

∑
j≥3

a1j

 ,
which is a direct application of the result of Equation (4.8). Next, we can write
down E

[∑
j≥3 a1j

]
as a sum of E[a13] and E

[∑
j≥4 a1j

]
, and we can continue

this pattern all the way up to n to get the result in Equation (4.11).
Finally, remember that E[aij ] = pij by Equation (4.10). So, the expected node

degree is:

E[di] =
∑
j 6=i

pij . (4.12)

4.6.3.1 Random network density
The density of a random network A is defined as:

density(A) =

∑
j>i aij(
n
2

)
As before, this quantity is random, so it does not have any particular value.
However, its expected value can be computed using the rules that we described
above exactly.
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Exercise 4.6.1 Degree homogeneity in an SBMn(~z,B) random network

Take an SBMn(~z,B) random network A. Suppose that for n nodes, n/2 of
the nodes are in community 1, and n/2 of the nodes are in community 2.
Consider the block matrix:

B =

[
0.5 0.2

0.2 0.3

]
.

1 With n = 100, compute the degree of each node in the network.
2 Repeat the above simulation R = 100 times, keeping track of your results
in a data frame with the columns as the node index i, the community that
the node i is in, the simulation replicate r, and the node degree d(r)i .

3 Compute the average degree for each node across all simulations. This
should reduce your data frame to node index i, community that the node
i is in, and the average node degree over all simulations.

4 Explain what you observe about the average degrees for each node in a
particular community (the nodes of the same community have. . . average
node degrees, and nodes in different communities have . . . average node
degrees).

5 Establish an equation for the expected node degree for a node i, for each
of the two communities. This should be a function of the entries of the
block matrix B, given above. Explain how this supports your answer that
you obtained in 4.

First, notice that if the network has n nodes,
(
n
2

)
is simply a constant. From

Equation (4.9), this means that:

E[density(A)] = E

[∑
j>i aij(
n
2

) ]

=
1(
n
2

)E
∑
j>i

aij

 ,
Next, we can use the linearity argument from Equation (4.8) to obtain:

E[density(A)] =
1(
n
2

) ∑
j>i

E[aij ]

=
1(
n
2

) ∑
j>i

pij . (4.13)

Using Equations (4.12) and (4.13), we can draw the same conclusions that we
did in Section 3.2.2:

E[density(A)] =

∑n
i=1 E[di]

n(n− 1)
. (4.14)
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Finally, from Section 3.2.2, remember that d = 1
n

∑n
i=1 di is the average degree

of the nodes in a network A.
Likewise, d = 1

n

∑n
i=1 di is the average degree of nodes in a random network

A. Again, since this quantity is random, it can be summarized using expected
values. Since n is a fixed number of nodes, then using the rescaling property of
Equation (4.9):

E [d] = E

[
1

n

n∑
i=1

di

]

=
1

n
E

[
n∑
i=1

di

]
,

Finally, using the linearity of sums in Equation (4.8):

E [d] =
1

n

n∑
i=1

E[di].

Combining this with Equation (4.14):

E[density(A)] =
E[d]

n− 1
.

In the same way that the density of a network A could be conceptualized as the
average degree of each node in the network, the expected density of a random
network A can be conceptualized as the average expected degree of each node
in the random network.

4.6.4 Population network laplacian

In Section 3.4.4, we defined the DAD Laplacian as a function of the adjacency
matrix:

L = D−
1
2AD−

1
2 (4.15)

The population network Laplacian L is to the random network A what the
DAD Laplacian L was to the adjacency matrix A.

The population network Laplacian is:

L = D− 1
2PD− 1

2 . (4.16)

The matrices D here are what is known as the expected degree matrix.
In the case of simple IERn(P ) random networks, this is the diagonal matrix

whose diagonal entries are:

E[di] =
∑
j 6=i

pij . (4.17)

The expected degree matrix looks like this:
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D =

E[d1]
. . .

E[dn]

 =


∑
j 6=1 p1j

. . . ∑
j 6=n pnj

 .
D is a diagonal matrix and is a function of the probability matrix P , like the

degree matrix D was a function of the adjacency matrix A.
The diagonal entries of D, E[di], give the expected number of edges for node

i.
A natural choice for the inverted square-root matrix of D would be:

D− 1
2 =


1√
E[d1]

. . .
1√
E[d1]


Notice that as long as no node has a probability of zero of being connected

to any other nodes in the network, each quantity on the diagonal exists and is
finite. If any node i had a probability of zero of being connected to all of the
other nodes of the network, then

∑
j 6=i pij =

∑
j 6=i 0 = 0, and hence, 1

0 = ∞.
Therefore, for D− 1

2 to be defined, then for every node i, at least one other node j
must exist where pij > 0. This fact serves as motivation for the degree trimming
preprocessing techniques we explored in Section 3.6.1.

With the restriction in mind, all of the entries along the diagonal of D will
be positive. This means that their reciprocals 1

E[di] and the square roots of their
reciprocals 1√

E[di]
will also be positive.

We can think of L as the expected DAD Laplacian for a random network A.
It is defined equivalently to L in Equation (4.15), except instead of an observed
adjacency matrix A, we are thinking about the expected adjacency matrix (the
probability matrix, P ) and the expected degree matrix D for the random network
A.

Performing the same multiplication as in Equation (4.15), we see that L has
entries `ij =

pij√
E[di]
√

E[dj ]
. Therefore, the interpretation of the (i, j)th entry of the

population network Laplacian are that it is the probability pij , but normalized
by the square-root of the corresponding expected degrees of the incident nodes
i and j.
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4.7 Degree-Corrected Stochastic Block Models

We now return to building new statistical machinery. In Section 4.3, we in-
troduced the SBM in order to model networks with simple community struc-
ture. However, the SBM is limited: subnetworks of an SBM corresponding
to communities are simply Erdös-Rényi random networks, with no way to
distinguish between nodes. The Degree-Corrected Stochastic Block Model
(DCSBM) addresses these limitations by augmenting the SBM with the
flexibility to model network with varying node degrees within communities,
called node degree heterogeneity.

We cover:

1 Motivation and definition of the DCSBM,
2 Degree-correction vectors and their interpretation,
3 Simulating samples from DCSBM random networks,
4 Probability matrices for DCSBMs, and
5 the relationship between DCSBMs, SBMs, and RDPGs.

We should use the DCSBM provides us with more flexibility for modeling
networks with varying node degrees within communities, in exchange for a
slightly more complicated model.

Let’s return to the school example that we covered in Section 4.3. There are
100 students, who each attend one of two schools. The edges of the network
represent whether a pair of students are friends. If two students attend the same
school, they have a higher chance of being friends than if they attend different
schools.

In many real-world networks, using an SBM to model this network would work
effectively. It captures “community structure” in a very succinct way. However,
the SBM has a weakness. Within a given community, we have no way to represent
fundamental differences between nodes. If node i and node j are both in the same
community, they will have have the same expected node degree on average.

This means that, on average, students in the same school will all have the
same number of friends. This is referred to as degree homogeneity : the expected
degrees are the same for all nodes in the same community. This model often fails
to capture complexity in the real world, where nodes often have different degrees
and some are more “important” than others. Let’s define this more formally.

4.7.1 Degree homogeneity of the SBM

Let’s imagine that A is an SBMn(~z,B) random network with two communities,
and the node i is in community 1, so zi = 1. The expected node degree from
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Section 4.6.3 for a node i in community 1 can be written:

E[di; zi = 1] =
∑
j 6=i

E[aij ; zi = 1] =
∑
j 6=i

pij .

The semicolon means that we are calculating the expected degree for a node
where zi = 1. For the stochastic block model, this relationship is simple. If node
i is in community 1, this sum can be split into:

E[di; zi = 1] =
∑
j:zj=2

pij +
∑

j:zj=1 and j 6=i

pij ,

So we have split this into a sum over the nodes in community 2 (where zj = 2)
and the nodes that are not node i but are also in community 1. For nodes in
community 2, pij = b12. For nodes in community 1, pij = b11. Finally, we will let
nk be a simple “counter” of the number of nodes in community k. Putting these
facts together, we obtain:

E[di; zi = 1] = n2b12 + (n1 − 1)b11.

Nothing in the result here depends on the node i, other than its community
assignment zi. When the random network A is an SBMn(~z,B) with K commu-
nities, we obtain a more general result, found in Concept 4.7.2.

Together, this means that for a SBMn(~z,B) random network with K com-
munities, the nodes all have the same expected degree if they are in the same
community. This is known as the degree-homogeneity within-community of the
stochastic block model: all nodes in the same community have the same expected
node degree. This was also the conclusion of Exercise 4.6.1.

The Degree-Corrected Stochastic Block Model (DCSBM) corrects this limita-
tion by incorporating a degree-correction vector, allowing us to convey the idea
of “node importance”: some students may have more friends than others, beyond
differences in school placement.

4.7.2 The degree-correction vector

The first two parameters of the DCSBM are the same as the SBM, in that we
have a community assignment vector and a block matrix.

The degree heterogeneity is conveyed via the degree-correction vector ~θ, which
has n elements (one for each node). For each node i, the degree-correction factor
θi “degree-corrects” the node i, by either “amplifying” its expected node degree
when θi > 1 (meaning, on average, node i will have more edges than it would if
it were a node in a SBMn(~z,B)), or “reducing” its expected node degree when
θi < 1 (meaning, on average, node i will have fewer edges than it would if it were
a node in a SBMn(~z,B)). Degree correction factors are always ≥ 0, so cannot
have a negative degree-correction factor.
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4.7.3 Conceptualizing the DCSBM

The DCSBM random network has adjacency matrix entries aij , each of which
is Bernoulli(θiθjbzizj ), where zi and zj are the community assignments for the
ith and jth node, and θi and θj the degree-correction factors for the ith and jth

nodes. The probability that an edge exists between nodes i and j is given by the
block matrix entry θiθjbzizj . Therefore, the entries aij in the random network
depends on both the block matrix B and the communities zi and zj , and are
altered by the degree-correction factors θi and θj . As before, every value in A

is independent. With n nodes, the community vector ~z, the degree-correction
vector ~θ, and the block matrix B, we say that A is a DCSBMn(~z, ~θ,B) random
network.

4.7.4 Probability matrix for DCSBM random networks

In Section 4.7.2 that the DCSBM can be easily tied to the IER random networks
from Section 4.1. Notice that above, we can take the probability pij = θiθjbzizj .
This relationship demonstrates that there is a slight condition on the vector ~θ
in order to ensure that we create a valid random network model. For all pairs
of nodes i and j, applying the degree-correction vector must result in values
between 0 and 1, ensuring that it is a probability. We discuss methods to ensure
this in Concept 4.7.1. We will assume that each θi is a value between 0 and 1,
and therefore, the product of θiθj and a probability bzizj will also be between 0

and 1.

Concept 4.7.1 When is a degree-correction vector ~θ valid?

Not every choice of a degree-correction vector is valid: the probability matrix
P = ΘCBC>Θ> must have entries between 0 and 1.
If we are using DCSBMn(~z, ~θ,B) for simulation, we can choose ~θ such that
the maximum value is 1, and then adjust B accordingly. The product of a
degree-correction factor between 0 and 1 and a block probability also between
0 and 1 will always be a probability (between 0 and 1), so we are guaranteed
to produce degree-correction factors generating valid probability matrices.
We can also select ~θ such that for every community, all of the degree-correction
factors within that community sum to 1 [10; 11]. This means that the entries θi
will be strictly less than 1 if there are at least two nodes in a single community.
The block matrix can then be adjusted such that it is no longer a probability
matrix (taking values exceeding 0 or 1), so long as we can still end up with a
valid probability matrix using P = ΘCBC>Θ>.
We prefer the first method for the purposes of this book, simply because it
is easier to work with. When doing proofs with DCSBMn(~z, ~θ,B) random
networks, the second method is often useful.
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To determine stochastic equivalences, we need an efficient procedure to pro-
duce probability matrices. We can develop a method for generating P similar to
the one for SBMs in Section 4.3.6, then verify that all entries of P are between
0 and 1. Matrix multiplications can accomplish this task.

We first define the n × n degree-correction matrix Θ, a diagonal matrix con-
taining the degree-correction factors. We use the uppercase θ, since Θ is a matrix:

Θ =


θ1 0 · · · 0

0 θ2
. . .

...
...

. . . . . . 0

0 · · · 0 θn

 . (4.18)

We recall from 4.3.6 that for an SBMn(~z,B) random network A′, we can
write the probability matrix as P ′ = CBC>, where C is the one-hot encoded
community-assignment matrix, and P ′ has entries p′ij = bzizj :

P ′ =

bz1z1 . . . bz1zn
...

. . .
...

bznz1 . . . bznzn

 .
Our goal is to “augment” P ′ by multiplying each row i of P ′ by the correspond-

ing degree-correction factor θi, and each column j of P ′ by the corresponding
degree-correction factor θj . This yields θiθjbzizj , which is our desired result.

Pre-multiplying by Θ yields:

ΘP ′ =

θ1bz1z1 . . . θ1bz1zn
...

. . .
...

θnbznz1 . . . θnbznzn

 ,
Pre-multiplication by the diagonal matrix Θ has resulted in each row i of P ′

being multiplied by the degree-correction factor of the corresponding entry θi.
Similarly, post-multiplying by Θ> yields:

ΘP ′Θ> =

 θ21bz1z1 . . . θ1θnbz1zn
...

. . .
...

θnθ1bznz1 . . . θ2nbznzn

 .
Post-multiplication by the diagonal matrix Θ has resulted in each column j of

P ′ being multiplied by the degree-correction factor of the corresponding entry
θj .

This means that:

pij = (ΘP ′Θ>)ij = θiθjbzizj .

The entries of this matrix are exactly the probability of an edge existing in
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a DCSBMn(~z, ~θ,B) random network. The degree-correction factor ~θ thus “in-
flates” or “deflates” the block probabilities of an SBMn(~z,B) based on each
node’s popularity θi or θj , relative other nodes in the same community.

Algorithm 10: Generating a probability matrix for a DCSBMn(~z, ~θ,B)

Data: n a number of nodes
~z a community-assignment vector of each node to one of K
communities
~θ a degree-correction factor
B a block matrix with K rows and K columns

Result: A probability matrix for a DCSBMn(~z, ~θ,B).
1 Let P ′ = CBC>, as-per Algorithm 8, where C is the one-hot encoding of

~z.
2 Let Θ be the degree-correction matrix, defined as-per Equation 4.18.
3 Let P = ΘP ′~Θ>.
4 return P

Algorithm 10 can be used to generate a probability matrix for aDCSBMn(~z, ~θ,B)

network. First, we generate a probability matrix for an SBMn(~z,B) random
network as the “uncorrected probability matrix”. We then apply the degree-
correction by pre- and post-multiplying by Θ and Θ>.

4.7.5 Simulating samples of DCSBMn(~z, ~θ,B) random networks

While graspologic and networkx do not have utilities built-in to simulate sam-
ples of a DCSBM directly, we can build our own tools. Algorithm 11 produces
a network A, where the underlying random network A is a DCSBM random
network.

Algorithm 11: Simulating a sample from a DCSBMn(~z, ~θ,B) random
network
Data: n a number of nodes

~z a community assignment vector of each of the n nodes to K
communities
~θ a valid degree-correction vector for each of the n nodes
B a block matrix with K rows and K columns

Result: The adjacency matrix of a sample from the random network.
1 Define P = ΘCBC>Θ> as-per Algorithm 10.
2 Generate a sample A from an IERn(P ) network, using Algorithm 5.
3 return A

Taking the students example from Section 4.3, we order students by their
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popularity using a degree-correction vector that declines from 1 to 0.5 in both the
first and second community. Using the generate_sbm_pmtx() utility from Section
4.3.6, we use the logic developed in Algorithm 10 to augment the probability
matrix with the degree-correction factor. We then write a function that generates
samples from DCSBM random networks using the sample_edges() utility from
graspologic:

import numpy as np

from graspologic.simulations import sample_edges

from graphbook_code import heatmap, plot_vector, \

generate_sbm_pmtx

def dcsbm(z, theta, B, directed=False, loops=False, return_prob=False):

"""

A function to sample a DCSBM.

"""

# uncorrected probability matrix

Pp = generate_sbm_pmtx(z, B)

theta = theta.reshape(-1)

# apply the degree correction

Theta = np.diag(theta)

P = Theta @ Pp @ Theta.transpose()

network = sample_edges(P, directed=directed, loops=loops)

if return_prob:

network = (network, P)

return network

Next, we can use this function to generate and plot samples of our DCSBM
random network:

# Observe a network from a DCSBM

nk = 50 # students per school

z = np.repeat([1, 2], 50)

B = np.array([[0.6, 0.2], [0.2, 0.4]]) # same probabilities as from SBM section

theta = np.tile(np.linspace(1, 0.5, nk), 2)

A, P = dcsbm(z, theta, B, return_prob=True)

# Visualize

plot_vector(z, title="$\\vec z$", legend_title="School", color="qualitative",

ticks=[0.5, 49.5, 99.5], ticklabels=[1, 50, 100],

ticktitle="Student")

plot_vector(theta, title="$\\vec \\theta$",

legend_title="Degree-Correction Factor",

ticks=[0.5, 49.5, 99.5], ticklabels=[1, 50, 100],

ticktitle="Student")

heatmap(P, title="$P = \\Theta C B C^\\top \\Theta^\\top$", vmin=0, vmax=1)

heatmap(A.astype(int), title="Sample of $DCSBM_n(\\vec z, \\vec \\theta, B)$")

Figure 4.7.1 visualizes the parameters for our sampled DCSBMn(~z, ~θ,B) ran-
dom network. Note that the degree-correction factors in Figure 4.7.1(B) are
higher for the first nodes in each community. This is reflected in the probability
matrix in Figure 4.7.1(D), where the probabilities are highest in the upper-
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left corners of each diagonal block, as these edges are between nodes with high
degree-correction factors. In this sense, edges between pairs of nodes with high
degree-correction factors will tend to exist more often than edges between pairs
of nodes with lower degree-correction factors.

Figure 4.7.1 (A) the community assignment vector, (B) the degree-correction vector,
and (C) the block probability matrix. (D) the probability matrix, calculated from the
community assignment vector, the degree-correction vector, and the degree-correction
factor. (E) a sample from a DCSBMn(~z, ~θ,B) random network, using the probability
matrix from (D) coupled with an IERn(P ) network sampler from graspologic.

4.7.6 Why is it called a degree-corrected stochastic block model?

To illustrate why this model is known as a “degree-corrected” SBM, we can use
the two-community SBM example from Section 4.7.1.

Working through the first step to compute the expected degree of a node i for
a DCSBMn(~z, ~θ,B) random network, we get:

E[di; zi = 1] =
∑
j 6=i

E[aij ] =
∑
j 6=i

θiθjbzizj .
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Using a similar derivation as in Section 4.7.1, we obtain:

E[di; zi = 1] = θi

n2b12 ∑
j:zj=2

θj + (n1 − 1)b11
∑

j:zj=1 and j 6=i

θj


The expected degree of the node i is thus “degree-corrected” by its degree-
correction factor θi. For an arbitrary DCSBMn(~z, ~θ,B) random network with
K communities, the expected node degree for a node in an arbitrary community
k is shown in Concept 4.7.2.

Concept 4.7.2 The expected node degree for block models

If A is a SBMn(~z,B) random network with n nodes and K communities,
then the expected degree of a node i in community k is:

E[di; zi = k] =
∑
l 6=k

nlblk + (nk − 1)bkk.

If A is a DCSBMn(~z, ~θ,B) random network with n nodes and K communi-
ties, then the expected degree of a node i in community k is:

E[di; zi = k] = θi

∑
l 6=k

nlblk ∑
j:zj=l

θj

+ (nk − 1)bkk
∑

j:zj=k and j 6=i

θj

 .

The degree-correction factor θi therefore “corrects” the expected degree of the
node i. That is, when θi is smaller (relative to the degree correction factors of
other nodes in the same community zi as node i), the expected node degree is
smaller. Similarly, when θi is larger, the expected node degree is larger.

The DCSBMn(~z, ~θ,B) random networks therefore allow us to incorporate our
notion of node importance. Less important nodes can be equipped with smaller
degree-correction factors, and will tend to have lower degrees. Conversely, more
important nodes can be equipped with larger degree-correction factors, and will
tend to have higher degrees.

4.7.7 Generalization and DCSBMs

Take an SBMn (~z,B) random network A(1). To illustrate that the DCSBMs
generalize the SBMs, we need to find a DCSBM equivalent to this SBM for
any choice of ~z and B. In other words, we seek a random network A(2) with
corresponding community-assignment vector ~z′, degree-correction vector ~θ′, and
a block matrix B′ where P (1) = P (2); that is, A(1) and A(2) are stochastically
equivalent, by Concept 4.2.1.

Because A(1) is an SBM, we can use the procedure of Section 4.3.6:

P (1) = CBC>,
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where C is the one-hot encoding matrix of the community assignment vector ~z.
We can also write this as:

P (1) = In×nCBC
>I>n×n, (4.19)

where In×n is the n× n identity matrix.
If we choose the community assignment vector and block matrix of A(2) to be

equal to those of A(1), then:

P (2) = Θ′CBC>Θ′>, (4.20)

This is because the one-hot encoding matrix and the block matrix of A(2) are
the same as for A(1). Equation (4.19) and Equation (4.20) are almost the same,
and would be identical if Θ′ = In×n. This occurs when the degree-correction
vector ~θ′ = 1n; that is, when the degree-correction factors are just 1 for all of
the nodes in the network.

Therefore, choosing ~θ′ = 1n gives us P (1) = P (2), so A(1) and A(2) are stochas-
tically equivalent. Our choices did not depend on the specific community assign-
ment vector ~z nor the block matrix B of A(1).

Therefore, for any SBM, we can always find a stochastically equivalent DCSBM
by choosing the same community assignment vector and block matrix, and
degree-correction factors of 1. Therefore, the DCSBMs generalize the SBMs,
and conversely, the SBMs are contained in the DCSBMs.

Since SBMs generalize ER random networks, we can conclude by transitivity
that the DCSBMs also generalize the ER random networks.

RDPGs generalize PSD DCSBM random networks
From Algorithm 10, the probability matrix for a DCSBMn(~z, ~θ,B) random net-
work A(1) is P (1) = ΘP ′Θ>, where P ′ is the uncorrected probability matrix for
an SBMn(~z,B) random network. With P ′ = CBC>:

P (1) = ΘCBC>Θ>.

In Section 4.5.1, we concluded that we could produce a latent position matrix X
for any positive semidefinite probability matrix. As it turns out, the condition for
the probability matrix P of a DCSBMn(~z, ~θ,B) random network to be positive
semidefinite is identical to that of an SBMn(~z,B) random network: the block
matrix B must be positive semidefinite.

If the block matrix B is positive semidefinite, it has a matrix
√
B where

B =
√
B
√
B
>
, so the probability matrix for A(1) can be written:

P (1) = ΘC
√
B
√
B
>
C>Θ>

= ΘC
√
B
(

ΘC
√
B
)>

,

using rules for the transpose of a product of matrices.
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If X = ΘC
√
B were a latent position matrix for some RDPGn(X) random

network A(2), then:

P (2) = XX> = ΘC
√
B
(

ΘC
√
B
)>

= ΘC
√
B
√
B
>
C>Θ>

= ΘCBC>Θ> = P (1),

Where we used the fact that
√
B
√
B
>

= B when B is PSD. So P (1) and P (2)

are equal, and therefore A(1) and A(2) are stochastically equivalent.
We can conclude that the RDPG random networks generalize the DCSBM

random networks whenever the block matrix of the DCSBM is positive semidef-
inite.

We can design a utility for generating latent position matrices for DCSBM
random networks with positive semidefinite block matrices:

from graphbook_code import lpm_from_sbm

def lpm_from_dcsbm(z, theta, B):

"""

A function to produce a latent position matrix from a

community assignment vector, a degree-correction vector,

and a block matrix.

"""

# X’ = C*sqrt(B)

Xp = lpm_from_sbm(z, B)

# X = Theta*X’ = Theta * C * sqrt(B)

return np.diag(theta) @ Xp

# make a degree-correction vector

theta = np.tile(np.linspace(1, 0.5, 50), 2)

X_dcsbm = lpm_from_dcsbm(z, theta, B)

Figure 4.7.2 shows the resulting latent position matrix, along with the com-
munity assignment vector, the degree-correction vector, and the block matrix.
Nodes with the same community have similar latent positions, but have large
magnitudes for the first few nodes in each community, and smaller magnitudes
for the last few nodes in each community.

4.7.8 Nodes in the same community have the same latent position (up to a
rescaling)

Section 4.5.9 showed that if A is an SBMn(~z,B) random network, we identify a
stochastically equivalent RDPGn(X) random network by letting X = C

√
B. For
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Figure 4.7.2 (A) the community-assignment vector. (B) the degree-correction vector.
(C) a homophilic block matrix, which is positive semidefinite. This block matrix is
the same example shown in Figure 4.5.1(A). (D) the latent positions for an
equivalent RDPG.

a given node i, we found that the latent position was ~xi =
√
B
>
~ci, where ~ci was

the one-hot encoding for the community of node i, zi. This has the implication
that latent positions for nodes in the same community are the same (since they
have the same one-hot encoding, and

√
B is fixed).

We learned in Section 4.7.7 that the latent position matrix for aDCSBMn(~z, ~θ,B),
with a positive semidefinite block matrix (and hence probability matrix), was:

X = ΘC
√
B.

This can be interpreted similarly to the result we obtained for the SBMn(~z,B)

random networks.
The result from Equation (4.6) gives:` ~x>1 a

...
` ~x>n a

 =

` ~c>1
√
B a

...
` ~c>n

√
B a

 ,
for an SBMn(~z,B) random network, where ~ci is the one-hot encoding of the
community for the ith node. In the DCSBMn(~z, ~θ,B) random network, using
X = ΘC

√
B, we instead obtain:` ~x>1 a

...
` ~x>n a

 =

θ1 . . .
θn


` ~c>1

√
B a

...
` ~c>n

√
B a

 .
Multiplying by the diagonal matrix Θ:` ~x>1 a

...
` ~x>n a

 =

` θ1~c
>
1

√
B a

...
` θn~c

>
n

√
B a

 .
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Looking at each row, we obtain ~x>i = θi~c
>
i

√
B. Since θi is just a scalar, we can

apply the transpose to find:

~xi = θi
√
B
>
~ci.

Section 4.5.9 showed that if nodes i and j had the same community assignments
and zi = zj , then ~ci = ~cj , since they will also have the same one-hot encodings.
Therefore, if j is another node where zi = zj , it follows that:

~xj = θj
√
B
>
~cj

= θj
√
B
>
~ci,

since ~ci = ~cj . Notice that since ~xi = θi
√
B
>
~ci, that

√
B
>
~ci = 1

θi
~xi. Using this

fact, we obtain that:

~xj =
θj
θi
~xi.

This illustrates that if a pair of nodes i and j are in the same communities,
their latent positions will be almost equal. In particular, they will be constant
multiples of one another. These constant multiples are given by the ratio of their
respective degree-correction factors, θjθi . Further, if nodes i and j from the same
community have the same degree-correction factor, so that θi = θj , this argument
shows that ~xj = ~xi.

Figure 4.7.2(D) illustrates the latent positions for a DCSBM with a PSD block
matrix. The rows of the latent position matrix, the latent positions for each node,
follow the same pattern of the degree-correction vector in Figure 4.7.2(B), though
for nodes with higher degree correction factors, the magnitudes are greater. This
is because the degree-correction vector is rescaling the latent positions between
nodes in the same community.

This shows us that some RDPGn(X) random networks cannot be represented
as DCSBMn(~z, θ, B) random networks with K < n. We can see this from the
street example: there is no choice of degree-correction factors ~θ which would
allow us to rescale the latent position associated with a community and obtain
the latent positions. The values of the latent dimensions from Figure 4.4.1 for
the street example have a pattern of taking opposites: as the value in latent
dimension one increases, the value in latent dimension two decreases, and vice-
versa (where all values of the latent position matrix were positive). Accounting
for this with a degree-correction factor would require at least that the pattern is
the same; both would have to be simultaneously increasing or decreasing due to
the fact that the latent position matrix has only positive entries. Likewise, due
to the same reasoning as with SBMs, RDPGs do not generalize DCSBMs with
indefinite block probability matrices.

There are two takeaways:

1 When the underlying random network is an SBMn(~z,B) and the block matrix
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is PSD, all nodes within the same community have the same latent position
vector.

2 When the underlying random network is an DCSBMn(~z, ~θ,B) and the block
matrix is PSD, all nodes within the same community have the same latent
position vector up to a rescaling by their degree-correction factor. If the nodes
are in the same community and the degree-correction factor is the same, the
nodes have the same latent position.

These findings can be summarized succinctly: as long as the block matrix of
a block model is positive semidefinite, we can find a stochastically equivalent
latent position matrix for an RDPG. Therefore, any procedure that can be used
on RDPGs can also be applied to block models with positive semidefinite block
matrices. We suggest revisiting Concept 4.4.1 in this light to appreciate its im-
portance.

4.7.9 Exercises

Section 4.5 gives intuition on which block matrices are positive semidefinite in
simple 2×2 cases. To solidify these concepts, we would recommend going through
the following exercises:

Exercise 4.7.3 Core-periphery SBM and planted partition DCSBM
equivalence

Imagine that we have a DCSBMn(~z, ~θ,B) with a planted partition block
matrix B, with degree-correction vector ~θ containing two unique values u and
v. These unique values are chosen such that whenever zi = 1, θi = u, and
whenever zi = 2, θi = v.

1 Generate a visualization of the probability matrix.
2 Use this visualization to show that there exists a core-periphery block
matrix B′ where SBMn(~z,B′) and DCSBMn(~z, ~θ,B) have the same
probability matrix.

3 Find a function of u,v, and B such that B′ = f(u, v,B).

Conclude that planted-partition DCSBMs with the degree-correction vector
having one unique value for each community are equivalent to core-periphery
SBMs with a suitably chosen block matrix.
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Exercise 4.7.4 Degree-correction factors “stretch” latent positions

Take a positive semidefinite block matrix B associated with a 2-community
SBMn(~z,B) random network (for instance, a homophilic block matrix, with
n taken to be any number of nodes). Compute the latent position matrix for
the SBMn(~z,B) random network. This results in a n× 2-dimensional latent
position matrix.
Next, take a range of values for ~θ (you can pick these however you like).
Compute a latent position matrix for the corresponding DCSBMn(~z, ~θ,B)

random network.

1 Take the latent position associated with community 1 from the SBM. Plot
it as a point.

2 Overlay the latent positions associated with community 1 in the
corresponding DCSBM in a different color.

3 Conclude that θ is “stretching” the latent positions of the corresponding
SBM in a straight line.

4 Repeat for the latent position ~y associated with community 2.

Conclude that degree-correction factors for DCSBMn(~z, ~θ,B) random net-
works “stretch” the latent positions of SBMn(~z,B) random networks along a
straight line, depending on the value of θ.

4.8 Structured Independent-Edge Random Networks

In Sections 4.3, 4.4, and 4.7, the behaviors of the random network were
directly tied to properties of the nodes (node attributes), such as commu-
nities, degree-corrections, and latent positions. However, networks can also
be defined using properties of the edges, known as edge attributes. To this
end, we introduce the Structured Independent-Edge Model (SIEM), which
creates edge probability structure. We cover:

1 Definition and components of the SIEM,
2 Cluster-Assignment Matrices and probability vectors,
3 Simulating samples from SIEM random networks,
4 Relationship between SIEM and other network models, and
5 Applications and use cases for SIEM.

The SIEM can be used whenever we direct our focus on the relation-
ships between objects, rather than the objects themselves. We later use
this model later in Section 6.3, where we build hypothesis tests to investi-
gate differences in edges.
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We now cover a statistical model for networks that generalizes the SBM from
Section 4.3 a little differently than the IER network from Section 4.1. We will
use the brain network from Section 2. Suppose n = 100 nodes are located in
different areas of the brain, where each node is either on the left or right side
(hemisphere). An edge exists if the two areas of the brain tend to be active
together while a person interacts with the world. In general, nodes tend to be
more active with other nodes from the same hemisphere. However, even though
the left and right sides of the brain tend to have different functions, their nodes
might still be active together, especially in the same region on both sides.

For instance, even though the motor cortex in the left hemisphere has a slightly
different function than the motor cortex in the right hemisphere, the two hemi-
spheres tend to activate concurrently. The right motor cortex provides movement
for the left side of the body, and the left motor cortex provides movement for the
right side of the body. When someone is moving around, many tasks will require
them to use both sides of the body. This pattern, known as bilateral homotopy,
also applies to many other areas in the brain. We ask: Do bilateral node pairs
have higher connectivity than non-bilateral node pairs?

To answer this question, we need statistical models that capture what we
understand about the system. Perhaps it is more likely that there will be edges
between bilaterally symmetric node-pairs. Based on what we know so far, we
could achieve this property with an IERn(P ) random network: allow every pair
of nodes in the network to have their own edge probability.

It is difficult to describe this system. On the one hand, we would like a simpler
model than ascribing probabilities to every possible network configuration of an
n-node simple network (of which there are 2(n

2), as-per Remark 4.1.3). On the
other hand, this model still has

(
n
2

)
parameters (the entries of the probability

matrix P ), one for each edge in the network, and this cannot be simplified fur-
ther. This is dissimilar from the preceding models in this Chapter, where we
used objects like block matrices and latent position matrices to summarize P
more succinctly. This is, in a sense, still equivalent to the coin flipping problem
from Remark 4.1.3: to learn about a probability pij , we have only one edge aij .
Learning about pij from a single edge aij is as impossible as trying to learn about
the probability that a coin lands on heads from the outcome of a single coin toss.

In many cases, our data may only provide one network. Borrowing from pre-
vious techniques, we can “simplify” the network by using groupings of the edges,
much like we did with the nodes of the network for SBMs.

4.8.1 The Structured Independent Edge Model

The Structured Independent Edge Model (SIEM) is parameterized by a Cluster-
Assignment Matrix and a probability vector.
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The Cluster-Assignment Matrix
The n × n cluster assignment matrix Z assigns potential edges in the random
network to clusters.

The n × n adjacency matrix A for a random network has entries aij . The
cluster assignment matrix takes each of these n2 random variables, and uses a
parameter zij to indicate which of K possible clusters this edge is part of. In the
brain example, for instance, we could take zij = 1 when the nodes i and j are
bilateral pairs, and zij = 2 when the nodes i and j are not bilateral pairs. For
simple networks, we’ll also add the restriction that zij = zji for all node pairs
i and j. Since the networks are loopless, it doesn’t matter what we do for the
diagonal entries. We will typically arbitrarily set them to their own cluster 0 or
NA.

The Probability vector
The second parameter for the SIEM is a probability vector, ~p. If there are K
edge clusters in the SIEM, then ~p is a length-K vector. Each entry pl indicates
the probablity of an edge in the lth cluster existing in the network. For example,
p1 indicates the probability of an edge in the first edge cluster, p2 indicates the
probability of an edge in the second edge cluster, and so on. In the brain example,
for instance, p1 would represent the probability of an edge between a pair of nodes
that represent the same brain area in opposite hemispheres (bilateral pairs), and
p2 would represent the probability of an edge between a pair of nodes that are
not bilateral pairs.

4.8.2 Conceptualizing the SIEM

The random network has Bernoulli(pzij ) adjacency matrix entries aij , where
zij is the cluster assignment for edge (i, j), and pzij is the edge probability in
cluster zij . Therefore, the entries aij in the random network depend on both the
probability vector ~p, and the clusters of each edge, given by zij . The entries in A

are otherwise independent from each other. If A has n nodes, the cluster assign-
ment matrix Z, and the probability vector ~p, we say that A is an SIEMn(Z, ~p)

random network.

4.8.2.1 How do we simulate samples from an SIEMn(Z, ~p) random
network?
The procedure in Algorithm 12 will generate an observation from an SIEMn(Z, ~p)

random network A.
In our brain example, let the first fifty nodes be the areas in the left hemisphere

of the brain, and let the second fifty nodes be the areas of the right hemisphere
of the brain. The nodes will be sequentially ordered, so that the first node of the
left is a bilateral pair with the first node on the right, and so on for all 50 pairs
of nodes. Further, it is much easier to encode NA as 0, so we fill the diagonal
with 0s. These entries won’t matter for the sample that we generate, since the
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Algorithm 12: Simulating a sample from an SIEMn(Z, ~p) random net-
work
Data: n the number of nodes

Z a matrix which assigns one of K edge clusters to each of the n2

edges
~p a K-dimensional probability vector for each edge cluster

Result: The adjacency matrix of a sample from the random network.
1 For each of the K clusters, obtain K total weighted coins, where the kth

coin lands on heads with probability pk and tails with probability 1− pk.
2 for i in 1:n do
3 for j > i do
4 Flip the zij coin, and if it lands on heads, the corresponding entry

in the adjacency matrix aij is 1. If it lands on tails, the
coresponding entry in the adjacency matrix aij is 0.

5 Let aji = aij .
6 end
7 end
8 return A

networks will be loopless (and therefore, the diagonals ignored). We can generate
a cluster assignment matrix like this:

import numpy as np

n = 100

Z = np.ones((n, n))

for i in range(0, int(n / 2)):

Z[int(i + n / 2), i] = 3

Z[i, int(i + n / 2)] = 3

Z[0:50, 0:50] = Z[50:100, 50:100] = 2

np.fill_diagonal(Z, 0)

We also visualize the cluster assignment matrix Z along with the hemisphere
of each brain node:

from graphbook_code import heatmap

labels = np.repeat(["L", "R"], repeats=n/2)

heatmap(Z.astype(int), title="Cluster assignment matrix",

inner_hier_labels=labels)

Figure 4.8.1(A) shows Z. Nodes in opposite hemispheres are in general assigned
to cluster 1, and nodes that are in the same hemisphere to cluster 2. The white
band across the diagonal corresponds to the self-loop edges, which are set to 0

arbitrarily.
In the super- and sub-diagonal entries, we see additional bands. These bands
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consist of the bilateral pairs of nodes; that is, pairs where the left hemisphere node
and the right hemisphere node are in the same functional areas in each brain
hemisphere. These edges are assigned to cluster 3. This pattern will manifest
as an “offset” band, where the “offset” amount is simply the number of nodes
between area u in the left hemisphere and area u in the right hemisphere (which,
in this case, is 50).

The remaining off-diagonal entries are not bilateral pairs of nodes. These en-
tries are assigned to cluster 1.

We will arbitrarily say that there is a 0.1 probability that an edge adjoining
two non-bilateral pairs of nodes that are not in the same hemisphere (edge cluster
1) is connected, a 0.3 probability that an edge adjoining two nodes in the same
hemisphere (edge cluster 2) is connected, and a 0.8 probability that an edge
adjoining two bilateral pairs of nodes (cluster 3) is connected. The probability
vector is shown in Figure 4.8.1(B). Then, we sample a network:

from graphbook_code import siem, plot_vector

p = np.array([0.1, 0.3, 0.8])

A = siem(n, p, Z)

plot_vector(p, title="probability vector", vmin=0, vmax=1, annot=True)

heatmap(A.astype(int), title="$SIEM_n(Z, \\vec p)$ sample",

inner_hier_labels=labels)

Figure 4.8.1(C) shows the resulting adjacency matrix. Notice that the adja-
cency matrix reflects the same banding pattern as the cluster assignment matrix.

Figure 4.8.1 (A) the cluster assignment matrix Z, (B) the probability vector ~p, and
(C) a sample of an adjacency matrix from an SIEMn(Z, ~p) random network.
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Exercise 4.8.1 Relationship between SIEMs and IERs

Explain why an SIEMn(Z, ~p) random network with
(
n
2

)
edge clusters is

stochastically equivalent to any IERn(P ) random network. Use this and sim-
ilar logic to Concept 4.3.8 to deduce why we focus on SIEMn(Z, ~p) random
networks with fewer than

(
n
2

)
edge clusters.

4.8.3 What is the relationship between SIEMs and SBMs?

In the preceding sections, we spent a lot of effort determining which networks
generalize other networks. We can also do this for the SIEMn(Z, ~p) random
networks.

Every simple SBMn(~z,B) random network with K < n communities can
be represented as a simple SIEMn(Z, ~p) random network with L <

(
n
2

)
edge

clusters. For each pair of communities k and k′, we define a unique edge cluster
l corresponding to the (k, k′) community pairing. Next, for each pair of nodes i
and j, we check which communities they are part of, and then define zij to be
the edge cluster that corresponds to that pair of communities.

Finally, for the probability vector, we just take pl for a given edge cluster l to
be the entry of B corresponding to the communities mapped to edge cluster l.
For instance, if communities k and k′ mapped to edge cluster l, we take pl = bkk′ .
The resulting SIEMn(Z, ~p) random network has the same probability matrix as
the SBMn(~z,B) random network, so all SBMs with K < n have a stochastically
equivalent SIEM with L <

(
n
2

)
.

The reverse is not true; consider, for instance, the smile face from Section 4.1
and Figure 4.1.1. We could have equivalently described this network by assigning
the high probability edges to cluster 1 (the dark portions), and the eyes, mouth,
and head outline to cluster 2, with the corresponding probability vector suitably
chosen. The face example cannot be represented using an SBMn(~z,B) random
network with a number of communities K < n.

For this reason, the SIEM random networks with L <
(
n
2

)
edge clusters gen-

eralize the SBM random networks with K < n communities, but the reverse is
not true. In later sections such as Section 6.3, we will develop statistical tools
for SIEM random networks. Since the SBM random networks are contained in
the SIEM random networks, these techniques will generalize to the SBM random
networks. The SIEM will let us find differences between pairs of groups of edges,
rather than just looking for differences between pairs of groups of nodes, since
there can be complicated arrangements of edges which are not easily captured
with the SBM.
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4.9 Multiple Network Models

Up to this point, we have exclusively studied single-network models. How-
ever, we are often in situations where we don’t have just one network, but
many. In this section, we explore two models for these situations: the Joint
Random Dot Product Graph (JRDPG), and the Common Subspace Inde-
pendent Edge (COSIE) models. JRDPG is used in simple cases where we
believe the collection of networks shares the same underlying structure, and
we want to find a single latent space representation for all the networks.
COSIE is used when the networks share a common structure, but there are
network-specific variations.

We cover:

1 Joint Random Dot Product Graphs (JRDPG),
2 The Common Subspace Independent Edge (COSIE) Model,
3 Correlated Network Models,
4 Simulating samples from multiple network models, and
5 Applications and use cases for multiple network models.

In Section 5.5 and Chapter 9, we will use these models to build network
representations and explore their applications.

Imagine that we have a company with 100 total employees. 50 of these employ-
ees are network machine learning experts (ML), 25 are company administrative
executives (AD), and 25 are marketing experts (MA). We study the social media
habits of the employees on Facebook, Instagram, and Linkedin. For a given social
networking site, an edge is said to exist between a pair of employees if they are
connected on the social media site (by being friends, following one another, or
being connected, respectively). Individuals tend to most closely associate with
the colleagues whom they work most closely: network machine learning experts
are more connected with network machine learning experts, marketing experts
are more connected with marketing experts, and so on and so forth. We will see
below that all of the networks appear to have the same community organization,
though on Linkedin, we see that the administrative executives tend to be a little
more connected than the other team members. This is reflected in the fact that
there are more connections between admin members on Linkedin and other team
members.

We will use a homophilic stochastic block model from Section 4.5 for the
Facebook and Instagram networks, and a homophilic degree-corrected stochastic
block model (with slightly fewer connections for non-admin team members, θ =

1, and slightly more, θ =
√

2, for admin team members) for the Linkedin network.
We will borrow the dcsbm function from Section 4.7, and the LabelEncoder from
sklearn to encode our labels:
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from graspologic.simulations import sbm

import numpy as np

from graphbook_code import dcsbm

from sklearn.preprocessing import LabelEncoder

# Create block probability matrix B

K = 3

B = np.full(shape=(K, K), fill_value=0.15)

np.fill_diagonal(B, 0.4)

# degree-correct the different groups for linkedin

ml, admin, marketing = nks = [50, 25, 25]

theta = np.ones((np.sum(nks), 1))

theta[(ml):(ml + admin), :] = np.sqrt(2)

# our dcsbm function only works with communities encoded 1,2,...,K

# so we’ll use a LabelEncoder to map labels to natural numbers

labels = np.repeat(["ML", "AD", "MA"], nks)

le = LabelEncoder().fit(labels)

z = le.transform(labels) + 1

# sample the random networks

A_facebook = sbm(n=nks, p=B)

A_insta = sbm(n=nks, p=B)

A_linkedin, P_linkedin = dcsbm(z, theta, B, return_prob=True)

Figure 4.9.1 illustrates heatmaps from each of the three networks. While the
Facebook and Instagram networks do not look particularly different, the Linkedin
network appears to show that administrative members tend to have higher num-
bers of connections with other members.

Figure 4.9.1 (A) Facebook social network. (B) Instagram social network. (C)
Linkedin social network. Notice that on Linkedin, the administrators tend to have
more edges.

As usual, the random network has an adjacency matrix denoted by A, and has
network samples A. When we have multiple networks, we will need to be able to
index them individually. For this reason, this section will use the convention that
a random network’s adjacency matrix is denoted by A(m), where m defines an
index in our collection. The capital letter M defines the total number of random
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networks in the collection. In this case, M denotes a scalar number, rather than
the usual matrix for capital letter notation.

Because we have connection networks for 3 sites, M is 3. When we use the
letter m itself, we refer to an arbitrary random network among the collection
of random networks, where m is between 1 and M . When we have M total
networks, we will write down the entire collection of random networks using
the notation

{
A(1), ...,A(M)

}
. With what we already know, we could describe a

random network A(m) with a single network model. For instance, if we thought
that each social network could be represented by a different RDPG, we could
have a different latent position matrix X(m) to define each of the 3 networks.

This setup, however, would neglect to describe the common structure shared
by the three networks. In our example, for instance, each random network uses
the same block matrix, despite the fact that the Linkedin network used a degree-
correction factor for the administrative team.

However, since we used a unique latent position matrix X(m) for each random
network A(m), we have inherently ignored shared common structure. If we were
to perform a task downstream, such as identifying which employees are in which
community, we would have to analyze each latent position matrix individually.

In this section we will build ideas from the Random Dot Product Graph
(RDPG) and its close variations. This is because the RDPGn(X) random net-
works can be used to describe all positive semidefinite IERn(P ) networks. Using
the RDPG gives us inherently flexible multiple random network models. One of
our new models will use a “generalized” RDPG, which will allow us to generalize
to arbitrary IERn(P ) networks [12; 13].

4.9.1 The Joint Random Dot Product Graphs (JRDPG) Model

The Facebook and Instagram connections look qualitatively similar in our social
network example. They seem to exhibit similar connectivity patterns between
the different employee working groups, and we might even think that the two
underlying random networks generating these two social networks are identical.
In statistical science, we use the term homogeneity to describe a collection of M
random networks with the same underlying random process. Let’s put what this
means into context using coin flips. If a pair of coins are homogeneous, then the
probability that they land on heads is identical. The intuition we gain viewing
edges as coinflips extends directly to collections of random networks.

4.9.1.1 Homogeneous and heterogeneous collections of random
networks
A homogeneous collection of independent-edge random networks

{
A(1), ...,A(M)

}
has the same probability matrix P for each of the M random networks. Conse-
quently, these random networks all have the same distribution. The probability
matrix is the fundamental unit which can be used to describe independent-edge
random networks, as we learned in Section 4.1. A heterogeneous collection of
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independent-edge random networks
{
A(1), ...,A(M)

}
has differing probability

matrices for at least one of theM random networks; hence, they do not have the
same distribution.

As we saw in Algorithm 8, the probability matrix P for an SBMn(~z,B)

random network is a function of ~z and B. Therefore, the probability matri-
ces P (facebook) and P (insta) for the Facebook and Instagram random networks
A(facebook) and A(insta) are identical, because they share the same community
assignment vector ~z and block matrix B.

4.9.1.2 Conceptualizing the JRDPGn,M (X) model
The JRDPG is the simplest way to extend the RDPG random network model
to multiple random networks. For each of our M total random networks, the
edges depend on a single latent position matrix X. We say that a collection
of random networks

{
A(1), ...,A(M)

}
with n nodes is JRDPGn,M (X) if each

random network A(m) is RDPGn(X) and if the M networks are independent.
The joint random dot product graph model is formally described by [2], and is
related to the omnibus embedding [14], which we will learn about in Section 5.5.

4.9.1.3 The JRDPG model does not allow heterogeneity
Under the JRDPG model, each of the M random networks share the same la-
tent position matrix. For an RDPG, the probability matrix P = XX>. So
for all of the M networks, P (m) = XX> under the JRDPG model. hence,
P (1) = P (2) = ... = P (M), and all of the probability matrices are identical.
This means that the M random networks are a homogeneous collection of ran-
dom networks. Consequently, the JRDPG can be thought of as M homogeneous
and independent RDPGs.

From Section 4.3.6, we learned how to construct probability matrices from
homophilic block matrices. Let’s try this for the SBMs for Instagram and Face-
book:

from graphbook_code import generate_sbm_pmtx, heatmap

# we already returned P_linkedin for the linkedin

# probability matrix from dcsbm() function

P_facebook_insta = generate_sbm_pmtx(z, B)

# when plotting for comparison purposes, make sure you are

# using the same scale from 0 to 1

heatmap(P_facebook_insta, vmin=0, vmax=1)

heatmap(P_linkedin, vmin=0, vmax=1)

heatmap(P_linkedin - P_facebook_insta, vmin=0, vmax=1)

Figure 4.9.2 illustrates heatmaps of the probability matrices. Because the prob-
ability matrices for Facebook and Instagram in 4.9.2(B) are exactly identical
(they are both functions of the same block matrix B), the collection of random
networks

{
A(facebook),A(insta)

}
are homogeneous. We could model this pair of

networks using the JRDPG due to their homogeneity and the fact that the
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Figure 4.9.2 (A) the probability matrix for the random networks underlying linkedin,
(B) the probability matrix for the random networks underlying Instagram and
facebook, A(1) and A(2), and (C) the difference between the probability matrices for
linkedin and Instagram/facebook.

underlying block matrices are homophilic (and hence, have a PSD matrix and
probability matrix).

On the other hand, A(facebook) an A(insta) do not have the same probability
matrix as A(linkedin), as shown in Figure 4.9.2(C). This means that the collec-
tions of random networks

{
A(facebook),A(linkedin)

}
,
{
A(insta),A(linkedin)

}
, and{

A(facebook),A(insta),A(linkedin)
}
are heterogeneous, because their probability

matrices are different.
So, unfortunately, the JRDPG cannot handle the heterogeneity between the

random networks of Facebook and Instagram with the random network for
Linkedin. To avoid this restrictive homogeneity property of the JRDPG, we turn
to a variation of the IERn(P ) random network.

4.9.2 Common Subspace Independent Edge (COSIE) Model

We want a multiple-network model which allows us to convey some shared struc-
ture, but which also lets us convey unique structure within different networks.
In this Section we describe the COSIE model, defined by a collection of score
matrices and a shared low-rank subspace. In Section 5.5.3, we will learn about
Multiple Adjacency Spectral Embedding (MASE), a technique which uses the
COSIE model to conceptualize multiple network representations.

In our social network example, the employees on the administrative team had
far more connections than usual among one another on Linkedin. Figure 4.9.2
shows that the independent-edge random networks A(facebook) and A(linkedin)

underlying the social networks A(facebook) and A(linkedin) are also different: The
probability matrices P (facebook) and P (linkedin), and hence the generative model
itself, are different.

Because of these extra connections in the Linkedin network, we have het-
erogeneity (by way of the degree-correction factors for Linkedin). This is de-
spite the fact that there was shared structure (the block matrices underlying the
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DCSBMn(~z, ~θ,B) random network for Linkedin and the SBMn(~z,B) random
networks for Facebook/Instagram were the same).

Even though P (facebook) and P (linkedin) are not identical, we can see they still
share some structure: the employee teams are the same between the two social
networks, and much of the probability matrix is unchanged. COSIE allows us
to model this using a shared latent position matrix to describe the similarities,
and unique score matrices to describe the differences, for each of the random
networks.

4.9.2.1 The Shared Latent Position Matrix
The shared latent position matrix S for the COSIE model is quite similar to the
latent position matrix X for an RDPG. As in an RDPG, S is a matrix with n
rows (one for each node) and d columns. The columns of S behave similarly to
the columns of X, and d is referred to as the latent dimensionality of the COSIE
random networks. Each row of the shared latent position matrix ~si denotes the
shared latent position vector for node i.

We will add an additional restriction to S: it must have orthonormal columns.
This means that for each column of S, the dot product of the column with itself
is 1, and the dot product of the column with any other column is 0; the geometric
interpretation is that the column-vectors are all at right angles to each other.
This has the implication that S>S = I, the identity matrix. This gives a sense
of uniform scale for all of the columns (scale 1) of the latent position matrix.

The shared latent position matrix conveys the common structure between
the COSIE random networks, and will be a parameter for each of the neworks.
With the JRDPG model, we were able to express the homogeneity of the social
networks on Facebook and Instagram, but not the heterogeneity of the social net-
work on Linkedin. The shared latent position matrix S conveys the commonality
among the three social networks.

Unfortunately, obtaining shared latent positions analytically is difficult. We
will use the probability matrices P (m) combined with MASE, the technique we
mentioned earlier described in Section 5.5 to obtain them:

from graspologic.embed import MultipleASE as mase

from graphbook_code import lpm_heatmap

embedder = mase(n_components=3, svd_seed=0)

# obtain shared latent positions

S = embedder.fit_transform([P_facebook_insta, P_facebook_insta, P_linkedin])

lpm_heatmap(S)

Figure 4.9.3(A) shows the shared latent position matrix S. This matrix is
arranged as in the figures in Section 4.4 on the RDPGn(X) random network,
and can be interpreted similarly: the rows indicate nodes (employees), and the
columns indicate latent dimensions. Each row ~si of S indicates the latent position
of a given node i.
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One thing immediately jumps out: the latent positions are the same for all
employees across a given community assignment (their role in the company).
This makes sense given what we learned in Section 4.7.8 about nodes in the
same community having the same latent position up to a rescaling.

The Facebook and Instagram networks are just SBMn(~z,B) random net-
works with a homophilic block matrix, so the latent positions should be identical
across all nodes from a given community. For the Linkedin network, the degree-
correction factors are identical within each community, so it also makes sense that
the latent positions should be identical across all nodes from a given community
there, too.

In our example, the homophilic (and hence, positive semidefinite) block matrix
B itself is identical across all of the networks. This means that for each network,
using the results from Section 4.5.9, a node i in community 1 would have the
latent position:

~x
(facebook)>
i = ~x

(insta)>
i =

[
1 0 0

]√
B

for both Facebook and Instagram. For Linkedin, the latent position would be:

~x
(linkedin)>
i = θi

[
1 0 0

]√
B

In particular, ~x(linkedin)i is equivalent to ~x(facebook)i and ~x(insta)i , up to the rescal-
ing by θi (the degree-correction factor). If we repeat this for all of the commu-
nities, we would see that the shared latent positions for the Linkedin network
should just be a rescaling of the shared latent positions from the Facebook and
Instagram networks.

We see from the shared latent position matrix that the COSIE model can
capture what we already know: there is a strong degree of homogeneity across
the different networks; the latent positions are identical (up to a rescaling), and
we can represent them with the same shared latent position matrix.

4.9.2.2 Score Matrices
The shared latent position matrix for COSIE describes similarities; the score
matrices describe differences.

The score matrices tell us how to assemble the shared latent position matrix
to obtain a unique probability matrix for each network. The score matrix R(m)

for a random network m has d columns and d rows. Therefore, it is a square
matrix whose number of dimensions is equal to the latent dimensionality of the
shared latent position matrix.

The probability matrix for each network under the COSIE model is:

P (m) = SR(m)S>

Where, again, S is the shared latent position matrix. We can understand this
equation by focusing on the first term SR(m). This uses the scores to express
which latent position vectors in the shared latent position matrix are more or
less important in the probability matrix P (m). In this sense, the score matrix
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Figure 4.9.3 (A) the shared latent position matrix across all of the networks. (B)
score matrix for the Facebook random network, (C) score matrix for the Instagram
random network, and (D) score matrix for the Linkedin random network.

tells us which combinations of latent positions determine the unique features of
heterogeneous probability matrices.

In the social network example, we want the score matrices to indicate that
Facebook and Instagram share a probability matrix, but Facebook and Linkedin
do not. Consequently, we would expect that the score matrices from Facebook
and Instagram should be the same, but the score matrix for Linkedin will be
different. We can obtain these with the MASE object in graspologic:

import matplotlib.pyplot as plt

R_facebook = embedder.scores_[0]

R_insta = embedder.scores_[1]

R_linkedin = embedder.scores_[2]

# and plot them

smin = np.min(embedder.scores_)

smax = np.max(embedder.scores_)

fig, axs = plt.subplots(1, 3, figsize=(20, 7))

heatmap(R_facebook, vmin=smin, vmax=smax, ax=axs[0], annot=True, title="facebook score

matrix")

heatmap(R_insta, vmin=smin, vmax=smax, ax=axs[1], annot=True, title="Instagram score

matrix")

heatmap(R_linkedin, vmin=smin, vmax=smax, ax=axs[2], annot=True, title="LinkedIn score

matrix")

Figure 4.9.3 shows the score matrices. The score matrices for Facebook and
Instagram are identical, but the score matrix for Linkedin is distinct.

4.9.2.3 Conceptualizing the COSIE model
In the COSIE model, for each random network, the probability matrix P ((m)

depends on the shared latent position matrix S and the score matrix R(m). The
probability matrix P (m) for the mth random network is defined so that P (m) =

SR(m)S>. This means that each entry p(m)
ij = ~s>i R

(m)~sj . We say that a collection
of random networks

{
A(1), ...,A(M)

}
with n nodes is COSIEn,M

(
S,R(1), ..., R(M)

)
if each random network A(m) is IERn(P (m)) and the networks are otherwise in-
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dependent. Each of the M random networks share the same orthonormal latent
position matrix S, but a unique score matrix R(m). This allows the random net-
works to share some underlying structure (which is conveyed by S) but with a
unique combination of this shared structure (conveyed by R(m)).

Since the probability matrix P (m) = SR(m)S>, two random networks with the
same score matrix will be homogeneous (identically distributed), and two ran-
dom networks with different score matrices will be heterogeneous (not identically
distributed). In this way, we are able to capture the homogeneity between the
random networks for Facebook and Instagram connections, while also captur-
ing the heterogeneity between the random networks for Facebook and Linkedin
connections. The COSIE model is described by [13].

Exercise 4.9.1 Demonstrating properties of shared latent position
matrices and score matrices

Demonstrate that you are able to recover the true probability matrices us-
ing the shared latent position matrices S and the score matrices R_facebook,
R_insta, and R_linkedin.
Show that the true probability matrices P_facebook_insta and P_linkedin

are identical to the probability matrices that you obtain using the shared
latent positions and the score matrices by using np.allclose(), like we did in
Section 4.5.8.

Connections with the GRDPG
The initial formulation of the COSIE model in [13] describes generalized random
dot product graphs. These are equivalent to a broad class of models called IER
networks, which we will introduce briefly in Section 5.7.3).

4.9.3 Correlated Network Models

In this section we explore correlated network models. Let’s say that we have a
group of people in a city, and we know that each person in our group has both
a Facebook and a Instagram account. The nodes in the networks are the people
who possess both social media accounts. The first network consists of Facebook
connections, where an edge exists between two people if they are friends on
Facebook. The second network consists of Instagram connections, where an edge
exists between two people if they follow one another on Instagram. If two people
are friends on Facebook, then there is a good chance that they follow one another
on Instagram, and vice versa. How do we reflect this similarity through a multiple
network model?

Network correlation between a pair of networks describes the property that
the existence of edges in one network gives information about edges in the other
network, as in this Facebook/Instagram example. We will focus on ρ-correlated
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network models. Given two random networks with the same number of nodes,
each edge has a correlation of ρ between the two networks. A pair of random
networks A(1) and A(2) are called ρ-correlated if for all pairs of indices i and
j, corr(a(1)

ij ,a
(2)
ij ) = ρ, where corr(x,y) is the Pearson correlation between two

random variables x and y. Otherwise, the edges are independent between the
two networks. In our example, this is how we will model whether two people are
friends on Facebook is correlated with whether they are following one another
on Instagram.

Concept 4.9.2 The Pearson Correlation

The Pearson correlation between two random variables x and y is defined as
the covariance of the two variables divided by the product of their standard
deviations, given by:

corr(x,y) =
cov(x,y)

σxσy

where cov(x,y) is the covariance between x and y, and σx and σy are their
standard deviations. The symbol for correlation is typically “rho” (greek let-
ter ρ). Since the correlation ρ is the same for all edges in the network in
the formulations we are discussing, these models are typically referred to as
the ρ-correlated network models. More complicated models may have more
complicated correlation structures.

The Pearson correlation (defined in Concept 4.9.2) describes whether one vari-
able being large or small gives information that the other variable is large or
small. The correlation is positive and closer to 1 if one variable being large gives
information that the other variable might also be large, it is close to −1 if one
variable being large gives information that the might be small, and it is close to
0 if seeing the value of one variable does not provide much information about the
the other. Applying this to networks, we see that if the two networks are posi-
tively correlated and we know that one of the edges a

(1)
ij has a value of one, then

we have information that a
(2)
ij might also be one. Vice-versa for taking values of

zero. If the two networks are negatively correlated and we know that one of the
edges a

(1)
ij has a value of one, then we have information that a

(2)
ij might be zero,

and vice-versa. If the two networks are not correlated (ρ = 0) we do not learn
anything about edges of the second network by looking at edges from the first.

ρ-Correlated RDPG
The ρ-correlated RDPG is a relatively straightforward correlated network model,
and is described by [15] and [16]. Since ER, SBM, and DCSBM random net-
works are special cases of the RDPG (as long as the block matrix is positive
semidefinite), the ρ-correlated RDPG can be used to define a ρ-correlated ER,
ρ-correlated SBMs, and ρ-correlated DCSBMs. For the normal RDPG, a latent



Statistical Models of Random Networks 195

position matrix X with n rows and a latent dimensionality of d is used to define
the edge-existence probabilities for the networks A(1) and A(2). The difference
with the ρ-correlated RDPG is that the probabilities in A(2) now depend on the
outcome of observing an instance of A(1).

Let’s take a coin-flip example. We begin by defining A(1) as an RDPGn(X)

random network. We define the second network A(2) as follows. We use a coin
for each edge (i, j), which has a probability that depends on the value that the
corresponding edge in A(1) takes. If the edge a

(1)
ij takes the value of one, then we

use a coin which has a probability of ~x>i ~xj + ρ(1− ~x>i ~xj) of landing on heads. If
the edge a

(1)
ij takes the value of zero, then we use a coin which has a probability of

(1− ρ)~x>i ~xj of landing on heads. We flip this coin, and if it lands on heads, then
the edge a

(2)
ij takes the value of one. If it lands on tails, then the edge a

(2)
ij takes

the value of zero. If A(1) and A(2) are ρ-correlated RDPGs with latent position
matrix X and n nodes each, we say that the pair

{
A(1),A(2)

}
are ρRDPGn(X).

How do we simulate samples of ρRDPGn(X) random networks?
The procedure in Algorithm 13 will produce a pair of networks A(1) and A(2)

where the underlying random networks A(1) and A(2) are ρRDPGn(X).
Fortunately, graspologic makes sampling ρ-correlated RDPGs relatively sim-

ple. Let’s use the Instagram/Facebook example from this section, and assert
that the networks are not only identical in probability, but that they are also
correlated.

Saying that the two networks are positively correlated is the same as saying
that if we knew that a pair of people were friends on Facebook, then they would
be more likely to be following one another on Instagram. We will start by gen-
erating latent position matrices for the Instagram/Facebook example using code
from Section 4.5.8:

from graphbook_code import lpm_from_sbm

X_facebook_insta = lpm_from_sbm(z, B)

Let’s see what happens when the underlying correlation is ρ = 0.7. To sum-
marize the differences between the two networks, we’ll count the total number
of edges that differ between the two networks, the absolute difference matrix:

from graspologic.simulations import rdpg_corr

# generate the network samples

rho = 0.7

facebook_correlated_network, insta_correlated_network = rdpg_corr(

X_facebook_insta, Y=None, r=rho

)

# the difference matrix

correlated_difference_matrix = np.abs(

facebook_correlated_network - insta_correlated_network

)
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Algorithm 13: Simulating a paired sample of ρRDPG(X) random net-
works
Data: n a number of nodes

X a latent position matrix with n rows and d columns
ρ a correlation between the two networks that is between −1 and 1

Result: A pair of random networks which are ρ-correlated.
1 Simulate a sample A(1) which is a sample of an RDPGn(X) random

network, using Algorithm 9.
2 for i in 1:n do
3 for j > i do
4 if a(1)ij = 1 then
5 Obtain a coin which has a probability of landing on heads of

~x>i ~xj + ρ(1− ~x>i ~xj).
6 end
7 else
8 Obtain a coin which has a probability of landing on heads of

(1− ρ)~x>i ~xj .
9 end

10 Flip the coin, and if it lands on heads, the corresponding entry
a
(2)
ij in the adjacency matrix is 1. If the coin lands on tails, the

corresponding entry a(2)ij is 0.
11 Set a(2)ji = a

(2)
ij .

12 end
13 end
14 return A(1) and A(2)

# the total number of differences

correlated_differences = correlated_difference_matrix.sum()

Figure 4.9.4(A), (B), and (C) show heatmaps of the two networks, along with
their difference matrix.

We also show the case where the underlying correlation is much lower, such
as ρ′ = 0.0 (the networks are uncorrelated).

rho_nil = 0.0

facebook_uncorrelated_network, insta_uncorrelated_network = rdpg_corr(

X_facebook_insta, Y=None, r=rho_nil

)

# the difference matrix

uncorrelated_difference_matrix = np.abs(

facebook_uncorrelated_network - insta_uncorrelated_network

)

# the total number of differences

uncorrelated_differences = uncorrelated_difference_matrix.sum()
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Figure 4.9.4 (A) the Facebook network. (B) the Instagram network. (C) the edges
which differ between the two networks.

Figure 4.9.5 (A) the Facebook network. (B) the Instagram network. (C) the edges
which differ between the two networks. Note that there are far more edges that differ
than in Figure 4.9.4.

A heatmap of the two networks is shown in Figure 4.9.5(A) and Figure (B),
along with the difference matrix in Figure 4.9.5(C). In both 4.9.4 and 4.9.5, the
Facebook and Instagram networks have identical latent position matrices, and
the latent position matrices are the same for both scenarios. However, when
the networks are correlated, the edges tend to be more similar between the two
networks. When the networks are uncorrelated, the edges tend to differ more
between the two networks.



198 Statistical Models of Random Networks

Exercise 4.9.3 Negative ρ-correlated RDPGs

If we generated another simulation where the networks were anti-correlated,
we could arbitrarily increase the magnitude of this difference. Try the simula-
tion again with ρ having a negative value, and describe what you see. Repeat
it a few times, setting ρ as low as −1, and describe your result.
Next, do the simulation again with ρ = 1.0. What do you notice?

4.10 Models with Covariates

We often have additional information for networks besides node or edge
attributes. For example, a network might be labeled into a category. In
this section, we explore network models that incorporate these network
attributes.

We cover:

1 Definition and motivation for models with covariates,
2 The Signal Subnetwork Model,
3 Simulating samples from models with covariates,
4 Relationship between covariate models and other network models, and
5 Applications and use cases for models with covariates.

In Section 8.3 and Section 8.2, we will use these ideas to develop predic-
tion models classifying networks into different classes.

Say we have a collection of networks representing the brains of M = 200

individuals 500, 000 years into the future. These individuals are all either humans
who have persisted with life-as-normal on earth (earthlings), or astronauts who
left for a planet with a different set of prominent colors and light content from
Earth.

Let’s define the network attributes, which in this case are network labels. For
each individual m, a covariate yi indicates whether the individual is an earthling
(1) or an astronaut (2). ym is a categorical variable: we have two categories 1

and 2, and we chose people to be 1 and astronauts to be 2. The total number of
categories, or classes, Y is 2. In the special case when categorical variables take
one of two levels, we call them binary or dichotomous variables (two possible
values).

Let’s define the nodes in our astronaut example. Each brain network has 5

nodes, representing the sensory functions and modalities of the brain: the area
responsible for sight (SI), the area responsible for language (L), the area respon-
sible for hearing/emotional expression (H/E), the area responsible for thinking/-
movement (T/M), and the area responsible for basic survival functions such as
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heartbeat and breathing (BS). Edges represent whether pairs of brain areas can
pass information to one another. There were evolutionary pressures on the astro-
nauts towards people whose eyes could better adapt to the different set of colors
and light on the new planet, so the vision node is expected to relate to the other
nodes differently.

Let’s say that we have observed pairs of data
(
A(m), ym

)
, for m from 1 to

M = 200. Each adjacency matrix A(m) is a 5 × 5 matrix, and the covariate ym
takes the value 1 if the mth individual is an earthling, and 2 if the mth individual
is an astronaut. We want to predict the class for each individual (earthling or
astronaut) using only their adjacency matrix A(m). We can see two example
networks for the earthlings and the astronauts below:

import numpy as np

from graspologic.simulations import sample_edges

nodenames = [

"SI", "L", "H/E",

"T/M", "BS"

]

# generate probability matrices

n = 5 # the number of nodes

P_earthling = 0.3*np.ones((n, n))

signal_subnetwork = np.zeros((n, n), dtype=bool)

signal_subnetwork[1:n, 0] = True

signal_subnetwork[0, 1:n] = True

P_astronaut = np.copy(P_earthling)

P_astronaut[signal_subnetwork] = np.tile(np.linspace(0.4, 0.9, num=4), 2)

# sample two networks

A_earthling = sample_edges(P_earthling)

A_astronaut = sample_edges(P_astronaut)

Figure 4.10.1 compares the two adjacency matrices. By design, the edges in
the first column and the first row, responsible for “sight”, are different. However,
there are so few nodes that it would be impossible to make meaningful claims if
we didn’t know this in advance. Is there some way that we could “pool” across
many networks, and gain insight by thinking about properties shared by all of
the networks from a single class (astronaut vs. earthling)?

To devise a statistical model, we view each piece of data in our sample as
an observation of a corresponding random variable. When we were dealing with
multiple network models in Section 4.9, this meant that for each network A(m)

there was a random network A(m), and that this random network was the under-
lying process generating A(m). Now, for each data pair

(
A(m), ym

)
, there exists

a corresponding random network A(m) and a corresponding random covariate
ym, where

(
A(m), ym

)
is a sample of the random tuple

(
A(m),ym

)
. So, for our

multiple network model with covariates, we seek to describe both A(m) and ym.
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Figure 4.10.1 (A) a brain network of an earthling. (B) a brain network of an
astronaut.

4.10.1 Signal Subnetwork Model

The astronauts are remarkably similar to the earthlings, except for the connec-
tions related to vision. In other words, the subnetwork comprised only of edges
incident the vision lobe carry the signal disparity between human and astronaut
brains. We explored the concept of a subnetwork in Section 3.5.

If we were to just compare the adjacency matrices themselves, we would end
up looking at a lot of extraneous information: edges that do not show any dif-
ference between the humans and the astronauts. In a fixed sample of earthlings
and astronauts, we might find disparities between these extraneous edges, but
these disparities are just because of the particular sample of humans and as-
tronauts that we chose and are not representative of actual differences. Instead,
we want to identify the subset of edges and corresponding nodes, called the sig-
nal subnetwork, which actually carry the signal, the set of edges which show
real differences between the earthlings and the astronauts. Below, we plot the
probability matrices for earthlings and astronauts:

# plot probability matrices and their differences on the same scale

heatmap(P_earthling, vmin=0, vmax=1)

heatmap(P_astronaut, vmin=0, vmax=1)

heatmap(np.abs(P_astronaut - P_earthling), vmin=0, vmax=1)

Figure 4.10.2 explores these results in more detail. Notice that the entirety of
the disparity between earthlings and astronauts (in terms of their probability
matrices) shown in Figure 4.10.3(C) is captured by the edges which include a
node involved in eyesight. We can observe this because only the first row and
column of the matrix (corresponding to the node for sight, SI) is different between
the two networks for all other pairs of nodes.

We explore this signal using the signal subnetwork (SSN) model, which models
adjacency matrices where we have per-network attributes. To decide whether a
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Figure 4.10.2 (A) the probability matrix for brain networks of earthlings. (B) the
probability matrix for brain networks of astronauts. (C) the difference between the
probability matrices for astronauts and humans. Notice that the the area responsible
for sight, SI, has very different connection probabilities with all other brain areas.

network is from an earthling or an astronaut, we will look only at the signal
subnetwork, and ignore the rest of the network entirely.

The core idea in the SSN model is that for each edge in the network, the
probability of an edge existing (or not existing) depends on the class. There is a
set of edges for which the class changes the probability, and another set of edges
for which the class has no impact. For an edge (i, j) for classes y (in our case,
either 0 or 1), we will use the notation p(y)ij to denote the probability of an edge
existing in class y.

The signal subnetwork [17] is a collection of edges S, with elements (i, j) where
i and j are nodes in the network between 1 and n, such that the following two
conditions hold:

1 For each edge in the signal subnetwork, class membership changes edge prob-
ability. That is, if an edge (i, j) is in the signal subnetwork S, then there exist
two classes y and y′ where p(y)ij 6= p

(y′)
ij .

2 For each edge which is not in the signal subnetwork, class does not affect edge
probability. That is, if an edge (i, j) is not in the signal subnetwork S, then
p
(y)
ij = p

(y′)
ij . For this reason, if an edge is not in the signal subnetwork, we will

use the notation pij = p
(0)
ij = p

(1)
ij = ... = p

(Y−1)
ij , where Y is the number of

classes.

The signal subnetwork tracks the edges which have different probabilities for
any pair of classes. For our earthlings versus astronauts example, this is the set
of edges for which at least one node is in the visual region of the brain:

# plot the signal subnetwork

ax = heatmap(signal_subnetwork)

Figure 4.10.3(B) shows a plot of the signal subnetwork. It is compared to
the difference between the probability matrices for earthlings and astronauts
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Figure 4.10.3 (A) the difference between the earthling and astronaut probability
matrices. (B) the signal subnetwork.

in Figure 4.10.3(A). The signal subnetwork includes all edges in which the two
probability matrices are different.

We can now formally define the signal subnetwork model. For each random
tuple (A(m),ym), we first obtain a “class assignment” die with Y total sides. For
a given face of the dice y, the probability that the dice lands on side Y is πy.
We flip the class assignment die, and if it lands on side y, then ym takes the
value y. Next, for each edge (i, j) which is not in the signal subnetwork S, we
obtain a “non-signal” coin which has a probability of pij of landing on heads and
1 − pij of landing on tails. The edge aij exists if the coin lands on heads and
does not exist if the coin lands on tails. Finally, for every edge (i, j) which is in
S, we check which class ym indicates. If ym is class y, we obtain a “signal” coin
which has a probability of p(y)ij of landing on heads, and a probability of 1− p(y)ij
of landing on tails. The edge aij exists if the coin lands on heads and does not
exist if the coin lands on tails.

In summary, we will say that a collection of random network/covariate pairs{
(A(1),y1), ..., (A(M),yM )

}
with n nodes is SSNn,M (~π, P (1), ..., P (Y ),S) if the

following three conditions hold:

1 For every edge (i, j) which is in the signal subnetwork S, there exists at least
two classes y and y′ where p(y)ij 6= p

(y′)
ij .

2 For all edges (i, j) not in the signal subnetwork S, edge probabilities are the
same: pij = p

(1)
ij = ... = p

(Y )
ij .

3 conditional on the class ym being y, then A(m) is IERn(P (y)), where IERn(P (y))

is from Section 4.1.

Simulating samples of SSN random networks
Algorithm 14 generates a set of networks

{
A(1), ..., A(M)

}
and covariates ~y where

the underlying random networks
{
A(1), ...,A(M)

}
and covariates ~y are SSNn,M (~π, P (1), ..., P (Y ),S)

random networks.
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Algorithm 14: Simulating samples from an
SSNn,M (~π, P (0), ..., P (Y−1),S) random network
Data: n a number of nodes

M the total number of networks
π1, ..., πY the probability of a network being from a given class
P (1), ..., P (Y ) the probability matrix associated with each class
S the signal subnetwork

Result: A collection of M networks with n nodes.
1 Obtain a dice with Y sides numbered from 1 to Y , that has a πy chance

of landing on the y side.
2 for m in 1:M do
3 Flip the Y -sided die, and if it lands on side y, assign the item m to

class y. Call this class ym.
4 Simulate an adjacency matrix A(m), using the procedure for an

IERn(P (y)) network, in Algorithm 5.
5 end
6 return

{
(A(1), y1), ..., (A(M), yM )

}

We can implement this programmatically as follows, where we sampleM = 200

network/covariate pairs:

# sample the classes of each sample

M = 200 # the number of training and testing samples

pi_astronaut = 0.45

pi_earthling = 0.55

np.random.seed(0)

yvec = np.random.choice(2, p=[pi_earthling, pi_astronaut], size=M)

# sample network realizations given the class of each sample

Ps = [P_earthling, P_astronaut]

As = np.stack([sample_edges(Ps[y]) for y in yvec], axis=2)
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4.11 The Big Picture of Random Network Models

At this point, we have studied many random network models. In this section,
we take a birds-eye view to summarize our major conclusions.

We cover the following:

1 Key parameters, edge probabilities, and node degree characteristics for
each model,

2 Relationships between different models, including generalizations and
special cases,

3 The role of positive semidefiniteness in connecting block models to Ran-
dom Dot Product Graphs, and

4 A hierarchical framework for understanding the connections between dif-
ferent network models.

We will use these statistical models both explicitly and implicitly for the
remainder of the book.

4.11.1 Parameters and intuition

Here, we provide brief snippets about each random network model, and some
basic intuition about how to think about them. To refresh us, the parameters
of a random network are the descriptors that are necessary to fully specify the
unique aspects of one random network under a given model. The edge probabil-
ities delineate the probability of an edge existing/not existing between a given
pair of nodes. The expected node degree is the expected number of edges for a
given node, and may or may not depend on other features of that node (such
as its community assignment, or its degree-correction factor). We will assume
that each network has n nodes. If a network has community structure, we will
use K to denote the number of communities. If the network has latent struc-
ture, we will use d to denote the latent dimensionality. if a network has edge
clusters, K will instead be used to denote the number of edge clusters. If there
are multiple networks, M will denote the number of networks. The collection of
random networks that can be described with the indicated parameters is known
as the random network model ; e.g., the Erdös-Renyi random network model is
the collection of random networks that can be described with a single probability
p.

Further, these random network models describe independent-edge random net-
works; that is, the existence or non-existence of an edge does not provide infor-
mation about the existence or non-existence of another edge in the network
(beyond what is conveyed by the parameters of each network). We will assume
that all of the network models described below are for simple networks; that is,



Statistical Models of Random Networks 205

the networks are unweighted (edges either exist or do not exist), undirected (all
edges are bi-directional; i.e., an edge from i to j implies an edge from j to i),
and loopless (nodes cannot have edges to themselves).

Erdös-Renyi Random Networks (ERs)
• Parameters: p the edge probability
• Edge probabilities: E[aij ] = pij = p

• Expected node degrees: All nodes have identical expected node degrees. E[di] =

(n− 1)p

• Calculating the probability matrix: P = p1n×n, where 1n×n is an n×n matrix
of ones
• Specification: A is ERn(p)

• Intuition: The existence/non-existence of edges in the network is random with
the same probability.

Stochastic Block Model (SBMs)
• Parameters: ~z the length-n community assignment vector assigning each node

to one of K communities, and B the K ×K block probability matrix
• Edge probabilities: E[aij ] = pij = bzizj

• Expected node degrees: All nodes in the same community have the same ex-
pected node degree.

E[di; zi = k] =
∑
l 6=k

nlblk + (nk − 1)bkk

• Calculating the probability matrix: P = CBC>, where C is the n×K one-hot
encoding of the community assignment vector
• Specification: A is SBMn(~z,B)

• Intuition: The existence/non-existence of edges depends on the community a
node is assigned to.

Random Dot Product Graphs (RDPGs)
• Parameters: X the n× d latent position matrix
• Edge probabilities: E[aij ] = pij = ~x>i ~xj

• Expected node degrees: E[di] =
∑n
j 6=i ~x

>
i ~xj

• Calculating the probability matrix: P = XX>

• Specification: A is RDPGn(X)

• Intuition: The existence/non-existence of edges depends on the latent positions
of the incident nodes.
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Degree-Corrected Stochastic Block Model (DCSBMs)
• Parameters: ~z the length-n community assignment vector assigning each node

to one of K communities, ~θ the length-n degree-correction vector, and B the
K ×K block probability matrix
• Edge probabilities: E[aij ] = pij = θiθjbzizj
• Expected node degrees: The degree-correction factor “scales” the expected de-

gree of a given node compared to other nodes in the same community.

E[di; zi = k] = θi

∑
l 6=k

nlblk ∑
j:zj=l

θj

+ (nk − 1)bkk
∑

j:zj=k,j 6=i

θj


• Calculating the probability matrix: P = ΘCB(ΘC)>, where C is the n ×K

one-hot encoding of the community assignment vector, and Θ is the diagonal
matrix whose entries are the degree-correction factors

• Specification: A is DCSBMn(~z, ~θ,B)

• Intuition: The existence/non-existence of edges depends on the community a
node is assigned to, where the degree-correction factors θi or θj up- or down-
weight the edge-existence probabilities.

Independent-edge Erdös-Renyi (IER)
• Parameters: P , an n× n probability matrix
• Edge probabilities: E[aij ] = pij

• Expected node degrees: E[di] =
∑
j 6=i pij

• Calculating the probability matrix: the probability matrix is a parameter, and
is just P .

• Specification: A is IERn(P )

• Intuition: The existence/non-existence of edges is unstructured, other than
the structure implied by the constraints of the network (independent-edge,
unweighted, undirected, loopless).

Further technical details regarding single network models are provided in Ap-
pendix A.

Structured Independent-Edge Model (SIEM)
• Parameters: Z an n× n cluster assignment matrix for each edge to one of K

edge clusters, and ~p a length-K probability vector for each of the K edge-
clusters

• Edge probabilities: E[aij ] = pzij
• Node degrees: E[di] =

∑
j 6=i pzij

• Specification: A is SIEMn(Z, ~p)

• Intuition: The existence/non-existence of edges depends on the cluster a given
edge is assigned to.
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Joint Random Dot Product Graphs (JRDPG)
• Parameters: X the latent position matrix
• Viewed as individual random networks (marginally), each of A(m) areRDPGn(X)

• Viewed as a collection of random networks, A(m) are independent
• Specification:

{
A(1), . . . ,A(1)

}
are JRDPGn,M (X)

• Intuition: The collection of random networks
{
A(1), . . . ,A(1)

}
are independent

RDPGn(X) random networks with homogeneous structure (the probability
matrices are all the same).

COmmon Subspace Independent-Edge Model (COSIE)
• Parameters: V the n × d shared latent position matrix, and R(m) the d × d

score matrix for each of the M networks
• Viewed as individual random networks (marginally), each of A(m) are IERn

(
P (m)

)
,

where P (m) = V R(m)V >

• Viewed as a collection of random networks, A(m) are independent
• Specification:

{
A(1), . . . ,A(1)

}
are COSIEn,M

(
V,
{
R(1), . . . , R(m)

})
• Intuition: The collection of random networks

{
A(1), . . . ,A(1)

}
are independent

IERn
(
V R(m)V >

)
. The shared latent positions V convey shared structure

across the networks, and the (potentially unique) score matrices R(m) delineate
how to combine the shared latent positions for each network. This network
model captures homogeneity across the networks through the shared latent
positions and heterogeneity across the networks through the potentially unique
score matrices.

Correlated Random Dot Product Graphs (ρRDPG)
• Parameters: ρ the correlation between the two networks, and X a latent posi-

tion matrix
• Viewed as individual random networks (marginally), each of A(m) areRDPGn(X)

• Viewed as a pair of random networks (jointly), with A(1) an RDPGn(X)

random network, the edge-probabilities for A(2) are:

E
[
a
(2)
ij

]
=

{
~x>i ~xj + ρ(1− ~x>i ~xj), a

(1)
ij = 1

(1− ρ)~x>i ~xj , a
(1)
ij = 0

• Edge correlations: corr
(
a
(1)
ij ,a

(2)
ij

)
= ρ

• Specification: A is SIEMn(Z, ~p)

• Intuition: The two RDPGn(X) random networks A(1) and A(2) have edges
which are correlated by ρ; i.e., ρ conveys that edges existing in one network
provide information about edges existing in the other network (ρ is positive),
edges existing in one network are uninformative about the edges of the other
network (ρ is near 0), or edges existing in one network provide information
about edges not existing in the other network (ρ is negative).
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Signal Subnetwork Model (SSN)
• Parameters: ~π the length-Y class assignment vector whose elements πu delin-

eate the probabilities of a network being in class y, a set of n× n probability
matrices P (y) for all Y classes of networks, S the signal subnetwork which is
a collection of edges
• Edge probabilities: If an edge (i, j) ∈ S, then for at least two classes y and y′,
p
(y)
ij 6= p

(y′)
ij . If an edge (i, j) 6∈ S, for all classes, p(1)ij = . . . = p

(Y )
ij .

• Specification:
{

(A(1), y1), . . . ,A(1), y1)
}
are SSNn,M

(
~π,
{
P (0), . . . , P (Y )

}
,S
)

• Intuition: The “signal subnetwork” delineates the edges which carry the “sig-
nal”; i.e., the edges which differ across the two classes. Aside from the signal
subnetwork edges, the remainder of the edges are identical across the networks.

4.11.2 Positive semidefiniteness and relating block models to RDPGs

As we learned in Section 4.5, positive semidefiniteness (PSD) is useful in that
all positive semidefinite networks can be thought of as RDPGs. Particularly
for block models (stochastic block models and degree-corrected stochastic block
models), positive semidefiniteness of the block matrix means that the block ma-
trix can be easily factorized by its square-root matrix:

B =
√
B
√
B
>
.

When the block matrix of a block model is PSD, we can find an equivalent
RDPG. Stated another way, we could calculate a latent position matrix, where
an RDPG with that latent position matrix has the same probability matrix as
the original block model.

Latent positions for SBMs
When A is SBMn(~z,B) where B is PSD, a latent position matrix can be cal-
culated as X = C

√
B, which will have n rows and K latent dimensions (one for

each community). The latent position for a given node is ~xi =
√
B
>
~ci, where ~ci

is the one-hot encoding of the community zi for the node i. Consequently, for all
nodes with the same community assignment, the latent positions are the same.
For nodes with different community assignments, the latent positions may differ.

Latent positions for DCSBMs
When A is DCSBMn(~z, ~θ,B) where B is PSD, a latent position matrix can
be calculated as X = ΘC

√
B, which will have n rows and K latent dimensions

(one for each community). The latent position for a given node is ~xi = θi
√
B
>
~ci,

where ~ci is the one-hot encoding of the community zi for the node i. Conse-
quently, for all nodes with the same community assignment, the latent positions
are the same, up to a rescaling by the degree-correction factor θi. In this sense,
the degree-correction factor for a PSD DCSBM “stretches” the latent position as-
sociated with that community. For nodes with different community assignments,
the latent positions may differ.
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4.11.3 Stochastic equivalence and a hierarchy of random network models

In Section 4.2.4, we introduced the idea of stochastic equivalence. Two random
networks were stochastically equivalent if they had the same probability matrix.
We used this idea to introduce the concept of “generalizations” of families of
random network models; that is, one random network model (the “generalizing”
model) generalizes the other (the “contained” model) if, for every random net-
work in the contained model, we can identify a stochastically equivalent random
network in the generalizing model.

Figure 4.11.1 summarizes these relationships. In this Figure, there is a single
circle for each random network model described above. When one circle (the
contained model) is contained in the other (the generalizing model), the indicated
random network model is contained in the generalizing random network model.

Figure 4.11.1 The hierarchy of random network models for single networks.

1 ERs are generalized by every other single network model.
2 SBMs with K < n (each node is not assigned to its own unique community)
are contained by DCSBMs, and SBMs with K < n and PSD block matrices
are contained by RDPGs.

3 DCSBMs with K < n generalize SBMs, because they add an additional op-
tional parameter (the degree-correction factors). SBMs and DCSBMs with
indefinite block matrices are not RDPGs.

4 RDPGs generalize random networks with PSD probability matrices, such as
ERs, and block models with PSD block matrices.

5 IER networks are the most general network models, and are equivalent to block
models which allow non-informative communities (i.e., each node assigned to
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its own community). These are also equivalent to the generalized RDPG, or
GRDPG, which we will briefly describe in Section 5.7.3 and in Appendix A.7.

It is useful to approach network modelling with this hierarchy of random net-
works in mind, due to the result of Concept 4.4.1: when we develop a technique
for one random network model, the technique will apply “for free” to any ran-
dom network model contained within it. In particular, when we develop tools for
RDPGs, the techniques and intuition also apply to PSD SBMs and DCSBMs,
since these are contained in the RDPGs.
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5 Learning Network Representations

In Chapter 3, we explored ways to describe and summarize observed networks.
Chapter 4 introduced statistical models for random networks that could generate
such observations. This chapter builds on these foundations to use our statistical
models for learning useful representations, also called embeddings, of networks
(the second to last step in Figure 5.0.1).

As we discussed in Section 1.3, networks are often not naturally suited to many
traditional machine learning algorithms, which expect data in tabular form. Net-
work embeddings address this challenge by transforming network data into vec-
tor representations that capture key structural properties. There are a variety
of ways we can create these representations, one of which are called spectral
embedding methods.

This chapter covers the following topics:

1 Section 5.1 introduces maximum likelihood estimation for simple network mod-
els.

2 Section 5.2 motivates the need for network embeddings and contrasts networks
with tabular data.

3 Section 5.3 presents adjacency spectral embedding (ASE) for learning latent
position representations.

4 Section 5.4 covers Laplacian spectral embedding as an alternative to ASE.

5 Section 5.5 explores techniques for embedding multiple networks simultane-
ously.

6 Section 5.6 discusses joint representation learning incorporating node attributes.

7 Section 5.7 addresses estimating the appropriate latent dimension for embed-
dings.

Understanding the statistical models from Chapter 4 provides valuable con-
text for this Chapter. Moreover, they provide theoretical foundations for many of
the applications we will examine in Chapter 7 and beyond. As readers progress
through this Chapter, we encourage them to regularly revisit the relevant statis-
tical models in Chapter 4 when learning each new representation technique.
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Figure 5.0.1 The statistical learning pipeline. In this chapter, we will choose suitable
representations for networks.

5.1 Maximum likelihood estimation

In Chapter 4, we introduced the concept of a random network, and began
thinking of an observed network as a sample from its random network.
Random network models are defined by their parameters. For example,
an SBMn(~z,B) is defined by the parameters ~z and B. However, when we
observe networks in the real world, we do not have direct access to these
parameters, and we must estimate them. This section explores methods
for estimating parameters using a method common in statistical inference
called Maximum Likelihood Estimation (MLE).

We cover the following:

1 The basics of MLE
2 MLE for the Erdös-Rényi , estimating the edge probability parameter
3 MLE for the Stochastic Block Model, estimating the block probability

matrix

MLE is often used both explicitly and implicitly to build representations
from observations of random variables, and works well when we have a
firm understanding of the underlying behavior of our network. It is not
particularly effective in more general cases, so the remainder of the Chapter
will focus on alternative strategies. Appendix B.1 provides more detailed
mathematical derivations of MLE for network models.

Suppose we encounter a real-world network and wish to understand it better.
We assume that this network is an observation of a random network characterized
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by certain parameters, but we do not know the parameters in advance. How do
we estimate them?

We can often use Maximum Likelihood Estimation (MLE). The basics of MLE
are discussed in Concept 5.1.1.

Concept 5.1.1 The basics of MLE

In MLE, the objective is to find the parameter values that maximize the
likelihood of the observed network under a given network model. This lets us
use the data we have to estimate the parameters that generated it.
Mathematically, let L(θ;A) denote the likelihood function, where θ represents
the parameters of the model and A is the observed network. The MLE of θ
is given by:

θ̂MLE = argmax
θ
L(θ;A)

In practice, the negative natural logarithm of the likelihood function is often
used to simplify calculations, because the logarithm has a property known as
monotonicity, meaning that if x > y, then log(x) > log(y). Therefore, if x
is the maximizer of a function, then x is also the minimizer of the negative
logarithm of that function. So, by minimizing the negative log likelihood, we
maximize the likelihood.

In this section, we will explore the MLE for our two most common graph
models, the Erdös-Rényi (ER) random network and the Stochastic Block Model.
It is worth noting that both models, under the positive semidefinite assumption,
can also be thought of as Random Dot Product Graphs. We will take advantage
of this fact in Section 5.3.

5.1.1 Erdös-Rényi (ER)

Recall from Section 4.2 that the Erdös-Rényi (ER) random network has a single
parameter: the probability of any edge existing, p.

Let’s explore how we can use MLE to estimate p. Imagine we have a coin, but
we don’t know the probability of it landing on heads. However, we are allowed
to flip it 100 times and then guess the probability of it landing on heads. After
100 flips, say it landed on heads 45 times. We flip again. What is our best guess
for the probability that the coin will on heads?

If you thought it might be 45
100 , or the number of heads we got divided by

the total number of coin flips, you would be right. This guess is the maximum
likelihood estimate for a binary random variable.

The same principle applies to the ER random network. The best estimate of
the probability of an edge existing in an ER random network is the ratio of the
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total number of edges in the simple network, m =
∑
j>i aij , divided by the total

number of edges possible in the network, which is
(
n
2

)
.

Our result is:

p̂ =
m(
n
2

) .
The ĥat symbol means that p̂ is an estimate: it is a function of the observed

data that we use to describe the estimand, which is the parameter of the model
that we want to learn about. In this case, since we are considering an ERn(p)

model, our estimand is p.
Let’s look at an example. We will use a sample of an ER random network,

with 50 nodes and an edge probability of 0.3, similar to the example in Section
4.2. We begin by simulating and visualizing the appropriate network:

from graspologic.simulations import er_np

import numpy as np

p = 0.3

A = er_np(n=50, p=p)

Next, we fit the EREstimator from graspologic, and compare the true proba-
bility p = 0.3 to the estimated probability p̂:

from graspologic.models import EREstimator

model = EREstimator(directed=False, loops=False)

model.fit(A)

# obtain the estimate from the fit model

phat = model.p_

We can see how good the estimator performs by comparing it to the (true)
population parameter, p:

print("Difference between phat and p: {:.3f}".format(phat - p))

The estimate of the probability should end up close to the true value.

5.1.2 Stochastic Block Model

In Section 4.3, we said that the SBM, like the ER, is characterized by a proba-
bility parameter; in this case, a block probability matrix B. The entries in B, bkl,
denote the probabilities of edges existing between pairs of communities. When
the other parameter for the SBM, the community assignment vector ~z, is known,
we can use similar strategies for learning about B.

As before, we will use the notation mkl to denote the total number of edges
between nodes in community k and nodes in community l, while nkl represents
the total possible number of edges between these communities. When we apply
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the Maximum Likelihood Estimation (MLE) method to this model, we estimate
bkl by dividing mkl by nkl.

b̂kl =
mkl

nkl
.

To bring this back to our coin flip example, this is like saying that there is one
coin (k, l) for each pair of communities in our network. We flip each coin once
for every possible edge between those pairs of communities, nkl. When that coin
lands on heads, that edge exists, and when it lands on tails, that edge does not
exist. Our best guess is just to count the number of heads we obtained, mkl, and
divide by the number of coin flips we made, nkl.

In our Section 4.3 example, we had 100 students, each of whom were in one
of two schools (school 1 and school 2). If the students were both in school 1,
the probability that they were friends was 0.6, and if the students were both in
school 2, the probability that they were friends was 0.4. If the students attended
different schools, the probability that they were friends was 0.1. This gave us a
block matrix of:

B =

[
.6 .1

.1 .4

]
Using this setup, we will simulate an appropriate SBM:

from graspologic.simulations import sbm

n = [50, 50]

B = np.array([[0.6, 0.1],

[0.1, 0.4]])

A, z = sbm(n=n, p=B, return_labels=True)

A network sample is shown in Figure 4.3.1.
Next, we fit an appropriate SBM, and investigate the estimate of B:

from graspologic.models import SBMEstimator

from graphbook_code import heatmap

model = SBMEstimator(directed=False, loops=False)

model.fit(A, y=z)

Bhat = model.block_p_

# plot the block matrix vs estimate

heatmap(B, title="$B$ true block matrix", vmin=0, vmax=1, annot=True)

heatmap(Bhat, title=r"$\hat B$ estimate of block matrix", vmin=0, vmax=1, annot=True)

heatmap(np.abs(Bhat - B), title=r"$|\hat B - B|$", vmin=0, vmax=1, annot=True)

The difference between B and B̂ is shown in Figure 5.1.1, and will tend to be
quite small.

In this section, we have learned about estimating parameters for two types of
simple networks. First, we have the ERn(p) random network. Here, edges are
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Figure 5.1.1 (A) the true block matrix underlying a random network. (B) the
estimated block matrix from the network sample. (C) the difference between the
estimated and true block matrices.

largely unstructured. Second, we have the SBMn(~z,B) network. For this, the
network structure is predetermined by known community assignments and we
only need to understand B.

For both types of random networks, we can accurately estimate the under-
lying probability parameters of these models using methods like MLE. These
approaches allow us to make well-informed guesses about the likelihood of differ-
ent types of connections within these networks. Appendix B.1 provides technical
details for MLE in ER and SBM random networks.
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5.2 Why do we embed networks?

We have been mentioning that a major topic of study in network machine
learning is representation learning, which in our case often deals with em-
bedding networks into modalities that we can understand as feature repre-
sentations. We call these feature representations tabular data and the way
we get to it an embedding method.

As we discussed in Section 1.1.1, tabular data is structured with rows
representing observations and columns denoting features. This format sim-
plifies the application of numerous ML algorithms such as neural networks,
decision trees, or tasks such as classification, regression, and clustering. In
this Section, we explore the motivation behind representation learning. We
cover the following topics:

1 The challenges of applying traditional machine learning algorithms to
network data,

2 The concept of statistical dependence in network structures,
3 The need for transforming network data into tabular formats, and
4 How embeddings address the complex dependencies inherent in networks.

After giving proper motivation, we will dive into our first representation
learning method, Adjacency Spectral Embedding, in Section 5.3.

A common underlying assumption in machine learning is that each obser-
vation (row) is independent of others, reducing complex interdependences and
correlations to simpler, feature-based relationships. However, in network data,
this independence assumption crumbles. Each node is explicitly connected to
others, resulting in a web of dependencies.

Network embeddings are a way of transforming network data into more di-
gestible form for traditional ML algorithms. By projecting network data into a
vector space (creating a “feature representation” for each node), we retain crucial
information about node relationships while also structuring the data in a way
that respects the expectations of these algorithms.

There is also a rich bidirectional relationship between networks and tabular
data. Just as we can get from networks to tabular data, we can get from tabular
data to networks. For instance, we can think of each row in our data matrix
as a vector in Euclidean space. We can define its edge weight with other rows
via some similarity or distance metric for that space, such as a Gaussian kernel,
the Euclidean distance, or the cosine distance, and create a network accordingly.
This method underlies numerous dimensionality reduction techniques, such as
the diffusion map. Another strategy might be to find the nearest neighbors of the
row vector, and construct a network using those neighbors. This idea underlies
other techniques such as isomap.
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Case Study 5.2.1 Lobster dataset

To better understand the concepts of this section, we will try to understand
a lobster dataset [1]. Note that this dataset is not network-valued. In this
dataset, n = 2560 lobsters were collected by a team of university investigators
in Norway. The data is encoded in a tabular format, where each row indicates
the observation of a single lobster. For each lobster, the investigators measured
the lobster’s biological sex, the crusher claw width (CW), and the total length
(TL) of the lobster. These attributes (or features) are encoded in the columns.
Our question of interest is whether we can predict the crusher claw width using
the lobster’s biological sex and total length.

The key with this example is less the specific techniques that are applied, and
more the big picture of the implications of these problems on network data.

5.2.1 Statistical dependence

To visualize whether we expect to find a relationship between the attributes
measured in the lobster dataset, we use a scatter plot, shown in Figure 5.2.1.
Each point represents the biological sex, claw width CW, and total length TL of
a single lobster. There is clearly a positive association, where longer lobsters tend
to have larger crusher claws. Further, it would appear that male lobsters tend to
have a more dramatic increase in crusher claw width as total length increases.

In other words, this graph indicates a dependence between crusher claw width,
lobster total length, and biological sex. Larger lobsters tend to have greater claw
widths, and as males grow, their claw widths tend to grow faster than female
claws.

It looks like we could fit a line between the total length and the crusher claw
width for each lobster biological sex, and get a pretty good description of the
relationship between the three features. A first-pass strategy would be to use a
linear regression. In this case, based purely on the information we have gathered
from visualizing the data, an appropriate model would regress the crusher claw
width onto the lobster biological sex and total length, and allow for the biological
sex to modify the relationship between total length and crusher claw width.

Figure 5.2.1(B) shows the results of this regression model. It appears that a
relatively straightforward linear regression model does a good job of capturing
what we intuitively derive from visualizing the data in Figure 5.2.1(A). We were
able to explicitly describe a dependence that we expected, model it, and then
capture it by fitting a regression model we believed to be appropriate.

It is almost never this easy to study a dependence, but it is often at least
possible to do using an appropriate method. The key is that the traditional
approach to dealing with dependencies when they arise in machine learning is to
model them directly (like we did above) or indirectly (using latent models, for
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Figure 5.2.1 (A) a scatter plot of lobster total length against crusher claw width,
separated by biological sex (shape). (B) a linear regression of the crusher claw width
onto total length and biological sex, with an interaction term for biological sex and
total length.

example, which we did not describe here, but which are discussed in [2]). When
we have underlying dependencies in the data and want to account for them, our
approach is to explicitly describe or isolate the dependence whenever possible.
Further, if we are uncertain about dependencies in the model, we can often at
least attempt to infer them implicitly.

5.2.2 How can we adapt our tabular models to networks?

This example, while trivial, gives us a good sense of some of the problems we
will run into when we try to analyze network data.

The machine learning techniques and intuitions we build are usually designed
for tabular data formats. Networks are not tabular at all; an observed network
is a matrix and not a vector, and a node is defined within the adjacency matrix
by its set of connections with other nodes. It is unclear at first glance how to
adapt a network for the tabular setting.

The solution to this problem is a network embedding, which is first and fore-
most a tool. Embedding is the “bridge” which provides functionality to convert
to tabular data. Embedding a network and then visualizing that embedding is
also often the simplest way to quickly explore a network.

All networks have the same type of statistical dependence which arose in the
lobster data, but on a much larger scale. When studying a dataset with two
features there is one possible dependence that can arise: the first feature can
be related to the second feature. When studying a dataset with three features
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like the lobster data, there are three possible pairwise dependencies that can
arise: the first feature being related to the second, the second related to the
third, or the first being related to the third. The number of possible pairwise
dependencies with d features is d(d−1)

2 . When d is small, this is manageable with
explicit modelling (like we did above for the lobsters). Even when d is fairly
large, most dependencies are typically negligible.

Unfortunately, dependencies in networks are explicitly non-negligible. The
nodes and edges that make up the adjacency matrix have inherent dependencies:
each edge depends on a pair of nodes, so our network has at least

(
n
2

)
depen-

dencies to consider when determining how to learn from it. Stated another way,
nodes could be related to one another explicitly (by a specific grouping, such
as a community assignment) or implicitly (by the nodes having similarities de-
pending on different aspects of them that are not immediately apparent at first
glance), and these relationships convey dependencies between the edges or sub-
networks of the network itself. When n is 50, a small sized network,

(
n
2

)
= 1225,

which means that with just 50 nodes, we would have over a thousand possible
dependencies.

Explicitly delineating the dependence structure
Sometimes, we can take the easy way out with network data, like we might do
with tabular data: we can simply ignore a lot of the dependencies that might
exist. If we think that the nodes of our network are totally unrelated, we can
learn from it by using strategies appropriate for ER random networks (Section
4.2). Remember that the ER random network made the assumption that all
pairs of nodes have an equal connection probability that does not depend on any
aspect of the individual nodes themselves (the edges are entirely independent).

If we are given some sort of a grouping between the nodes, such as a community
assignment vector, we can learn from the network using strategies appropriate for
SBM random network models (Section 4.3) and their cousins. Remember than
the SBM random network models make the assumption that, once we know the
community assignment ~z of a node, the edge probability is simply the appropriate
entry of the block matrix. The SBMmakes the crucial assumption that other than
the community assignments and the block probabilities, edges are independent.
These approaches make excellent first-passes, and can be combined with other
techniques we will see arise in Part III.

If we cannot explicitly delineate dependencies, what are we left with?
We usually cannot immediately ignore dependence structures in networks. We
might have a network where we do not know a good grouping of the nodes
ahead of time, or we might want to learn appropriate groupings of nodes directly
from the data. There might be dependencies that go beyond just a grouping of
the nodes, or grouping nodes together might be entirely inappropriate. There
are a variety of ways in which prescriptive applications of SBMs with known
community assignment vectors and ERs are not entirely appropriate.
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In the next few sections, we will start to learn embedding techniques to address
these more complicated situations.
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5.3 Adjacency spectral embedding

Section 4.4 introduced the Random Dot Product Graph (RDPG), a statisti-
cal model which parametrizes some positive semidefinite probability matrix
P as the product of a latent position matrixX and its transpose: P = XX>.
In this section, we learn how to estimate X from some adjacency matrix A
using a technique called Adjacency Spectral Embedding (ase).

We cover the following:

1 The mathematical foundations of ase, including eigendecomposition and
singular value decomposition,

2 The process of embedding adjacency matrices into latent positions,
3 Limitations of ase for adjacency matrices and the transition to singular

value decomposition,
4 Interpretation of ase results and their relationship to underlying network

structure, and
5 The concept of non-identifiability in network embeddings.

Intuition about positive semidefiniteness from Section 4.5 will be critical
for the embedding approach that we learn in this chapter. We will heavily
use both the eigendecomposition and the singular value decomposition. For
a refresher on eigendecomposition, see [3]. For singular value decomposi-
tion, read lectures 4 and 5 in [4]. One key result that we will use repeatedly
throughout this section concerns matrix multiplications with diagonal ma-
trices. Readers should work through Exercise 5.3.1 as a check for linear
algebra background.

Imagine that we have a probability matrix P for a positive semidefinite, simple,
independent-edge random network. Section 4.5 showed that any PSD real matrix
has a real square-root matrix. Since the network is simple, it is undirected, and
so P is symmetric.

If we let X =
√
P be the square-root matrix for P , so that P = XX>, P is

the probability matrix corresponding to an RDPGn(X) random network. For
our purposes, we will assume that the network has n nodes, and X has a latent
dimensionality of d which is less than the number of nodes. This implies that
the rank of X is at most d (the rank of the matrix, the number of linearly
independent columns, cannot exceed the number of columns).

5.3.1 Uses of the eigendecomposition for positive semidefinite probability matrices

These facts provide us with useful information about the eigendecomposition of
P . Specifically, we can factorize P into its eigenvalues and eigenvectors (called
the eigendecomposition of P , another example of a matrix decomposition from
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Exercise 5.3.1 Matrix multiplications with diagonal matrices

Suppose the A is a n×m matrix, D is a m×m square diagonal matrix, and B
is a n×m matrix. Denote the columns of A and B by ~ai and ~bi, respectively,
and the diagonal elements of D by di; that is:

A =

> >
~ai . . . ~am
⊥ ⊥

 , D =

d1 . . .
dm

 , B =

> >
~bi . . . ~bm
⊥ ⊥


Show that:

ADB> =

m∑
i=1

di~ai~b
>
i ,

using the rules of matrix multiplication, and expansion of the above sum.
Note that ~ai~b>i is a matrix.

Remark 4.5.1) and this provides us with latent position matrices for random
networks. Note that these results only apply with symmetric, PSD probability
matrices, where the matrix is guaranteed to decompose into a full set of eigenval-
ues and eigenvectors. Remember that the probability matrix for a network with
n nodes is square (n × n). If the network is simple, it is also symmetric (Sec-
tion 4.1). Relevant conclusions for such a probability matrix are summarized in
Concept 5.3.2.

Concept 5.3.2 The eigendecomposition of real symmetric matrices

Consider a real symmetric square matrix R. Diagonal symmetry in matrices
guarantees a full eigendecomposition. The eigendecomposition of R is:

R = QΛQ> =

n∑
i=1

λi~qi~q
>
i ,

where Λ is the diagonal matrix of the ordered (in decreasing order) eigenvalues
λi of R, and Q is an orthogonal matrix whose columns ~qi are eigenvectors of R.
Throughout this book, we notate the eigendecomposition of a matrix R with
evd(R). A matrix W is orthogonal if it is square and WW> = W>W = I,
the identity matrix.

If R is positive semidefinite and low-rank, the eigenvalues have another inter-
esting property, summarized in Concept 5.3.3.

For such a positive semidefinite and low-rank matrix R, notice that the evd is:

R = QΛQ> =

n∑
i=1

λi~qi~q
>
i
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Concept 5.3.3 The eigendecomposition of symmetric, low-rank matrices

Assume that R is an n × n real symmetric square matrix, the rank of R is
d′ < n, and R is positive semidefinite. If R = QΛQ> is an evd of R, Λ will
have d′ positive eigenvalues, and the remaining n − d′ eigenvalues will be 0.
So:

λ1 ≥ λ2 ≥ . . . ≥ λd′ > 0 = λd′+1 = . . . = λn

=

d′∑
i=1

λi~qi~q
>
i +

n∑
i=d′+1

λi~qi~q
>
i

=

d′∑
i=1

λi~qi~q
>
i ,

where we used the fact that λi = 0 for the remaining n− d′ eigenvalues. For any
d > d′:

d∑
i=d′+1

λi~qi~q
>
i =

n∑
i=d′+1

λi~qi~q
>
i = 0,

because both the left and right of the equals sign have the value of 0 (since the
eigenvalues are 0). If d ≥ d′, then combining these facts gives:

R =

d∑
i=1

λi~qi~q
>
i

=

d′∑
i=1

λi~qi~q
>
i .

This fact leads to the observation noted in Concept 5.3.4.

Concept 5.3.4 evd for positive semidefinite, low-rank matrices

Assume that R is an n × n real symmetric square matrix, the rank of R is
d′ < n, and R is positive semidefinite. Then if R = QΛQ> is a evd for R, for
any d ≥ d′:

R = QdΛdQ
>
d ,

where Qd is a matrix whose columns are the first d columns of Q, and Λd is
a d × d square matrix whose diagonal entries are the first d diagonal entries
of Λ (the first d eigenvalues of R).

Remember that the RDPGs can characterize any random network with a PSD
probability matrix, as we learned in Concept 4.5.2. If the latent position matrix
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X has d latent dimensions where d < n, then by definition, the rank of X is at
most d. Further, the rank of a matrix is equal to the rank of its transpose, so
the rank of X> is at most d as well.

The rank of the product of two matrices is also upper-bounded by the ranks
of the individual matrices. For instance, if C = AB, the rank of C is:

rank(C) ≤ min (rank(A), rank(B)) . (5.1)

In our case, since P = XX> and X and X> are rank at most d, P has a rank
of at most d.

Applying this fact in conjunction with Concept 5.3.4, we see that if the prob-
ability matrix P is positive semidefinite, has rank at most d, and is symmetric,
we obtain a characterization of latent positions of P where:

P = QdΛdQ
>
d

= (Qd
√

Λd)(Qd
√

Λd)
> = XX>, X = Qd

√
Λd (5.2)

where
√

Λd is the matrix whose entries are the square roots of the first d eigen-
values of P . Note that

√
Λd is real, because the top d eigenvalues are positive by

Concept 5.3.3, so their square root is defined.
We can put this entire procedure together using Algorithm 15, to obtain a

latent position matrix for the random network.

Algorithm 15: Finding latent positions for a low-rank, positive semidef-
inite probability matrix
Data: P an n× n positive semidefinite square probability matrix of rank

at most d.
Result: a latent position matrix for the random network.

1 Let Q,Λ = evd(P ) be the eigenvectors and eigenvalues of P .

2 Let Qd =

> >
~q1 . . . ~qd
⊥ ⊥

, and let Λd =

λ1 . . .
λd

 be the matrix

whose rows are the first d eigenvectors and the diagonal matrix whose
entries are the first d eigenvalues of P .

3 Compute
√

Λd to be the matrix whose entries are
√
λi, for all i from 1 to

d.
4 Let X = Qd

√
Λd.

5 return X

This gives us a method to compute a latent position matrix for the underlying
random network, which has n rows (the same as the number of nodes) and d

columns. We will call this process eigembed(P ).
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Limitations of eigembed for adjacency matrices
These results are helpful when we know the probability matrix ahead of time. In
fact, we even know how to determine whether the probability matrix is positive
semidefinite, using the procedure that we developed in Section 4.5, where we
simply checked whether all of the eigenvalues were non-negative.

Unfortunately, in real data, we do not have the probability matrix; all we
have is the network itself, usually in the form of an adjacency matrix. It would
be helpful if we could simply plug the adjacency matrix into Algorithm 15, and
obtain a reasonable estimate of latent positions. Unfortunately, while this matrix
is real and symmetric, it is not necessarily positive semidefinite. This means that
we cannot necessarily decompose it in the same way and obtain real estimates
of latent position matrices.

Consider, for instance, the adjacency matrix for a 2× 2 network:

A =

[
0 1

1 0

]
From Section 4.5, for a 2× 2 matrix to be positive semidefinite, its determinant
has to be non-negative: det(A) ≥ 0. However, det(A) = −1, so this matrix is not
positive semidefinite.

This means that none of the logic leading to Algorithm 15 applies to adjacency
matrices. In this simple example, for instance,

√
Λd would not even be a real

matrix (it would be a complex matrix). In practice, the implications of this
trivial example are that we cannot always use the eigendecomposition to obtain
real estimates of latent position matrices from adjacency matrices.

5.3.2 The singular value decomposition allows us to estimate latent position
matrices

There is a closely related approach, the singular value decomposition, which we
can use to estimate latent position matrices regardless of the positive semidefi-
niteness of P . Concept 5.3.5 summarizes useful results about the singular value
decomposition.

When a matrix is positive semidefinite and low-rank, such as the probability
matrix for an RDPG, we obtain a virtually equivalent result to Concept 5.3.4
(which was for the evd) for the svd. This observation is noted in Concept 5.3.6.

For such a positive semidefinite and low-rank matrix R, the svd is:

R = UΣV > =

n∑
i=1

σi~ui~v
>
i

=

d′∑
i=1

σi~ui~u
>
i +

n∑
i=d′+1

σi~ui~v
>
i ,

where we used the fact that ~ui = ~vi for the first d′ singular values. Notice further
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Concept 5.3.5 The singular value decomposition of real matrices

If R is a real n×n square matrix of rank d, then the singular value decompo-
sition is the factorization:

R = UΣV > =

n∑
i=1

σi~ui~v
>
i ,

where Σ is the diagonal matrix of the non-negative ordered singular values σi
of R, U is an orthogonal matrix whose n columns ~ui are the n-dimensional
left singular vectors of R, and V is an orthogonal matrix whose n columns ~vi
are the n-dimensional right singular vectors of R. Throughout this book, we
notate the singular value decomposition of a matrix R with svd(R).

Concept 5.3.6 svd of positive semidefinite, low-rank matrices

If R is positive semidefinite, then all left and right singular vectors ~ui = ~vi
for any σi > 0.
If R is a real matrix that is rank d′ < n and has the svd R = UΣV >, R will
have d′ positive singular values, and the remaining n− d′ singular values will
be 0. So:

σ1 ≥ σ2 ≥ . . . ≥ σd′ > 0 = σd′+1 = . . . = σn.

that σi = 0 for the the remaining n− d′ singular values, so:

R =

d′∑
i=1

σi~ui~u
>
i +

n∑
i=d′+1

0~ui~v
>
i

Because 0~ui~v
>
i = 0~ui~u

>
i = 0, this implies that:

R =

d′∑
i=1

σi~ui~u
>
i +

n∑
i=d′+1

0~ui~u
>
i ,

Therefore:

R = UΣU>,

so the svd of a positive semidefinite and low-rank matrix R is also an evd of R.
We can take this a final step further, in Concept 5.3.7.

Together, when P is positive semidefinite, symmetric, has rank at most d, and
the svd is given by P = UΣV >, we obtain a characterization of latent positions
of P using the left singular vectors and the singular values which is similar to
the result we obtained in Equation (5.2):

P = XX>, X = Ud
√

Σd (5.3)
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Concept 5.3.7 svd gives an evd for positive semidefinite, low-rank
matrices

If R is a positive semidefinite, low-rank matrix with rank d′ < n, and the svd

is given by R = UΣV >, then R = UΣU> is also an evd for R.
Therefore, by Concept 5.3.4, for any d ≥ d′:

R = UdΣdU
>
d

where Ud is the n × d matrix of the top d left singular vectors of R, and Σd
is the d× d diagonal matrix of the top d singular values of R.

Here,
√

Σd is the matrix whose entries are the square-roots of the first d singular
values of P , and Ud are the first d left singular vectors of P . However, there is a
subtle but impactful distinction to the result we obtained in Equation (5.2).

The left and right singular vector matrices U and V are by definition real
matrices for any real matrix P (no requirement of positive semidefiniteness).
Further, the singular values σi are always non-negative, which means that they
have a real square root. This means that any time we compute Ud

√
Σd using the

svd of a real matrix, we will end up with a real result.
The procedure in Algorithm 15 only produced a real matrix when the input

matrix followed strict conditions that are not necessarily satisfied by adjacency
matrices; particularly, positive semidefiniteness. However, the procedure we just
developed can be applied to any real matrix and produce a real result, summa-
rized in Algorithm 16.

Algorithm 16: Estimating latent positions from adjacency matrices
(ase)
Data: A an adjacency matrix for a simple network.

d a target latent dimensionality.
Result: an estimate of a latent position matrix.

1 Let U,Σ, V > = svd(A) be the left singular vectors, the singular values,
and the right singular vectors of A.

2 Let Ud =

> >
~u1 . . . ~ud
⊥ ⊥

, and let Σd =

σ1 . . .
σd

 be the matrix

whose rows are the first d left singular vectors and the diagonal matrix
whose entries are the first d singular values of A.

3 Compute
√

Σd to be the matrix whose entries are
√
σi, for all i from 1 to

d.
4 Let X̂ = Ud

√
Σd.

5 return X̂

This process is known as the Adjacency Spectral Embedding, or ase. It is
called “Adjacency” because unlike eigembed, it is able to operate on the adja-
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Remark 5.3.8 ase tabularizes the adjacency matrix

One of the challenges we noted in Section 1.3 and reiterated in Section 5.2
was that network learning differs fundamentally from traditional machine
learning in that the data are not tabular. However, the embedding process
has changed this: we have tabularized the network into a real estimated latent
position matrix with n rows (one for each node) and d columns (one for each
latent dimension). This provides us with a tabular data structure, which we
can build upon later on to explore the nodes using more traditional machine
learning approaches.

cency matrix. “Spectral” means that its theoretical intuition relies on the eigen-
values/eigenvectors (the spectrum) of P . “Embedding” means that it finds a
mathematical structure contained in another (in this case a tabular structure
contained within the adjacency matrix, as explained in Remark 5.3.8). While
we will not obtain the convenient equality in Equation (5.3) that the adjacency
matrix is exactly equal to X̂X̂> where X̂ = ase(A), X̂ is a real matrix that we
can study further.

Imagine we have an SBMn(~z,B) with 100 nodes, where the first 50 nodes
are in community 1, and the second 50 nodes are in community 2. The block
matrix will be homophilic, so by Section 4.5, the probability matrix is positive
semidefinite.

from graspologic.simulations import sbm

from graphbook_code import generate_sbm_pmtx, lpm_from_sbm

import numpy as np

n = 100

# construct the block matrix B as described above

B = np.array([[0.6, 0.1],

[0.1, 0.4]])

# sample a graph from SBM_{100}(tau, B)

np.random.seed(0)

A, zs = sbm(n=[n//2, n//2], p=B, return_labels=True)

X = lpm_from_sbm(zs, B)

P = generate_sbm_pmtx(zs, B)

Figure 5.3.1 plots the latent positions, the probability matrix, and the network
sample. The latent positions are all equal for nodes from the same community.
In light of the results we explored in Section 4.7.8, we should expect this for an
SBM random network with a positive semidefinite block matrix.

In the SBM we are studying above, the latent position matrix has 2 latent
dimensions (one for each community). This is no coincidence, and the reason for
this is important to understand. This insight is provided in Concept 5.3.9.

Next, we use graspologic to compute the ase of our network sample. We know
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Figure 5.3.1 (A) latent positions of the SBM random network, (B) the probability
matrix of the SBM random network, (C) a sampled adjacency matrix of the SBM
random network.

Concept 5.3.9 Number of latent dimensions for positive semidefinite
SBMs

From Concept 4.3.3, the one-hot encoding matrix C has n rows andK columns
(one for each community). For each community, all nodes have the same one-
hot encoding. That is, for all nodes i and j where zi = zj = k (nodes i and j
are in the same community), ~ci = ~cj (they have the same one-hot encoding).
Further, the one-hot encodings for each community are distinct from one
another. That is, any nodes i and j′ where zi 6= zj′ (nodes i and j′ are in
different communities), ~ci 6= ~cj′ (they have different one-hot encodings). This
means that C has K unique rows and is therefore rank K.
Further, the positive semidefinite block matrix B will be full rank in gen-
eral. With P = CBC>, we can identify an upper bound for the rank of the
probability matrix using Equation (5.1):

rank(P ) ≤ min
(
rank(C), rank(B), rank(C>)

)
.

By the above, rank(C) = K, rank(B) = K, and rank(C>) = K, since matrices
have the same rank as their transposes. Therefore, rank(P ) ≤ K.
From Equation (5.3), P = XX> where X = Ud

√
Σd, and d is ≥ the rank of

P . Therefore, for a positive semidefinite SBM with K communities, we use K
embedding dimensions, since the corresponding probability matrix P would
have a rank of at most K.

that there are two communities, so we embed into two dimensions. This gives us
an estimate of the latent position matrix:

from graspologic.embed import AdjacencySpectralEmbed as ase

d = 2 # the latent dimensionality

# estimate the latent position matrix with ase
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Xhat = ase(n_components=d, svd_seed=0).fit_transform(A)

Using this estimate of the latent position matrix, we can visualize an estimate
of the probability matrix, as:

P̂ = X̂X̂>.

Let’s do this with numpy:

Phat = Xhat @ Xhat.transpose()

Figure 5.3.2(A) and (C) plots the latent position matrix and probability ma-
trix, and Figure 5.3.2(B) and (D) plots the estimated latent position matrix and
estimated probability matrix.

Comparing the latent positions in Figure 5.3.2(A) to the estimated latent
positions in Figure 5.3.2(B), we see that the values are different; however, a major
pattern remains the same. The estimated latent positions follow the general
trend we would anticipate for the SBM; particularly, all of the nodes in the first
community (the first 50 nodes) tend to have similar estimated latent positions,
and all of the nodes in the second community (the second 50 nodes) tend to
have similar estimated latent positions which are distinct from the first. In light
of Section 4.7.8, the true latent positions are identical for nodes in the same
community, so any estimated latent positions in this same community should be
close to each other. Likewise, the probability matrix in Figure 5.3.2(C) is similar
to the estimated probability matrix in Figure 5.3.2(D).

Figure 5.3.2 (A) the true latent positions, (B) the estimated latent positions, (C) the
true probability matrix, (D) the estimated probability matrix.

Now, let’s consider what happens when we randomly reorder the nodes of the
network, just like we did in Section 4.3.5:

vtx_perm = np.random.choice(n, size=n, replace=False)

# reorder the adjacency matrix

Aperm = A[tuple([vtx_perm])] [:,vtx_perm]

# reorder the community assignment vector

zperm = np.array(zs)[vtx_perm]

# compute the estimated latent positions using the

# permuted adjacency matrix
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Figure 5.3.3 (A) the permuted adjacency matrix, (B) the estimated latent positions
of the permuted adjacency matrix. (C) the pairs plot of the estimated latent
positions of the permuted adjacency matrix, and (D) the pairs plot shown with the
true community labels of the nodes.

Xhat_perm = ase(n_components=2).fit_transform(Aperm)

Our adjacency matrix looks like Figure 5.3.3(A), and the estimated latent
positions look like Figure 5.3.3(B). It is not quite as obvious now that the two
communities of nodes in the network have similar latent positions looking only
at the heatmap of X̂ in (B), because these communities have been dispersed
throughout the network.

The “pairs plot” for estimated latent positions
Figure 5.3.3(C) visualizes tabular data structures to explore the latent structure
with a pairs plot.

To study the pairs plot, we can call the pair plotting utility directly from
graspologic, which provides a wrapper for the pairplot function from seaborn

designed for latent position matrices:

from graspologic.plot import pairplot

pairplot(Xhat, title=r"Pairs plot of $\hat X$")
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Figure 5.3.3(C) shows the pairs plot for the estimated latent positions. The
pairs plot is a d×d matrix of plots, where d is the total number of features of the
matrix for which a pairs plot is being produced. It is called “pairs” plot because
it plots pairs of dimensions.

For each off-diagonal plot, the kth row and lth column has the points (xik, xil)

for each node in the network. It is a scatter plot for each node of the kth dimension
and the lth dimension of the matrix being plotted. There are two distinct looking
“blobs” of point clouds in the pairs plot of X̂ in Figure 5.3.3(C). These “blobs”
are known as latent clusters. They are latent because they are unknown to us at
the beginning of analysis, and clusters because they are groups of points. These
clusters provide evidence for latent community structure in the network. The
plot is symmetric, since the off-diagonal entries are mirror images of one another
(one will be dimension k against dimension l, and the off-diagonal entry will be
dimension l against dimension k).

The diagonal elements of the pairs plot represent histograms or density esti-
mates (called Kernel Density Estimates, or KDEs) of the estimated latent po-
sitions for each dimension. If we do not include labels, we obtain histograms,
which are scaled bins showing the number of points for a given dimension which
fall into the indicated range. If we do pass in labels, we obtain density estimates,
where higher densities indicate that more points have latent position estimates
in that range. For instance, the top-left density estimate is the density estimate
of the first latent dimension for all nodes, the middle is a density estimate of the
second latent dimension for all nodes, and so on.

When the number of embedding dimensions is two, showing a full pairs plot
is redundant. In this case, we often simply show a scatter plot of dimension 1

against dimension 2.
Now, let’s see what happens to the pairs plot for X̂, which we pass in the

reordered community labels for the nodes:

fig = pairplot(Xhat_perm, labels=zperm, legend_name = "Community",

title=r"Pairs plot of $\widehat X$ with community annotation",

diag_kind="hist")

The resulting plot is shown in Figure 5.3.3(D). The two distinct clusters in
Figure 5.3.3(C) each correspond to a single community in the underlying SBM
random network. In fact, nodes of the same community tend to have estimated
latent positions that are close together. We say vectors are “close together” with
respect to the Euclidean distance, defined in Concept 5.5.6.

To evaluate this, we can compute the distance matrix of the estimated latent
positions, D. We will use the the unpermuted points to make the conclusion
more immediate. Each entry Dij corresponds to the distance d(~̂xi, ~̂xj) between
all pairs of estimated latent positions. We can compute the pairwise distance
matrix using scipy:

from scipy.spatial import distance_matrix
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Concept 5.3.10 Euclidean norms and the Euclidean distance

If ~x = (xi)
d
i=1 is a d-dimensional real vector, the Euclidean norm (or, 2-norm)

is defined as:

‖~x‖2 =

√√√√ n∑
i=1

x2i .

If ~y = (yi)
d
i=1 is a second d-dimensional real vector, the Euclidean distance is

defined as:

d(~x, ~y) = ‖~x− ~y‖2 =
√

(~x− ~y)>(~x− ~y) =

√√√√ d∑
i=1

(xi − yi)2.

D = distance_matrix(Xhat, Xhat)

Figure 5.3.4 The pairwise distance
matrix between the latent position
vectors of all pairs of nodes.

Figure 5.3.4 shows a plot of the pair-
wise distance matrix. Note that the pair-
wise distance matrices between the first
50 nodes (community 1, the upper-left
block of the pairwise distance matrix) and
the second 50 nodes (community 2, the
bottom-right block of the pairwise dis-
tance matrix) are relatively small, but the
pairwise distances between nodes from
community 1 and nodes from community
2 (and vice-versa, in the upper-right and
bottom-left blocks of the pairwise dis-
tance matrix) are relatively large. This
will be useful to us in Section 6.1 when
we attempt to estimate underlying com-
munity structure from SBM random net-

works.

5.3.3 Why do we use ase?

The primary utility of ase is that it tabularizes an adjacency matrix into an
n× d real matrix, where d is the number of embedding dimensions.

There are additional reasons to use ase:
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ase always recovers latent positions for the probability matrix, given the
latent dimensionality
Say we sample a network A from an RDPGn(X) random network with a latent
position matrix X and latent dimensionality d. Using ase(P, d) gives us true
latent positions for the probability matrix, which we found in Equation (5.3).
We can embed our sample’s adjacency matrix A using ase in the exact same
way that we embed the underlying probability matrix P to get estimates of the
latent positions. We can use ase even if A is not positive semidefinite, so we will
always obtain a set of real latent positions for adjacency matrices.

ase decouples dependencies of the random network
Studying a latent position matrix X is statistically equivalent to studying P

when P is a function of X, such as P = XX>. Since X is far simpler than P (it
will usually have fewer columns, in practice), it will be easier to study.

Section 5.2 discussed the complexity of the dependency structure for a random
network A. This is because the inherent coupling of edges to nodes creates at
least

(
n
2

)
possible dependencies.

The probability matrix P defines the behavior of the random network A.
When P is positive semidefinite and P = XX> for a set of latent positions,
the dependency structure encoded by P is also encoded by X. This means that
the latent positions, which often have a number of columns much less than the
number of nodes, encode the complicated dependency structure of the underlying
network.

Estimated latent positions from ase are directly related to latent positions
of random networks
Our discussion of ase has focused on the spectral embedding of P and its latent
positions. In practice, we only have A, not P .

However, when A is a sample from a random network A with a positive
semidefinite probability matrix P , the estimates of latent positions X̂ closely
approximate the true latent positions X of A as the number of nodes in the
network increases [5; 6; 7] (up to rotations and reflections, which is the focus
of Section 5.5.1). Similarly, P̂ approximates P , with limit theorems showing
convergence as the node count increases. Appendix B.3.1 details the theoretical
advantages of ase.

These advantages do not apply to sparse networks, which we address in Section
6.2.

Results hold for non positive semidefinite probability matrices
When we view a network as a sample of a random network with a positive
semidefinite probability matrix, studying X̂ will be a good surrogate to use in
place of studying X (since we cannot obtain X from a network adjacency matrix
A). This is powerful because the set of IERn(P ) random networks where the
probability matrix is positive semidefinite include many complicated structures,
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such as those shown in Section 4.5, and extensions of these structures to more
than two communities.

In fact, ase remains valid even outside of positive semidefinite probability
matrices, as briefly discussed in Section 5.7.3. We explain ase using positive
semidefinite probability matrices because this approach is intuitive and requires
only college-level linear algebra. The general case requires complex analysis and
advanced probability theory.

However, the applicability of these results outside of the positive semidefinite
context indicates that they can be applied broadly and robustly.
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5.4 Laplacian spectral embedding

Section 5.3 introduced the Adjacency Spectral Embedding, ase, which finds
embeddings through a spectral decomposition of the adjacency matrix. The
Laplacian, introduced in Section 3.4.4, offers an alternative matrix repre-
sentation of networks. This section explores Laplacian Spectral Embedding
(lse), a method for creating embeddings from the Laplacian rather than
the adjacency matrix.

We cover the following key concepts:

1 The motivation for using the Laplacian matrix instead of the adjacency
matrix,

2 Different types of Laplacian matrices: standard, normalized, and regular-
ized,

3 The process of Laplacian Spectral Embedding,
4 Advantages of lse, particularly for degree-corrected stochastic block mod-

els, and
5 Comparisons between ASE and lse in various network scenarios.

lse provides a robust network embedding method less sensitive to degree
heterogeneity than ase. This technique captures global structure and creates
smooth, continuous embeddings, making it particularly useful for networks
with varying node degrees.

Section 5.3 showed how adjacency spectral embedding, or ase, estimates latent
positions (up to an orthogonal transformation) for positive semidefinite proba-
bility matrices. For homophilic SBMn(~z,B) random networks, estimated latent
positions for nodes in the same community tend to be similar.

This similarity aligns with our observation in Section 4.7.8 that the true latent
positions for nodes of the same community are identical. As noted in Section
5.3.3, the estimated latent position matrix produced by ase reasonably estimates
the underlying network’s latent positions, and will do better the more nodes there
are. Therefore, the estimated latent positions for nodes in the same community
will follow this pattern, and be very similar in large networks (see Appendix
B.2).

However, SBMn(~z,B) random networks poorly represent many real-world net-
works. These models assume that the connection probability for a pair of nodes
i and j depends only on their community assignments zi and zj , as given by the
block matrix entry bzizj in Section 4.3. This assumption ignores the individual
node characteristics, such as node popularity.
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5.4.1 DCSBMn(~z, ~θ,B) random networks

Section 4.7 introduced the degree-corrected SBM random networks, orDCSBMn(~z, ~θ,B).
As noted in Section 4.7.8, the latent positions for nodes of the same community
in a DCSBMn(~z, ~θ,B) random network are identical up to a rescaling by the
nodes’ degree-correction factors θi and θj .

Using notation from Section 4.7.8, the latent position vectors for aDCSBMn(~z, ~θ,B)

random network are:

~x>i = θi~c
>
i B

where ~ci is a column-vector corresponding to the ith row of the one-hot-encoding
matrix of the community assignment vector ~z. In this vector, cik = 1 when the
node is in k, and 0 otherwise. Geometrically, θi “rescales” the vector ~c>i B, where
the vector ~c>i B is the same for the entire community.

We can make this more concrete with an example. We will use aDCSBMn(~z, ~θ,B)

similar to the one in Section 4.7, but with more extreme degree-correction factors
~θ:

import numpy as np

from graphbook_code import dcsbm

nk = 150

z = np.repeat([1,2], nk)

B = np.array([[0.6, 0.2], [0.2, 0.4]])

theta = np.tile(6**np.linspace(0, -1, nk), 2)

np.random.seed(0)

A, P = dcsbm(z, theta, B, return_prob=True)

Next, we compute the ase of A, using the strategy from Section 5.3, and we
compute a pairwise distance matrix:

from graspologic.embed import AdjacencySpectralEmbed as ase

from scipy.spatial import distance_matrix

d = 2 # the latent dimensionality

# estimate the latent position matrix with ase

Xhat = ase(n_components=d, svd_seed=0).fit_transform(A)

# compute the distance matrix

D = distance_matrix(Xhat, Xhat)

Figure 5.4.1(A) shows a scatter plot of the estimated latent positions, anno-
tated with the community of each node. Scatter plots of estimated latent posi-
tions are illustrated on square axes, to highlight the structure and shape of the
scattered points. The estimated latent positions appear to be “elongated” blobs
for a given community. This means that the blobs are elliptical, where the red
blob elongates towards the upper-right, and the blue blob elongates towards the
lower-right in our figure.

We can understand this because the true latent positions for each node i are
given by ~xi = θiB~c

>
i , where ~ci is a vector whose value cik = 1 if zi = k, and 0
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Figure 5.4.1 (A) the estimated latent positions for a network sample of a
DCSBMn(~z, ~θ,B) random network, where color indicates community (gray=
community 1, black=community 2), and (B) the pairwise distance matrix.

otherwise. In this sense, the true latent positions are “stretched” by the degree-
correction factors. Using an informal transitivity argument, the estimated latent
positions are estimating the true latent positions which are stretched along an
axis, so the estimated latent positions will also end up stretched along an axis.

The distance matrix in Figure 5.4.1(B) reveals a pattern. While nodes in
the same community generally have similar distances, many nodes have smaller
between-community distances than within-community distances. Dark gray bands
in the distance matrix in the upper-left and lower-right blocks of the distance
matrix show this, as well as light gray bands in the upper-right and lower-left
blocks of the distance matrix.

Next, let’s divide each latent position by the underlying degree-correction fac-
tor. The rows of Xhat_rescaled consist of the entries ~̂x

>
i

θi
, so we are “unstretching”

each latent position by its degree-correction factor:

Xhat_rescaled = Xhat / theta[:,None]

D_rescaled = distance_matrix(Xhat_rescaled, Xhat_rescaled)

Figure 5.4.1(C) shows these rescaled latent positions, and Figure 5.4.1(D) shows
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the pairwise distance matrix. Notice that rescaling by the degree-correction fac-
tors θi eliminated the “stretching” effect in the estimated latent positions. Fur-
ther, the distances are now virtually devoid of the cross-community similarity:
we are back to nodes of the same community having generally smaller distances
that pairs of nodes in opposite communities.

This suggests that the degree-correction vector ~θ can be used in conjunction
with ase to recover rescaled latent positions where, after rescaling, the rescaled
latent positions for nodes in the same community tend to be close together in
Euclidean distance.

In practice, we do not have the degree-correction vector. It was a parameter
of the random network, for which we only have a sample A.

5.4.2 The Laplacian Spectral Embedding

Recall from Section 4.5 that if P is positive semidefinite, ase(P ) gives us two
matrices Ud and Σd, where Y = Ud

√
Σd is a latent position matrix for the random

network:

P = Y Y >.

This procedure also works for functions of the probability matrix which pre-
serve positive semidefiniteness. An interesting example would be multiplying by
diagonal matrices that only take positive real values. If a matrix R is positive
semidefinite, and a matrix D is diagonal with only positive values, then both
DR and RD are also positive semidefinite.

The population network laplacian
In Section 4.6.4, we introduced the population network Laplacian L. We defined
it as:

L = D− 1
2PD− 1

2 .

The diagonal matrix D is the expected degree matrix, and the diagonal entries
E[di] are the expected degrees of each of the nodes in the network. Assuming
that every node i has at least one other node j where pij > 0, the diagonal
entries are positive, and the inverse square-root matrix D− 1

2 is just the diagonal
matrix with entries 1√

E[di]
. Section 3.4.3 provided useful intuition transferable

to these matrices.
When P is a positive semidefinite matrix, its positive semidefiniteness is pre-

served under multiplications (pre or post) with diagonal matrices whose diagonal
only contains positive values. This means that if P is positive semidefinite, D− 1

2P

is positive semidefinite. Since D− 1
2P is positive semidefinite, we can also post-

multiply by another diagonal matrix D− 1
2 and end up with a positive semidefinite

matrix, so L is positive semidefinite too.
Likewise, when P is a rank dmatrix, its rank is preserved under multiplications
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(pre or post) with diagonal matrices whose diagonal only contains positive values.
By a similar argument, this means that if P is rank d, then L is rank d.

This population network Laplacian L has a special feature: it is normalized
by the expected degrees of the nodes. We can see this by writing out the multi-
plication in Equation (4.16):

L =


p11
E[d1] . . . p1n√

E[d1]
√

E[dn]
...

. . .
...

pn1√
E[d1]
√

E[dn]
. . . pnn

E[dn]


So, the population network Laplacian L has entries `ij =

pij√
E[di]
√

E[dj ]
. This looks

very similar to the DAD Laplacian from Section 3.4.4, except instead of adjacencies
and node degrees, we have probabilities (expected values of the adjacency matrix
entries, Section 4.6) and expected node degrees.

Estimating the population network laplacian
The qualifications that we needed in Remarks 5.3.2 and Remarks 5.3.5 about the
positive semidefiniteness of P and its rank d ≤ n allowed us to conclude that:

P = Y Y >,

where P was the positive semidefinite probability matrix. We could compute such
a Y for the probability matrix using either the eigendecomposition in Algorithm
15 or the singular value decomposition in Algorithm 16, and obtain latent posi-
tions that were equal to the true latent positions for an underlying RDPGn(X)

random network (up to an orthogonal transformation, due to non-identifiability,
the focus of Section 5.5.2).

We also learned above that the population network Laplacian L is both positive
semidefinite and has a rank d ≤ n, so:

L = XX>,

where X is an n×d real matrix, and is computed from the eigenvectors/values or
the singular vectors/values using Algorithms 15 and 16 (with the same caveats).
This X is similarly referred to as the latent positions. In this book, we will refer
to this X as latent positions of the population network Laplacian, and it will
always be clear from context whether it is the X computed from the adjacency
matrix or the Laplacian.

Samples of networks A are not always positive semidefinite, discussed in 5.3.
Similarly, even if L is positive semidefinite and rank d, the DAD laplacian L will
not necessarily be positive semidefinite. Therefore, the procedure in Algorithm 15
is not guaranteed to produce a real result. However, the procedure in Algorithm
16 will still at least provide us with a real answer.

When we compute the DAD laplacian and then run the spectral decomposition
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approach, we term the strategy Laplacian Spectral Embedding, or lse, which is
described in Algorithm 17.

Algorithm 17: Estimating latent positions from laplacian matrices (lse)
Data: A an adjacency matrix for a simple network.

d a target latent dimensionality.
τ an optional regularizer.

Result: an estimate of a latent position matrix for the population
network laplacian.

1 Compute the degree matrix D of the network A.
2 Regularize the degree matrix with Dτ = D + τIn.

3 Compute the DAD laplacian, L = D
− 1

2
τ AD

− 1
2

τ .
4 Let U,Σ, V > = svd(L) be the left singular vectors, the singular values,

and the right singular vectors of L.

5 Let Ud =

 ↑ ↑
~u1 . . . ~ud
↓ ↓

, and let Σd =

σ1 . . .
σd

 be the matrix

whose rows are the first d left singular vectors and the diagonal matrix
whose entries are the first d singular values of A.

6 Compute
√

Σd to be the matrix whose entries are
√
σi, for all i from 1 to

d.
7 Let X̂ = Ud

√
Σd.

8 return X̂

We can now use lse to produce estimates of the latent positions for the popu-
lation network laplacian L, which is similar to the probability matrix (but regu-
larized by the node degrees). Will this help us fix the degree-correction stretching
problem that we noticed in Figure 5.4.1? Let’s find out.

We can perform lse using graspologic:

from graspologic.embed import LaplacianSpectralEmbed as lse

d = 2 # embed into two dimensions

Xhat_lapl = lse(n_components=d, svd_seed=0).fit_transform(A)

D_lapl = distance_matrix(Xhat_lapl, Xhat_lapl)

We show the latent positions and the distance matrix estimated through ase

and lse in Figure 5.4.2. Notice that when we tabularize A through ase in Figure
5.4.2(A), the estimated latent positions tend to be “elongated” along an axis as
they were in Figure 5.4.1. This makes sense because the true latent positions are
also “elongated” along an axis, and the amount of elongation is determined by
the degree-correction factors (θi). lse eliminates some of this “elongating” effect.
The “blobs” of nodes in the same community tend to be more similar in Figure
5.4.2(C). This is reflected in the distance matrix of Figure 5.4.2(D), where nodes
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in the same community tend to have smaller distances than nodes in different
communities. This was not the case in Figure 5.4.2(B), where many nodes are
more similar to nodes in the opposite community than in the same community.

Figure 5.4.2 (A) the estimated latent positions, (B) the pairwise distances of
estimated latent positions, (C) the estimated latent positions from lse, (D) the
pairwise distances of the estimated latent positions from lse.

5.4.3 When do we use lse over ase, and vice-versa?

The primary difference between lse and ase is illustrated in Figure 5.4.2. ase
will capture estimates of latent positions of the adjacency matrix, whereas lse

will capture estimates of latent positions of the population network Laplacian.
Loosely, this has the consequence that lse will produce “scaled” estimates of
latent positions that have been adjusted for degree differences in the underlying
network.

Often, we will want to learn about latent structures that are not related to the
degrees of the nodes in the network. In such cases, the scaled estimates produced
by lse will often make latent structure more obvious both visually (in heatmaps
and pairs plots) and algorithmically (through the use of downstream models to
identify latent structure from estimated latent positions).



Learning Network Representations 245

An initial visualization to determine whether ase or lse is appropriate is the
node degree histogram, which shows the degrees for each node in the network.
Let’s investigate this for the DCSBMn(~z, ~θ,B) sample we generated in Section
5.4.1:

import seaborn as sns

import pandas as pd

# compute the degrees for each node, using the

# row-sums of the network

degrees = A.sum(axis = 0)

# plot the degree histogram

df = pd.DataFrame({"Node degree" : degrees, "Community": z})

sns.histplot(data=df, x="Node degree", bins=20, color="black")

The key feature that we look for is whether the degree histogram is right-skewed
or heavy tailed. Remember from Section 3.6 that a distribution is right-skewed if
it “tails off” towards the relatively large values in the positive direction. In these
situations, the node degrees are bounded below by zero (the networks are sim-
ple, so all the adjacencies aij are either 0 or 1, and the node degrees are sums of
adjacencies). This is generally referred to as a “heavy tailed degree distribution”,
since it can only “tail off” to the right. In Figure 5.4.3(A), the degree distribu-
tion for nodes across both communities tails off to the right. DCSBMn(~z, ~θ,B)

random networks where the degree-correction factors θi tend to have mostly rela-
tively small values but some relatively large values will tend to yield heavy tailed
degree distributions.

This contrasts with SBMn(~z,B) random networks and DCSBMn(~z, ~θ,B)

random networks where the degree-correction factor θi is constant for all nodes
in the same community, which will tend to have symmetric degree distributions
for each community.

Asbm = sbm([nk, nk], B)

# row-sums of the network

degrees_sbm = Asbm.sum(axis = 0)

The histogram for an SBMn(~z,B) random network is shown in Figure 5.4.3(B).
Note that the degree histogram appears to have two “peaks”, and neither peak
is particularly heavy tailed (they both look fairly mirrored). This plot provides
evidence that the degree-distribution is not heavy tailed.

Heavy-tailed degree distributions arise frequently in real data [8; 9; 10]. This
pattern is particularly apparent in networks that share features of core-periphery
networks from Section 4.5, where a selection of nodes (the core) have much
higher node degrees than the nodes outside of the core (the periphery) [10]. This
pattern can materialize concurrently with other patterns, such as the example
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Figure 5.4.3 (A) the degree histogram for a DCSBMn(~z, ~θ,B) network, where the
degree-correction factors are not equal for the nodes in the network. (B) the degree
histogram for a SBMn(~z,B) network.

that we saw above with a DCSBMn(~z, ~θ,B) network with heterogeneous degree
correction factors and homophilic networks.

When we can identify a heavy-tailed degree distribution from visualizations
such as the node degree histogram, lse may be advantageous to use over ase.
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5.5 Multiple network representation learning

When we explored statistical models of networks in Chapter 4, we found it
desirable to have strategies for multiple-network scenarios in Section 4.9. We
now return to this situation in the new context of representation learning.

We cover the following:

1 Motivations for multiple network analysis,
2 The concept of joint matrices for multiple networks,
3 Parallel embedding techniques, including Omnibus Embedding (omni),
4 Fused embedding techniques, including Multiple Adjacency Spectral Em-

bedding (mase),
5 Comparisons between omni and mase, discussing their strengths and use

cases, and
6 The challenge of alignment in multiple network settings.

We assume knowledge of COSIE (Section 4.9.2) and joint random dot
product graphs (Section 4.9.1). We will return a third time to this scenario
in the context of applications in Chapter 9.

When we have multiple networks, there are a variety of questions that we
might want to ask. In this section, we’ll focus on a few of these questions, and
provide structured ways to learn representations of many networks that allow us
to answer downstream questions. The COSIEn,M

(
S,R(1), . . . , R(M)

)
random

networks in Section 4.9 will be critical for understanding many of the techniques
that we cover in this section.

We will use a running example of brain networks, which we describe in Remark
5.5.1.

Let’s generate working examples.

from graspologic.simulations import sbm

import numpy as np

from sklearn.preprocessing import LabelEncoder

n = 100 # the number of nodes

M = 8 # the total number of networks

# human brains have homophilic block structure

Bhuman = np.array([[0.2, 0.02], [0.02, 0.2]])

# alien brains have a core-periphery block structure

Balien = np.array([[0.4, 0.2], [0.2, 0.1]])

# set seed for reproducibility

np.random.seed(0)

# generate 4 human and 4 alien brain networks

A_humans = [sbm([n // 2, n // 2], Bhuman) for i in range(M // 2)]

A_aliens = [sbm([n // 2, n // 2], Balien) for i in range(M // 2)]
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Box 5.5.1 Alien and human brain networks

We have been given the unique task of learning about a group of 4 recently-
discovered human-like alien life forms. When studying their brains (in a non-
invasive way), we make the remarkable discovery that aliens and humans have
brain areas that do similar things across species. These n = 100 brain areas
will be the nodes of the network.
For both aliens and humans, there are two hemispheres (communities) in
the brain. However, while human brains tend to have a homophilic structure
(with more connections between nodes in the same hemisphere of the brain),
alien brains tend to have a core-periphery structure, where the nodes in the
left hemisphere (the core) are much more connected than nodes in the right
hemisphere (the periphery).
For this reason, we want to be able to obtain suitable representations of these
networks to learn about the differences between human and alien brains.

# concatenate list of human and alien networks

networks = A_humans + A_aliens

# 1 = left hemisphere, 2 = right hemisphere for node communities

le = LabelEncoder()

labels = np.repeat(["L", "R"], n//2)

zs = le.fit_transform(labels) + 1

The collection networks is a list of adjacency matrices where the first 4 entries
correspond to the human brains, and the second 4 entries correspond to the alien
brains. labels corresponds to community labels for the nodes of the networks,
where L is a place-holder for “Left hemisphere”, and R is a placeholder for “Right
hemisphere”. We also fit a LabelEncoder to our labels, allowing us to map them
to 0 and 1 in the form of the array zs. Having dummy placeholders for discrete
community labels (such as zs) is often handy when we want to do things like
run one-hot encodings, and more informative node labels (such as labels) are
handy for when we want to visualize and plot. We can use our fit LabelEncoder,
le, to easily convert between labels and their numerical mapping.

Figure 5.5.1 plots the human and alien brain networks, with nodes are ordered
by the node hemisphere (the “community”). Whereas the human brain networks
tend to have more connections within the same hemisphere (the on-diagonal
blocks), the alien brain networks tend to have high amounts of connections be-
tween nodes in the first community, and fewer connections between nodes in
the second community. Our goal is to characterize the differences in network
structure between humans and aliens.

In Section 5.3 and 5.4, we learned two approaches for embedding networks
with positive semidefinite probability matrices, ase and lse.

When we have multiple networks, we could start by tabularizing them using
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Figure 5.5.1 (A) the human brain networks, and (B) the alien brain networks.

embedding techniques and then comparing these tabular representations across
the networks. However, this approach would end up being misleading due to
non-identifiability.

5.5.1 The non-identifiability problem and network embeddings

Assume that we have a network A which is RDPGn(X), where X is the latent
position matrix for A, and P = XX> is its probability matrix. In this case, X
is the parameter for the RDPG random network.

In many univariate distributions, the parameters uniquely define a distribu-
tion. If x is a Gaussian random variable with two parameters, mean µ and
variance σ, any random variable with a different mean or a different variance
has a different distribution. If x is a coin that lands on heads with probability
0.5 (the parameter for the Bernoulli distribution), its behavior is distinct from a
coin which lands on heads with probability 0.3.

In this sense, it might be surprising to know that there are infinitely many
potential latent position matrices Y where the resulting probability matrix would
be equal to P , even though X 6= Y . These latent position matrices consist
of all possible rotations around and reflections across the origin of X. This is
problematic, because P defines the distribution of A.

In Concept 5.3.2, we learned that an orthogonal matrix W in d dimensions
is any d × d matrix where WW> = W>W = Id, the d-dimensional identity
matrix. Imagine that Y is another latent position matrix, but is an orthogonal
transformation of X. That means that there is an orthogonal matrix W where
Y = XW . The probability matrix for the RDPGn(Y ) network is:

P = Y Y >
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= XW (XW )
>
,

because Y = XW . Applying the definition of a transpose, we get:

P = XWW>X>

= XIdX
>,

because W is an orthogonal matrix, so W>W = WW> = Id (where Id is the
rank-d identity matrix). Finally, since XId = X:

P = XX>.

This leads to the conclusion in Concept 5.5.2.

Concept 5.5.2 Non-identifiability of RDPG random networks

If Y and X are latent position matrices with d latent dimensions, W is a
d-dimensional orthogonal matrix, and Y = XW (Y is an orthogonal transfor-
mation of X), then RDPGn(X) random networks and RDPGn(Y ) random
networks have the same probability matrix. There is no reason that either
of these latent position matrices would be better than the another, as they
produce the same probability matrix.
When dealing with single network questions, this is not much of a problem,
as our main interest in single network questions is typically about latent
positions of nodes relative one another. However, when dealing with multiple
network questions, this will be very impactful because we will need to take care
to ensure that the latent positions are rotationally aligned between different
networks.

We can also think about this geometrically, with the understanding that or-
thogonal matrices in two dimensions are either rotations (of the points in 2-d
space) or rotations combined with reflections (e.g., across axes).

First we will think of the orthogonal matrix as a rotation. Imagine that we
have a simple latent position matrix X with two nodes and two latent dimensions
(d = 2):

X =

[
` ~x>1 a
` ~x>2 a

]
.

When we compute the probability matrix with P = XX>, we get:

P = XX> =

[
` ~x>1 a
` ~x>2 a

]> >
~x1 ~x2
⊥ ⊥


Thinking of each latent position ~xi as a point in two dimensions, we see that

pij = ~x>i ~xj . So, the matrix P is the set of dot-products between the latent
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positions for all pairs of nodes. The dot product of two Euclidean vectors ~xi and
~xj is equivalent to:

~xi · ~xj = ‖~xi‖‖~xj‖ cos<)(~xi, ~xj)

where <)(~xi, ~xj) is the angle between ~xi and ~xj . If we apply a rotation matrix W
to X, we get:

Y = XW =

[
` ~x>1 a
` ~x>2 a

]
W

=

[
` ~x>1 W a
` ~x>2 W a

]
,

so we could write ~y>i = ~x>i W : the rotated latent positions Y are all rotated by
the same rotation matrix W .

When we rotate both vectors by the same angle, which is what happens when
we apply the same rotation W to each of the latent positions, neither their
lengths nor their angles with respect to each other change, so their dot product
remains constant. Therefore, any rotation of a latent position matrix produces
a network with the same probability matrix.

We can also think about the case where the matrix W ′ is a reflection of an
axis across the origin. For instance, consider the matrix W ′ where:

W ′ =

[
−1 0

0 1

]
.

When pre-multiplied by a latent position matrix X with two latent dimensions,
W ′ has the effect of “reflecting” the first latent dimension across the origin:

X =

x11 x12
...

...
xn1 nn2


Applying the reflection W to X gives:

XW ′ =

−x11 x12
...

...
−xn1 xn2

 .
Therefore, the probability matrix is:

XW ′(XW ′)> =

−x11 x12
...

...
−xn1 xn2

[−x11 . . . −xn1
x12 . . . xn2

]
= XX>,

because when computing the element-wise products of rows ofXW ′ with columns
of (XW ′)>, the negatives cancel.

In the general case (more than two latent dimensions), the concept of ro-
tational and reflectional non-identifiability is generalized as non-identifiable up
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to an orthogonal transformation. Exercise 5.5.3 works through illustrating that
orthogonal transformations are distance preserving.

Exercise 5.5.3 Orthogonal matrices are distance preserving

Assume X is a latent position matrix with n nodes in d dimensions, and W
is a d×d orthogonal matrix. Further, assume that Y = XW is an orthogonal
transform of X. Using the definition of the Euclidean distance, the definition
of an orthogonal matrix, and the fact that ~yi = W>~xi, show that for any two
nodes i and j:

‖~xi − ~xj‖2 = ‖~yi − ~yj‖2

or that orthogonal transformations preserve distances between latent posi-
tions. Formally, a distance-preserving transformation is known as an isome-
try.

Why are rotations and reflections problematic?
As we mentioned in Section 5.5.2, the latent positions are non-identifiable, in that
for an RDPGn(X) with latent positions X, an RDPGn(XW ) where W is a d-
dimensional orthogonal matrix has the same probability matrix. The estimated
latent positions X̂ share this issue. Let’s estimate the latent positions for a single
network from our example networks:

from graspologic.embed import AdjacencySpectralEmbed as ase

# embed the first network

Xhat = ase(n_components=2, svd_seed=0).fit_transform(A_humans[0])

We visualize the estimated latent positions as a scatter plot (a plot of X̂ similar
to the pairs plot you learned in Section 5.3) in Figure 5.5.2(A). Next, we apply
a rotation matrix W to X̂; in this case, the rotation matrix has the effect of a
90◦ clockwise rotation:

# a rotation by 90 degrees

W = np.array([[0, -1], [1, 0]])

Yhat = Xhat @ W

The points after rotation are illustrated in Figure 5.5.2(B), with the points
before rotation shown in light gray. The rotation clockwise follows the arrows.
Notice that the two “blobs” are rotated clockwise by 90◦ around the origin.

Despite the fact that the latent positions of X̂ and Ŷ are different (they are
rotated), they produce the same probability matrix:

# check that probability matrix is the same

np.allclose(Yhat @ Yhat.transpose(), Xhat @ Xhat.transpose())

# returns True
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We can similarly reflect across the first latent dimension:

# a reflection across first latent dimension

Wp = np.array([[-1, 0], [0, 1]])

Zhat = Xhat @ Wp

# check that the probability matrix is the same

# check that probability matrix is the same

np.allclose(Zhat @ Zhat.transpose(), Xhat @ Xhat.transpose())

# returns True

Figure 5.5.2(C) illustrates the points after reflection, with the points before re-
flection shown in light gray. The reflection across the origin of the first latent
dimension (dotted arrow) follows the arrows. Notice that the two “blobs” are
reflected across the dotted line.

Figure 5.5.2 (A) the estimated latent positions, (B) the estimated latent positions,
but rotated by 90◦, and (C) the estimated latent positions, but reflected across the
first latent dimension.

This becomes problematic if we want to compare embeddings from different
adjacency matrices. Consider, for instance, an embedding of the third human
network. The human networks are samples of the same SBM random network,
so they are stochastically equivalent (they have the same probability matrix).
As a result, the network samples look virtually indistinguishable, as shown in
Figure 5.5.3(A) and Figure 5.5.3(B). Our intuition would suggest that since their
latent positions could be calculated to be the same, we should obtain estimated
latent positions that at least look similar between the two:

# embed the third human network

Xhat3 = ase(n_components=2, svd_seed=0).fit_transform(A_humans[3])

Figure 5.5.3(C) and Figure 5.5.3(D) plot the estimated latent positions. Al-
though nodes within the same community for both networks have similar latent
positions, the actual values are dissimilar across the two networks.

To get a sense of how dissimilar, we will introduce a generalization of the
Euclidean distance but for matrices, known as the Frobenius distance, in Concept
5.5.4. Small Frobenius distances indicate that a pair of matrices are similar in
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Figure 5.5.3 (A) A network sample for the first human, (B) a network sample for the
third human, (C) estimated latent positions for the first human, (D) estimated
latent positions for the third human.

value, and larger Frobenius distances indicate that a pair of matrices are more
dissimilar in value.

Concept 5.5.4 The Frobenius norm

The Frobenius norm can be thought of as a generalization of the Euclidean
norm from Concept 5.5.6 to matrices. If A is a n×m real matrix with entries
aij , the Frobenius norm is:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

a2ij

The Frobenius norm is equivalent to “unrolling” a matrix into a vector, and
then finding its Euclidean norm.
If B is a second n×m real matrix with entries bij , the Frobenius distance is:

‖A−B‖F =

√√√√ n∑
i=1

m∑
j=1

(aij − bij)2

Next, we will embed an alien network. From Figure 5.5.1, the alien and the
human networks look nothing alike, so we would anticipate that their estimated
latent positions should be different. However, this is not the case:

# embed the first alien network

Xhat_alien = ase(n_components=2, svd_seed=0).fit_transform(A_aliens[0])

# compute frob norm between first human and third human net

# estimated latent positions

dist_firsthum_thirdhum = np.linalg.norm(Xhat - Xhat3, ord="fro")

print("Frob. norm(first human, third human) = {:3f}".format(dist_firsthum_thirdhum))

# Frob. norm(first human, third human) = 8.798482
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# compute frob norm between first human and first alien net

# estimated latent positions

dist_firsthum_alien = np.linalg.norm(Xhat - Xhat_alien, ord="fro")

print("Frob. norm(first human, alien) = {:3f}".format(dist_firsthum_alien))

# Frob. norm(first human, alien) = 5.991560

The estimated latent positions for our first human network are, somewhat sur-
prisingly, more similar to the estimated latent positions for the first alien network
(the Frobenius norm is smaller) than they are to the estimated latent positions
for the third human network. This, problematically, shows that estimated latent
positions are not directly comparable when dealing with multiple networks. We
summarize these crucial points, and how they relate to the previous Section 5.3
on the ase, in Remark 5.5.5.

Remark 5.5.5 A quick rundown of non-identifiability

In this section, we reached three conclusions:

1 Positive semidefinite random networks have infinitely many possible latent
position matrices. These latent position matrices are all orthogonal
transformations of one another (and there are infinitely many possible
orthogonal matrices). In 2-dimensions, these matrices rotate and reflect
the latent positions.

2 Estimates of latent positions suffer from a similar limitation in that they
will only be similar to the underlying latent position matrix up to an
orthogonal transformation. However, the infinitely many equivalent
estimates of latent positions (the infinitely many possible orthogonal
matrices) all produce the same estimated probability matrix which closely
approximates the true probability matrix (Figure 5.3.2), and they are
isometries (Exercise 5.5.3). When dealing with single network questions,
these facts imply that non-identifiability can largely be ignored.

3 Estimates of latent positions from different networks naively obtained
through naive applications of ase and lse cannot be directly compared
across multiple networks. This is because the latent positions may not be
aligned (Figure 5.5.3). The remainder of this section will develop
embedding techniques to address this issue when dealing with multiple
networks.

5.5.2 Different types of multiple network representation learning

In this section we explore general approaches for multiple-network representation
learning. We need to obtain representations of our networks which are compa-
rable so that we can learn from them downstream, and there are at least two
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ways we could do this: in parallel, or by fusing representations. Each of these
eventually results in one or many latent position representation for our networks.

Every multiple-network representation learning strategy that we describe in
this section entails constructing a joint matrix : A single matrix derived from
multiple networks, which represents all of them. The specifics of this construction
depend on which multiple-network representation learning technique we use.

Below, we summarize each approach:

• Fused Network Embedding: Embed into separate representations first. Then,
fuse those representations into a joint matrix, from which separate embeddings
living in the same space can be pulled out.
• Parallel Network Embedding: Create a joint matrix first. Then, use it to create

every network representation in parallel.

Fused Network Embedding
In fused network embedding, we first obtain representations from each network,
either with adjacency spectral embedding or with some other single-network
representation learning strategy. Next, we combine these embeddings into a joint
matrix, and then we learn from this joint matrix using sequential approaches
(such as additional embeddings of the joint matrix). This approach is summarized
in Figure 5.5.4. Multiple adjacency spectral embedding (mase), which we will
learn about in Section 5.5.3, is an example of this approach.

This approach is effective when our networks have shared structure, where
the final embedding describes shared structure across the nodes of the networks,
and when we obtain other descriptive features about the joint embedding that
describe particularities about the individual networks as they relate to this shared
structure. It can also be useful when we only have embeddings, but not the
original matrix.

Figure 5.5.4 Fused Embedding is the process of embedding networks to obtain
separate representations, combining these representations to obtain a joint matrix,
and then obtaining a representation of the joint matrix.

Parallel Network Embedding
There are situations in which we might want to keep our embeddings separate,
but we still want them to co-exist in a related latent space. For example, we
noticed in Section 5.5.2 that embeddings are often orthogonal transformations
of each other due to nonidentifiability. Parallel network embedding allows us
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to avoid this by generating separate embeddings using a single joint matrix.
When we approach multiple-network representation learning in this manner, we
can directly compare the embeddings of the separate networks. An example of
parallel embedding is the Omnibus embedding (omni), and is illustrated in Figure
5.5.5. We will explore omni in-depth in Section 5.5.4.

This approach is effective when we want to study each of our networks indi-
vidually, but we still want to be able to compare them to each other.

Figure 5.5.5 Parallel embedding is the process of combining networks to acquire a joint
matrix, and then embedding the result to obtain separate network representations.

In Sections 5.5.3 and 5.5.4, we explore the strengths and weaknesses of fused
and parallel embedding techniques: mase and the Omnibus Embedding (omni).

5.5.3 Multiple Adjacency Spectral Embedding

Multiple Adjacency Spectral Embedding, or mase, is a fused embedding technique
which concatenates and then re-embeds separate latent positions into a single
space. There is also a sense in which it is parallel: we will learn that we can still
“distill” out separate representations for each network. The advantage of mase is
that it is flexible to different ways networks can present in real data; we only
need the nodes of the different networks to be aligned and have similar “meaning”
across the networks. This means that node 1 in network 1 has the same literal
interpretation as node 1 in networks 2 through m, and this is true for all n nodes
of the network. In our brain networks, for instance, node 1 is the first region,
node 2 is the second region, and so forth. Regions have the same label across all
networks in the collection.

The goal of mase is to embed the networks into a shared space with shared
latent dimensions, while separately preserving any differences between them.

mase is based on the common subspace independent-edge (COSIE) model in
Section 4.9.2. With the COSIE model, there might be some underlying homo-
geneity across networks: in the brain networks, for instance, the same commu-
nities might exist across all networks. In the real world, brain networks may
be distinct for one reason or another in terms of their underlying probability
matrix, but still share fundamental properties. The COSIE model allowed us
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Remark 5.5.6 Graph Matching

Ensuring that nodes align across networks is sometimes nontrivial. For sit-
uations in which we don’t know in advance which nodes across networks
correspond to each other, we can approximate their alignment with Graph
Matching. We learn about this technique in Section 7.3.

to capture both the homogeneity and heterogeneity across different networks
simultaneously.

We have already been exposed to mase in Section 2.5, when we used it in our
starting project. Let’s use mase on the human and alien brains. Then, we will dig
deeper into what is happening under the hood.

from graspologic.embed import MultipleASE as mase

# Use mase to embed everything

mase = mase(n_components=2, svd_seed=0)

# fit_transform on the human and alien networks simultaneously

latents_mase = mase.fit_transform(networks)

How does mase work?
Embedding networks
The first step in mase is to embed each network. This step is discussed for ase in
Section 5.3 and lse in Section 5.4.

If we do not know ahead of time how many dimensions we want to embed
into, it is a good rule of thumb to over-embed rather than to under-embed. If
we embed into too few dimensions, we risk discarding latent structure (and will
therefore have no hope of finding it downstream). In general, for the first step of
mase, a good rule-of-thumb for embedding dimensions is log2(n). When n is 100

as in our example, this is about 7:

from graspologic.embed import AdjacencySpectralEmbed as ase

dhat = int(np.ceil(np.log2(n)))

# spectrally embed each network into ceil(log2(n)) dimensions with ASE

separate_embeddings = [ase(n_components=dhat, svd_seed=0).fit_transform(network) for

network in networks]

We plot the spectral embeddings of the networks for an human and an alien
(showing only the first two dimensions) in Figure 5.5.6. Notice that the sep-
arate embeddings individually preserve the community structure across both
humans and aliens. Figure 5.5.7(A) shows the embeddings across all networks
as heatmaps. For the rest of the section, we will use these eight human/alien
networks.

These embeddings do not live in the same latent space just yet. They may be
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Figure 5.5.6 (A) the spectral embedding for a human network, and (B) the spectral
embedding for an alien network.

rotated from each other due to non-identifiability, and the embeddings may not
be directly comparable.

Calculating a shared latent space
Our goal is to find some reasonable way to fuse together these individual em-
beddings into a shared space.

We can concatenate each of our individual network embeddings horizontally.
Because the rows of these matrices are all aligned, meaning, row 1 corresponds
to node 1 for all matrices, we can think of each node as having (in this case) Md

latent dimensions: there are d latent dimensions for each of the M networks. In
this case, since d̂ = 7 and M = 8, each node has 7 × 8 = 56 latent dimensions
associated with it (7 per network).

This process produces an n ×Md matrix, where n is the number of nodes
(the rows of the resulting matrix), and Md is the number of latent dimensions
associated with each node (the columns of the resulting matrix). This is the
joint matrix for mase, since it is a composition of information from the M total
networks. We can use numpy to construct the joint matrix:

# Concatenate the embeddings horizontally into a single n x Md matrix

joint_matrix = np.hstack(separate_embeddings)

The joint matrix is plotted in Figure 5.5.7(B).
When we look at the joint matrix oriented in this manner, we see the redundant

information that we will exploit in our next step. In particular, the first and
second columns of every embedding look like they tend to separate the first
50 nodes (which were the left hemisphere) from the next 50 nodes (the right
hemisphere). Successive dimensions look like noise.

We can exploit this redundancy of some of the qualitative features, despite the
fact that the columns are not exactly identical in their behavior (for instance,
for some of the networks, the second embedding dimension has high values for
the first 50 nodes and low values for the second 50 nodes, or low values for the
first 50 nodes and high values for the second 50 nodes). The important idea is
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Figure 5.5.7 (A) the separate embeddings for each network. (B) the joint matrix,
which concatenates the separate embeddings for each network (horizontally).

that there is some notion of similar information being conveyed that we can use
to simplify the problem.

Embedding the joint matrix to create a joint embedding
We want to address the fact that there is redundant information common to
many of these embeddings, and some information common to only a subset of
these embeddings. This redundancy is not entirely consistent from embedding
to embedding, nor even within network groupings (human versus alien). The
patterns in some of the human and alien network embeddings are different, even
though the underlying SBMn(~z,B) random networks are homogeneous for net-
works in the same group. This is an instance of the non-identifiability problem
from Section 5.5.2 and illustrated in Figure 5.5.2.

Fortunately, spectral embedding is an ideal candidate for picking out these
sorts of “redundancies” that arise across columns of our matrix. Spectral em-
bedding allows us to capture the redundancy of the qualitative aspects of these
columns, and to obtain the general idea of what they each convey numerically.
For this, we will use another spectral embedding. The process is nearly identical
to what we did for ase in Algorithm 16, in that we perform svd, and retain the
top d left singular vectors. This is called an unscaled spectral embedding, because
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(unlike for ase) we are not weighting the left singular vectors by the square roots
of their singular values.

We use this process to embed the joint matrix, obtaining a joint embedding.
We will embed into two dimensions, because there are two communities, as-per
Concept 5.3.9:

def unscaled_embed(X, d, seed=0):

np.random.seed(seed)

U, s, Vt = np.linalg.svd(X)

return U[:,0:d]

Shat = unscaled_embed(joint_matrix, 2)

The result of this unscaled embedding is an estimate of the shared latent posi-
tions, and is denoted by the matrix Ŝ. Ŝ has n rows and d columns, so each row
~̂si is an estimate of the shared latent position of node i.

We plot the estimate of the shared latent positions Ŝ in Figure 5.5.8(A). Note
that the estimated shared latent positions convey the shared structure between
human and alien brains: the left and right hemispheres are appreciably different.
It is in this sense that mase is a fused embedding technique. Now, we distill out
separate representations for each network and explore the sense in which it can
also be parallel.

Building representations for each network
How is our joint embedding related to the separate, original networks? Under
the COSIE model in Section 4.9.2, the probability matrix for the ith network
could be described as:

P (i) = SR(i)S> (5.4)

where S conveyed the homogeneity across all M networks (the shared latent
positions), and R(i) conveyed the unique aspects of the probability matrix for a
network i (the unique score matrices).

Also, remember that in the COSIE model, we assumed that S was orthogonal.
For an orthogonal matrix S with n rows and n columns, S>S = SS> = In. We
can use this to understand R(i) by pre-multiplying by S> and post-multiplying
by S in Equation (5.4):

S>P (i)S = S>SR(i)S>S

⇒ R(i) = S>P (i)S, (5.5)

After the simplification, R(i) represents a transformed version of the P (i) ma-
trix. This is analogous to looking at the structure of the ith network from the
perspective of the basis from all of the networks provided by S: We can think
of R(i) = S>P (i)S as an orthogonal transform of the probability matrix of a
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Figure 5.5.8 (A) The estimated shared latent positions of the human and alien brains.
(B) the estimated scores for the first human network, (C) the estimated scores for
the first alien network.

specific network, P (i) into the basis defined by the columns (the shared latent
positions) of S.

In practice, we have two problems:

1 Estimates of the shared latent positions are not necessarily orthogonal, and
2 We do not directly observe the probability matrix.

We discuss these problems in more detail below.

Estimates of the shared latent positions are not orthogonal
We usually do not have the shared latent positions S. In practice, we only have
access to an estimate of the shared latent positions Ŝ, the first d columns of
the left singular vectors U of the joint matrix. While the full left singular vector
matrix is orthogonal (by definition of the svd, in Remark 5.3.5), it is helpful
to reduce the dimensionality when we embed below the number of nodes in
the network so that we can learn from the shared latent position matrix later.
Unfortunately, this disrupts the orthogonality, and Ŝ is no longer orthogonal
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when we discard the last n − d columns. This is because orthogonal matrices
must be square, and a matrix with n rows and n− d columns is not square.

We do not observe the probability matrix
A hurdle that we experienced in the ase was that we could obtain a perfect
estimate of the latent position matrix (up to an orthogonal transformation) if
we knew the probability matrix. In practice, however, we never have a true
probability matrix; we only see observations of adjacency matrices.

Instead, we simply embedded the adjacency matrix. We settled on this ap-
proach for ase because the eigendecomposition procedure in Algorithm 15 would
not work unless the matrix was positive semidefinite, but we had no such re-
striction with the ase procedure in Algorithm 16 using svd. Likewise, no part of
the procedure for mase is restricted to positive semidefiniteness to obtain a real
answer.

These limitations may feel impactful. However, we can ignore them for the time
being as we did with ase because our estimates are generally “close enough.” Us-
ing Equation (5.5) for the score matrices, we can simply plug in the estimate of
the shared latent positions for S, and the adjacency matrix A(i) for the proba-
bility matrix, to obtain an estimate of the score matrix:

R̂(i) = Ŝ>A(i)Ŝ.

Let’s do this in practice with our networks:

# stack the networks into a numpy array

As_ar = np.asarray(networks)

# compute the scores

scores = Shat.T @ As_ar @ Shat

We plot the estimated score matrices in Figure 5.5.8(B) and (C) for a human
and alien network, respectively. Notice in particular that the human networks
and the alien networks leverage different combinations of the two latent dimen-
sions to “reconstruct” the score matrix, much like in Section 4.9.2.2 when the
Facebook/Instagram and Linkedin networks used different score matrices to con-
vey the disparate structure in the networks. In particular, the second estimated
shared latent dimension, which conveys the disparity between the left and right
communities, is much different for the human and alien networks. This high-
lights that the human and alien networks have disparate community structure
(humans have a homophilic structure, aliens a dissassortative structure) through
the latent dimension which distinguish the communities.

We use this with the COSIE model in Equation (5.4) to obtain:

P̂ (i) = ŜR̂(i)Ŝ>.

Let’s see how this works out in practice, by computing the true probability matrix
for the humans and aliens, and comparing it to the estimated probability matrix
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for the humans and aliens. We compute the true probability matrix using the
results from Section 4.3.6.

from graphbook_code import generate_sbm_pmtx

Phum = generate_sbm_pmtx(zs, Bhuman)

Palien = generate_sbm_pmtx(zs, Balien)

Pests = Shat @ scores @ Shat.T

The true probability matrices for humans and aliens are shown in Figure
5.5.9(A) and (C), and are compared to the estimated probability matrices for a
human and an alien in Figure 5.5.9(B) and (D). Note that mase is able to re-
cover both the homophilic structure of the human brain networks and the core-
periphery structure of the alien brain networks through unique combinations of
the estimated shared latent positions in Figure 5.5.8(A), which separated the left
and right communities.

Figure 5.5.9 (A) the probability matrix for human networks, (B) the estimated
probability matrix for the first human network. (C) the probability matrix for alien
networks, (D) the estimated probability matrix for the first alien network.

Using mase in practice
The mase algorithm is shown in Algorithm 18.
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Algorithm 18: Multiple adjacency spectral embedding (mase)

Data: A(1), ..., A(M) a collection of M networks with n nodes.
d the desired latent dimensionality.

Result: the estimated shared latent position matrix and the estimated
score matrices.

1 For each A(i), obtain X̂(i) = ase
(
A(i), log2(n)

)
, for i = 1, . . . ,M , via

Algorithm 16.
2 Let J =

[
X̂(1) . . . X̂(M)

]
be the joint matrix, consisting of a

column-wise concatenation of the individual estimated latent position
matrices.

3 Let U,Σ, V = svd(J).
4 Let Ŝ = Ud, the first d columns of the left singular vectors of J .
5 Let R̂(i) = Ŝ>A(i)Ŝ, for i = 1, . . . ,M .
6 return Ŝ, R(1), . . . , R(M)

You can run the mase algorithm using graspologic, which streamlines the
procedure that we outlined above:

from graspologic.embed import MultipleASE as mase

d = 2

mase_embedder = mase(n_components=d)

# obtain an estimate of the shared latent positions

Shat = mase_embedder.fit_transform(networks)

# obtain an estimate of the scores

Rhat_hum1 = mase_embedder.scores_[0]

# obtain an estimate of the probability matrix for the first human

Phat_hum1 = Shat @ mase_embedder.scores_[0] @ Shat.T

5.5.4 Omnibus Embedding

The Omnibus Embedding (omni) is a parallel embedding technique that embeds
networks separately while keeping them all in the same latent space, so that they
will be properly rotated to align with one another. This allows us to compare
separate network representations directly. omni does not attempt to separately
identify shared and unique structure across networks, unlike mase (which con-
sidered shared structure via the estimated shared latent positions S and unique
structure through the separate estimated score matrices for each network R(i)).

How does omni work?
The omnibus embedding works by:

1 Assembling individual adjacency matrices together into a single joint matrix,
called the omnibus matrix,
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2 Embedding the omnibus matrix with ase, and
3 Extracting latent position estimates for each network from this embedding.

Computing the omnibus matrix
The first step in omni is to compute the omnibus matrix, which is the joint matrix
used by omni. The omnibus matrix for a collection of M networks with n nodes
is the Mn×Mn matrix O, where for each n× n block O(i,j):

O(i,j) =
1

2

(
A(i) +A(j)

)
.

The resulting (i, j) block of the omnibus matrix is itself an n × n matrix, and
the Omnibus matrix looks like this:

O =

O
(1,1) . . . O(1,M)

...
. . .

...
O(M,1) . . . O(M,M)

 =

 A(1) . . . 1
2

(
A(1) +A(M)

)
...

. . .
...

1
2

(
A(1) +A(M)

)
. . . A(M)

 .
By construction, the Omnibus matrix is symmetric with respect to the blocks
themselves: O(i,j) = O(j,i). However, if these individual blocks are not themselves
symmetric, the omnibus matrix might not be symmetric. Since the blocks of the
omnibus matrix are combinations of adjacency matrices, and adjacency matrices
are symmetric when the underlying networks are undirected, the omnibus matrix
is symmetric when the collection of networks are undirected.

Let’s consider only the first two networks (human networks), and construct a
simple omnibus matrix from these. We can do this with numpy:

omni_ex = np.block(

[[networks[0], (networks[0]+networks[1])/2],

[(networks[1]+networks[0])/2, networks[1]]]

)

We visualize this small omnibus matrix in Figure 5.5.10. We illustrate the first
two networks in 5.5.10(A) and 5.5.10(B), and the resulting omnibus matrix of
the first two networks in 5.5.10(C).

We can use graspologic to obtain the omnibus matrix for our collection of
networks:

from graspologic.embed.omni import _get_omni_matrix

omni_mtx = _get_omni_matrix(networks)

The full omnibus matrix for all 8 networks is shown in Figure 5.5.11(A). We can
conceptualize the omnibus matrix as the adjacency matrix of a new (weighted)
network from a collection of networks, where all the nodes from each network
form a single node in the new network. A subnetwork induced on the omnibus
matrix by the nodes from a single network is the original network itself (the
on-diagonal blocks of the omnibus matrix O(i,i)). The subnetwork formed by the
nodes of a network i and the nodes of another network j provides information
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Figure 5.5.10 (A) the first human network, (B) the second human network. (C) the
omnibus matrix of the first two human networks.

about how similar (or different) the networks i and j are (the off-diagonal blocks
of the omnibus matrix O(i,j)). This incorporation of information about each
network in relation to the other networks is what will allow omni to properly
orient the latent positions across the collection of networks.

Embedding the omnibus matrix
The next step is to embed the omnibus matrix using ase. This creates an estimate
of the latent position matrix for the omnibus matrix itself. When the Mn×Mn

omnibus matrix is embedded into d dimensions, we obtain an estimated latent
position matrix with Mn× d dimensions. A good rule of thumb for the omnibus
embedding is to use log2(n) embedding dimensions.

from graspologic.embed import AdjacencySpectralEmbed as ase

dhat = int(np.ceil(np.log2(n)))

Xhat_omni = ase(n_components=dhat, svd_seed=0).fit_transform(omni_mtx)

The estimated latent positions for the omnibus matrix are shown in Figure
5.5.11.

Extracting oriented estimated latent positions
The last step of omni is to obtain the properly oriented latent position estimates
for each network. We conceptualize the omnibus matrix as the adjacency matrix
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Figure 5.5.11 (A) the omnibus matrix, and (B) the embedded omnibus matrix.

for a new network, where the Mn nodes of this new network are the n nodes of
each of the original M networks. The Mn × d estimated latent position matrix
looks like this:

X̂ =


X̂(1)

X̂(2)

...
X̂(M)

 ,
where each set of n × d estimated latent positions X̂(i) correspond to the esti-
mated latent positions for the network A(i).

To obtain the latent positions for each network explicitly, we can reshape the
Mn× d matrix into an m× n× d tensor, and look at the individual slices of the
tensor corresponding to the estimated latent position matrix for each network.
We can do this with numpy:

M = len(networks)

n = len(networks[0])

# obtain an M x n x d tensor

Xhat_tensor = Xhat_omni.reshape(M, n, -1)

# the estimated latent positions for the first network

Xhat_human1 = Xhat_tensor[0,:,:]

The estimated latent positions for each network are illustrated in Figure 5.5.12
for all of the networks in our collection. The second and third dimensions capture
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most of the signal disparity between the human and alien networks, so we show
scatter plots for these two dimensions. Note that the human networks appear to
have the nodes in the same relative positions, and the alien networks appear to
have the nodes in the same relative positions, which is a function of the alignment
(e.g., lack of non-identifiability) created by omni. Had we embedded the networks
separately, this would not have been the case. On the other hand, the human
brain network nodes and the alien brain network nodes appear to have different
patterns in the embeddings, which is a function of the unique disparities between
human and alien brain networks.

Figure 5.5.12 The estimated latent positions for each network.

Using omni in practice
The procedure for the omni embedding is outlined in Algorithm 19.

Algorithm 19: Omnibus Embedding (omni)

Data: A(1), ..., A(M) a collection of M networks with n nodes.
d the desired latent dimensionality.

Result: estimated latent positions for each network.
1 Compute the Mn×Mn omnibus matrix O, where each n× n submatrix

O(i,j) = 1
2

(
A(i) +A(j)

)
.

2 Embed the omnibus matrix to produce estimated latent positions for the
omnibus network, X̂ = ase(O, d), according to Algorithm 16.

3 Let X̂(i) be the n× d matrix consisting of the (i− 1) · n+ 1 through i · n
rows of X̂.

4 return X̂(1), . . . , X̂(M)

We can run omni using graspologic:
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from graspologic.embed import OmnibusEmbed as omni

# obtain a tensor of the estimated latent positions

Xhat_tensor = omni(n_components=int(np.log2(n)), svd_seed=0).fit_transform(networks)

# obtain the estimated latent positions for the first human

# network

Xhat_human1 = Xhat_tensor[0,:,:]

Relating omni to the JRDPG
Recall from Section 4.9 that a homogeneous collection of random networks{
A(1), . . . ,A(M)

}
has identical underlying probability matrices. We say that{

A(1), . . . ,A(M)
}
are JRDPGn,M (X) where the probability matrix P = XX>.

Each network A(m) are individually independent RDPGn(X) random networks.
When we produced an embedding of each network using omni, we produce

estimates X̂(i) for each of our M networks. With this framework in mind, the
estimates X̂(i) are comparable, in that if two networks are homogeneous, their
estimated latent positions are similar. Although the JRDPG model underlies the
omni embedding (which assumes homogeneity), the embedding has the property
that if networks are heterogeneous, their omni estimated latent positions will be
dissimilar. Crucially, however, they will be aligned to one another; i.e., with-
out the non-identifiability problem. This means that omni embedding allows our
estimated latent positions X̂(i) to be directly compared, and significant differ-
ences between our them can provide evidence that they are dissimilar. Figure
5.5.12 showed this when we saw that the human embeddings and alien embed-
dings were homogeneous within-species (human vs. human, or alien vs. alien),
but heterogeneous across-species (human vs. alien).

Using omni, we can obtain estimates of probability matrices like this:

Phat_hum1 = Xhat_human1 @ Xhat_human1.T

Repeating this for both human and alien networks, we see that this conceptual
model does a reasonable job of estimating the underlying probability matrices
for our networks, similar to mase.

5.5.5 omni versus mase

Both omni and mase will produce estimated latent representations of collections
of networks which are comparable downstream during analysis. These techniques
take a collection of networks and tabularize them so that we can compare them
directly with downstream machine learning methods.

Mase embeds each network individually prior to the construction of the joint
matrix, by first taking the ase of each individual network. The joint matrix is an
n×Md matrix, where d is the number of embedding dimensions used in the ase

sub-step of mase (and is usually taken to be log2(n)). This matrix is manageable
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in size and scale for successive operations, as the number of elements scales on
the order of n

√
n and M .

Omni has a substantial limitation: the construction (and embedding) of the
omnibus matrix. The omnibus matrix scales in size with (Mn)2. When we have
many networks and M is large, or when we have many nodes per network and n
is large, this can be computationally prohibitive. The svd can become intractable
to compute with sizable matrices, and in these situations mase might be simpler
to incorporate.

Both omni and mase are simple to use, and have similar theoretical underpin-
nings (mase on the COSIE model, and omni on the JRDPG model, with estab-
lished theoretical underpinnings for heterogeneous RDPG models). While the
COSIE model makes explicit use of shared structure, there is nothing prohibit-
ing the COSIE model from incorporating little to no shared structure across the
collection of networks if none is present. We could imagine a situation in the
worst case where there is no shared structure in which the estimated “shared”
latent positions could be taken to be unique latent positions for each network.
Then, the score matrices for each network could leverage only the unique latent
positions for that specific network and simply have scores of 0 for the estimated
shared latent positions that are associated with other networks. For this reason,
when we want to exploit or highlight shared/unique structures across a collection
of networks, mase is a sensible choice.

A nice feature of omni is that it produces latent position estimates for each
network, rather than just unique score matrices for each network. This means
that for each network, we end up with a d-dimensional representation for each
node. To learn about disparities across networks downstream at the node-wise
level, this might be a reasonable starting point for analysis, and could be easier
to incorporate with tabular machine learning techniques.

For these reasons, if computational time or spatial considerations need to be
made, or if we anticipate some amount of shared structure in our networks,
mase will be a reasonable choice. If we do not anticipate shared structure in our
networks, either mase or omni are principled approaches. Finally, if we want to
maintain separate network representations but we want to avoid dealing with
non-identifiability, we will tend to use omni.

Appendix B.4.1 provides technical details on omni and mase embeddings.
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5.6 Joint representation learning

Building on the covariate representation models introduced in Section 4.10,
we now introduce representation learning methods for incorporating both
network topology and node attributes into a single, unified representation.

We cover the following:

1 Motivation for combining network structure with node attributes,
2 The Covariate-Assisted Spectral Embedding (CASE) technique,
3 Construction of similarity matrices from node covariates,
4 Methods for balancing the influence of network structure and node at-

tributes,
5 Considerations for positive semidefiniteness in joint embeddings, and
6 Extensions and variations of joint representation learning techniques.

Joint representation learning allows for the integration of multiple data
modalities, leveraging both network structure and node-level information.
This approach builds upon the network models with covariates introduced
in Section 4.10 and extends the spectral embedding techniques covered in
Sections 5.3 and 5.4. While conceptually similar to the multiple network
representations explored in Section 5.5, joint embeddings focus on inte-
grating different types of information within a single network, rather than
combining information from multiple networks.

In many problems, a network might be more than just the network topology,
or the information contained in its collection of nodes and edges. If we were
investigating a social network, we might have access to extra information about
each person; e.g., their height or their age. If we were investigating an infectious
disease network, we might incorporate vaccine coverage, population movement,
or disease variant. When we embed a network, it seems like we should be able
to use these extra bits of information – node, edge, or network attributes –
to improve our analysis. We briefly discussed the theory around networks with
covariates in Section 4.10. Here, we will expand on this theory with techniques
and tools that jointly use both the covariates and the network topology to create
and learn from new representations of the network. These techniques and tools
are called joint representation learning.

There are two primary reasons that we might want to explore using node co-
variates in addition to topological structure. First, they might improve our stan-
dard embedding algorithms like ase and lse. For example, if the latent structure
of the covariates of a network lines up with the latent structure of its topology,
then we might be able to reduce noise when we embed, even if the communities
in our network don’t overlap perfectly with the communities in our covariates.
Second, figuring out what the clusters of an embedding actually mean can some-
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times be difficult. Covariates create a natural structure that we can explore.
Covariate information in brain networks showing us where in the brain each
node is, for instance, might let us better understand the types of characteristics
that distinguish between different brain regions.

In this section, we will explore Covariate-Assisted Spectral Embedding (case),
a variation on Spectral Embedding [11]. In case, instead of embedding just the
adjacency matrix or the Laplacian, we will combine the Laplacian and the co-
variates into a new matrix and embed that.

Case Study 5.6.1 Wikipedia pages

We can illustrate how using covariates might help us by using a model in
which some of our community information is in the covariates and some is in
our topology. Let’s imagine we have a network of N = 200 nodes representing
Wikipedia pages for two complementary fields: computer science and statis-
tics. A pair of wikipedia pages have an edge if both of the wikipedia pages
link to one another.
Unfortunately in our network, there is an extremely prominent core: the top 50

computer science wikipedia pages and the top 50 statistics wikipedia pages
overwhelmingly cross-link to one another, and do not tend to link to the
peripheral and more specialized pages nearly as much.
When we attempt to embed this network using a strategy like ase, the embed-
ding will probably differentiate the strong core very easily from the periphery,
but will not parse out the “subject-matter specific” signal of retaining the dif-
ferences between computer science and statistics articles.
Fortunately, we have another piece of information: whether a given page cites
each of the twenty most influential statisticians of all time. This is a simple in-
dicator for each statistician: a value of 1 is recorded for page i and statistician
k if statistician k is cited by page i.

We will invent toy data representing wikipedia pages, described in Case Study
5.6.1. Let’s first generate the data:

from graspologic.simulations import sbm

import numpy as np

n = 200 # total number of nodes

# first two communities are the ‘‘core’’ pages for statistics

# and computer science, and second two are the ‘‘peripheral’’ pages

# for statistics and computer science.

B = np.array([[.4, .3, .05, .05],

[.3, .4, .05, .05],

[.05, .05, .05, .02],

[.05, .05, .02, .05]])

# make the stochastic block model

np.random.seed(0)
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A, labels = sbm([n // 4, n // 4, n // 4, n // 4], B, return_labels=True)

# generate labels for core/periphery

co_per_labels = np.repeat(["Core", "Periphery"], repeats=n//2)

# generate labels for statistics/CS.

st_cs_labels = np.repeat(["Stat", "CS", "Stat", "CS"], repeats=n//4)

The network is shown in Figure 5.6.1(A), and we show the results of an lse

of the network into two dimensions in Figure 5.6.1(B). Note that in embedding
this network, we can only distinguish the core nodes (from both CS and Statis-
tics) from the periphery nodes (from both CS and Statistics), but we cannot
differentiate between the two subject materials.

Figure 5.6.1 (A) the wikipedia network, (B) an lse of the wikipedia network.

Next, we will focus on generating the covariates associated with each node.
We have a simple binary indicator for each page, indicating whether any of
our twenty influential statisticians are cited. For statistics pages, there is a 50%

chance that each of the twenty statisticians are cited. However, for computer
science pages, there is only a 5% chance that each of the twenty statisticians are
cited. We can generate these covariates using numpy:

trial = []

for label in st_cs_labels:

if "Stat" in label:

# if the page is a statistics page, there is a 50% chance

# of citing each of the scholars

trial.append(np.random.binomial(1, 0.5, size=20))

else:

# if the page is a CS page, there is a 5% chance of citing

# each of the scholars

trial.append(np.random.binomial(1, 0.05, size=20))

Y = np.vstack(trial)

The covariate matrix is plotted in Figure 5.6.2(A). Next, we perform a pca

with the covariates, to determine whether we could learn the four communities
(core and periphery of statistics and computer science) using only the covari-
ate data. We will build PCA ourselves to show the similarity of the method
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with ase or lse. In practice one would usually use sklearn’s implementation,
sklearn.decomposition.PCA.

def embed(X, d=2, seed=0):

"""

A function to embed a matrix.

"""

np.random.seed(seed)

Lambda, V = np.linalg.eig(X)

return V[:, 0:d] @ np.diag(np.sqrt(np.abs(Lambda[0:d])))

def pca(X, d=2, seed=0):

"""

A function to perform a pca on a data matrix.

"""

X_centered = X - np.mean(X, axis=0)

return embed(X_centered @ X_centered.T, d=d, seed=seed)

Y_embedded = pca(Y, d=2)

We plot the resulting embedding in Figure 5.6.2(B). This time, we have ex-
cellent separation of the statistics and computer science pages, but we cannot
differentiate the core from the periphery.

Figure 5.6.2 (A) the covariates associated with each wikipedia page, (B) a pca of the
covariate data.

5.6.1 Covariate-Assisted Spectral Embedding

Covariate-Assisted Spectral Embedding, or case, is a simple way of combining
our network and our covariates into a single model. In the most straightforward
version of case, we take a weighted combination of the network’s Laplacian L

and a similarity matrix for our covariates, Y Y >.
Let’s take a look at the network Laplacian and the covariate similarity matrix

Y Y >:

from graspologic.utils import to_laplacian
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Remark 5.6.2 Connections to Principal Components Analysis (pca)

The rows of the matrix Y , denoted by ~yi, are each 20-dimensional vectors,
where each entry has a value of 0 of 1. The matrix product Y Y > has entries
containing the dot product of each ~yi with each ~yj :

(Y Y >)ij = ~y>i ~yj =

20∑
k=1

yikyjk.

In this case, since the values of our covariate matrix can take only 0s and 1s,
these dot products simply count the number of times wikipedia page i and
wikipedia page j both cite the same scholar. We can conceptualize the uncen-
tered, un-rescaled covariance matrix Y Y > as giving a degree of “similarity”
in the covariates for each of our nodes.
Much like ase exploits latent structure in the adjacency matrix to determine
an appropriate embedding, a pca exploits latent structure in the covariances of
our data matrix (here, our covariates, Y ) to embed a given dataset. Typically,
a pca of Y would spectrally embed the centered and rescaled sample covariance
matrix S, with entries:

sij =
1

n− 1
(~yi − ȳ)>(~yj − ȳ),

where ȳ = 1
n

∑n
i=1 ~yi is the sample mean of the rows of Y (i.e., the samples

are mean-centered), and 1
n−1 is a rescaling factor.

This is similar yet distinct from the procedure that we are using here, because
we will not typically take the centering (by the mean ȳ) nor the rescaling steps.

# compute the network Laplacian

L_wiki = to_laplacian(A, form="DAD")

# log transform, strictly for visualization purposes

L_wiki_logxfm = np.log(L_wiki + np.min(L_wiki[L_wiki > 0])/np.exp(1))

# compute the node similarity matrix

Y_sim = Y @ Y.T

The network Laplacian and the node similarity matrix are shown in Figure
5.6.3. Note that we used a log-transform strategy to visualize the log-transformed
Laplacian after adding a suitably small offset ε. This is because many of the
network weights are extremely small, so the color scale was not particularly
informative of the Laplacian itself.

Each matrix appears to preserve disparate properties of the underlying net-
work: its topology, reflected in the network Laplacian, conveys the topological
disparities between the core and peripheral pages in our network. On the other
hand, the covariate metadata associated with each node in the network conveys
the content disparities between the statistics and computer science nodes.
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Figure 5.6.3 Visualizations of (A) the log-transformed network Laplacian, and (B)
the covariate similarity matrix.

Combining information from the network topology and the covariates
The matrix we embed with case is a linear combination of the network Laplacian
L and the covariate similarity matrix Y Y >. It is typically represented like this:

L+ αY Y >.

The weight α is a hyper-parameter to the case technique. We will often want to
select it with respect to a downstream task of interest.

from graspologic.embed import AdjacencySpectralEmbed as ase

def case(A, Y, weight=0, d=2, tau=0, seed=0):

"""

A function for performing case.

"""

# compute the laplacian

L = to_laplacian(A, form="R-DAD", regularizer=tau)

YYt = Y @ Y.T

return ase(n_components=2, svd_seed=seed).fit_transform(L + weight*YYt)

embedded = case(A, Y, weight=.002)

For instance, if we had a high-level goal of producing an embedding which
preserved both topological properties of the network (such as the core and pe-
ripheral components) as well as covariate-derived properties of the network (such
as statistics and computer science components), a heuristic might be to try nu-
merous weights α, and evaluate the resulting embeddings for each choice of α.
A suitable choice of α would preserve the community groupings.

Figure 5.6.4 explores various network embeddings with different choices of α.
Note that for low choices of α, the embedding resembles that of the topology-only
lse in Figure 5.6.1(B). For large choices of α, the embedding closely resembles
that of the covariate-only embedding in Figure 5.6.2(B). For the intermediate
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Figure 5.6.4 The network embedding using both the network topology and the node
covariates for L+ αY Y >, for different choices of weight α.

choices, such as α = .0006 or α = .004, the embedding appears to leverage
information across both the covariates and the network topology, and both the
core/periphery and subject matter (statistics/computer science) structures are
preserved.

In practice, we can often use grid-like search approaches like those in Figure
5.6.4 to determine which weight values produce good community separation.
If we know community separations ahead of time, we could compute centers
for our communities and then use metrics like the Silhouette Score (discussed in
Appendix C.1), which measures community separation, to automate this process.
If we do not know community separations ahead of time, we can use automated
approaches such as Community Detection (discussed in Section 6.1).

5.6.1.1 Automatic weight selection
In general, it is ideal to perform joint representation learning with an approach
like case with a downstream machine learning task in mind. This is because the
weight selection procedure of case is a search over hyperparameters, and it is
difficult to determine what an appropriate hyperparameter choice is without any
way to evaluate it. For instance, in Figure 5.6.3, we determined “ideal” weight
selections to be on the basis of how well different weights established community
structure for known communities. We could make such a search more quantitative
by incorporating a procedure which quantifies “community separation” between
groups of nodes.

While we cannot automatically determine an “ideal” weight in terms of an
arbitrary downstream task, we can take principled steps to ensure that the two
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components of case (the normalized Laplacian and the covariate similarity ma-
trix) are contributing equally to the embedding process.

When embedding symmetric matrices, we need to keep in mind that the points
we are plotting are the components of the eigenvectors with the biggest eigenval-
ues. When embedding into two-dimensional space, for instance, the x-axis values
are the components of the eigenvector with the biggest eigenvalue, and the y-axis
values are the components of the eigenvector with the second-biggest eigenvalue.
This means that we should be thinking about how much information is being
contributed to the biggest eigenvalue/eigenvector pairs.

Let’s think about this more deeply. If we have a relatively small weight α,
Y Y > will contribute only a small amount to the largest eigenvalue/vector pair.
If we have a relatively large weight, Y Y > will contribute a large amount to the
largest eigenvalue/vector pair. A prudent starting point, therefore, might be the
ratio of the largest eigenvalue of L to the largest eigenvalue of Y Y >:

α0 =
λ1(L)

λ1(Y Y >)

The case procedure can be automated in graspologic, with:

from graspologic.embed import CovariateAssistedEmbed as case

embedding = case(alpha=None, n_components=2).fit_transform(A, covariates=Y)

The alpha parameter will specify a specific weight.

5.6.2 Considerations for positive semidefiniteness

As we will see in Section 5.7.3, most of the techniques discussed so far operate well
under the homogeneous setting captured by the gRDPG. This setting extends
the intuition of what we have discussed in the positive semidefinite case to the
non positive semidefinite case.

case does not quite fall into the same theoretical framework as the other al-
gorithms described in this section, despite sharing conceptual and intuitive sim-
ilarities. If we have reason to believe that the random network underlying our
data is not positive semidefinite, such as identifying a disassortative block struc-
ture (from Section 4.5), we can alter the Laplacian to be positive semidefinite
by instead embedding LL+ αY Y >. This can be done in graspologic with:

embedding = case(assortative=False, n_components=2).fit_transform(A, covariates=Y)

When we are not sure whether the structure of the network contains positive
semidefinite or non positive semidefinite structure in the underlying random net-
work, the non-assortative case tends to perform nearly as well under assortative
structures, and far better under non-assortative structures [11].
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5.6.3 Extensions of case

We might want to consider other possible similarity functions than simply the
inner product ~y>i ~yj for covariate assisted embedding techniques. For instance,
graspologic also allows centering and scaling steps to be taken, in much the
same vein as the typical pre-processing steps for pca described in Remark 5.6.2.
We could further generalize this strategy to other similarity functions entirely,
or try different ways of combining the two matrices.
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5.7 Estimating latent dimensionality and non positive
semidefiniteness

Chapter 5 has covered a variety of approaches that enable us to use embed-
ding techniques such as ase, lse, mase, omni, or case to obtain estimates of
latent position matrices. However, we ignore a crucial question: how many
dimensions should we embed into?

This section introduces techniques to predict the embedding dimension
d̂. We also explore the implications of non-positive semidefinite probability
matrices.

We cover:

• The scree plot as a visualization tool for embedding dimensionality,
• Automatic elbow selection techniques for estimating latent dimensions,

and
• The consequences of embedding matrices that lack positive semidefinite-

ness and the generalized random dot product graph (GRDPG).

Estimating the correct latent dimensionality is critical for the effective-
ness of the embedding techniques introduced in Sections 5.3 and 5.4. The
methods presented here form the foundation for more advanced applications
in community detection (Section 6.1) and network comparison (Section 7.1).

In this section, we will use the following SBM as our example network:

from graspologic.simulations import sbm

import numpy as np

# block matrix

n = 100

B = np.array([[0.6, 0.2], [0.2, 0.4]])

# network sample

np.random.seed(0)

A, z = sbm([n // 2, n // 2], B, return_labels=True)

5.7.1 The scree plot

Throughout any investigation into spectral embeddings, one of the critical sum-
mary statistics to look at with respect to the matrix being embedded is its scree
plot.

The scree plot shows the singular values of the embedding matrix (the diag-
onal entries of the singular value matrix Σ) in sequential (descending) order by
their indices; the first (biggest) singular value is in the beginning, and the last
(smallest) singular value is at the end. We can find the singular values like this:
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from scipy.linalg import svdvals

# use scipy to obtain the singular values

s = svdvals(A)

And we can visualize the scree plot like this:

from pandas import DataFrame

import seaborn as sns

import matplotlib.pyplot as plt

def plot_scree(svs, title="", ax=None):

"""

A utility to plot the scree plot for a list of singular values

svs.

"""

if ax is None:

fig, ax = plt.subplots(1,1, figsize=(10, 4))

sv_dat = DataFrame({"Singular Value": svs, "Dimension": range(1, len(svs) + 1)})

sns.scatterplot(data=sv_dat, x="Dimension", y="Singular Value", ax=ax)

sns.lineplot(data=sv_dat, x="Dimension", y="Singular Value", ax=ax)

ax.set_xlim([0.5, len(s)])

ax.set_title(title)

plot_scree(s, title="Scree plot of $L$")

Figure 5.7.1(A) shows the scree plot. A singular value can be thought of as
quantifying to the relative amount of “information” that a corresponding left-
/right singular vector contains about its underlying matrix.

To formalize this intuition, recall Exercise 5.3.1. If A = UΣV > is an svd of A,
that:

A = UΣV > =

n∑
i=1

σi~ui~v
>
i (5.6)

By Concept 5.7.1, note that the left and right singular vectors ~ui and ~vi are
normalized to have unit length; i.e., ~ui and ~vi have a Euclidean norm of 1. With
this intuition in mind, we can think of the singular value σi as “weighting” the
matrix ~ui~v>i such that it is responsible for a greater proportion of the sum that
produces A. Since the singular values are non-negative and decreasing (σ1 ≥
σ2 ≥ ... ≥ σn ≥ 0), each sequential singular value and left/right singular vector
is less important, in that its weight in the overall sum is smaller.

In Figure 5.7.1(B), we isolate the first ten dimensions from the scree plot.
Notice that there’s a marked area called the “elbow.” In this area, singular values
stop changing in magnitude as much when they get smaller: before the elbow,
the singular values decline rapidly, and after the elbow, the singular values “level
off”. This is called an elbow because the plot kind of looks like an arm when
viewed from the side.

In an SBM with 2 communities such as our example here, we found in Concept
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Concept 5.7.1 Orthogonal matrices

When A is a square adjacency matrix for n nodes with svd given by A =

UΣV >, U and V are square orthogonal matrices; that is, U>U = V >V = In.
Applying standard definitions of matrix multiplication, we see that:

U>U =

` ~u>1 a
...

` ~u>n a


> >
~u1 . . . ~un
⊥ ⊥



=

~u
>
1 ~u1 . . . ~u>1 ~un
...

. . .
...

~u>n ~u1 . . . ~u>n ~un

 =

1
. . .

1

 = In

Therefore, for any i, we obtain that ~u>i ~ui = ‖~ui‖2 = 1 (the left singular
vectors are normalized to have a Euclidean norm of 1; i.e., their “length” is
1), by using the definition of the Euclidean norm from Concept 5.5.6. As an
aside, note also that for any pair i 6= j, that ~u>i ~uj = 0. Identical results apply
to the right singular vectors.

5.3.9 that the rank of the probability matrix (and the true latent dimensionality
of the random network) would be at most 2; therefore, applying Concept 5.3.6,
we would anticipate at most two non-zero singular values, and the remaining
singular values would have a value of 0. In practice, when we look at adjacency
matrices (instead of probability matrices), the singular values can be thought
of as a “noisy” version of the observations we made about the singular values
of a probability matrix. The location of the elbow in the scree plot gives a
rough indication for how many “true” dimensions the latent representation has;
singular values after the elbow are quite small. Taken in light of Equation 5.6,
this indicates that these successive dimensions do not weight very heavily in the
svd for the adjacency matrix, and in this sense, tend to be largely “noise.”

The balancing act of elbow selection
When a network has fewer nodes, or when its adjacency matrix is sparse because
it has very few non-zero entries, its scree plot tends to be messy. There may
be multiple elbows, and it may be unclear where we should “draw the line” and
cut off extraneous singular values. By removing too many dimensions, we may
end up cutting off dimensions that contain latent structure in the estimated
latent positions. By removing too few dimensions, we may be left with too many
noisy latent dimensions, and learning about the network later might be overly
complicated. Manually choosing an estimated latent dimensionality is a balancing
act, and often more of an art than a science.
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Figure 5.7.1 (A) the scree plot of singular values of A, and (B) the scree plot of the
first ten singular values of A, with the elbow annotated.

5.7.2 Automatic elbow selection

The visual method of estimating latent dimensionality using elbow location is
inherently subjective. Real data will rarely have a prominent elbow like our sim-
ulated network in Figure 5.7.1. In general, embedding into more dimensions than
necessary tends to be less problematic than embedding into too few dimensions;
if one chooses a latent dimensionality overly aggressively, one may discard useful
signal entirely, which cannot be recovered during a downstream analysis.

graspologic automates the process of finding an elbow using a popular method
developed in 2000 by Dr. Thomas Minka at MIT called minka, from [12]. We won’t
get into the specifics of how it works here, but it generally does a fairly good job
at automatic elbow selection. In graspologic, when we do not specify a number
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of embedding dimensions via the n_components argument, the elbow selection is
done automatically with minka:

from graspologic.embed import AdjacencySpectralEmbed as ase

# use automatic elbow selection

Xhat_auto = ase(svd_seed=0).fit_transform(A)

The number of columns of Xhat_auto.shape[1] gives the dimensionality esti-
mated by graspologic.

5.7.3 What happens for non PSD probability matrices?

Throughout this book, we have made a strong assumption: we conceptualize our
underlying random networks to have positive semidefinite probability matrices.
This has convenient implications for us.

First, we are able to find latent position matrices with DCSBMn(~z, ~θ,B) and
SBMn(~z,B) random networks with PSD block matrices exactly and succinctly,
taking the probability matrices to be:

Psbm = CBC>

Pdcsbm = ΘCBCΘ>

Since B is positive semidefinite, it has an exact real square-root matrix. This
allows us to obtain exact (real) representations of latent positions:

Xsbm = C
√
B

Xdcsbm = ΘC
√
B

Where we would always be able to compute
√
B in an exact form using the

Cholesky decomposition, as we did in Section 4.5.
PSD structure also arises readily in real data. Many block matrix structures

from Section 4.5 appear in a positive semidefinite manner. Grasping core intu-
ition about random networks where the underlying block matrices are positive
semidefinite will play an important role in conceptualizing real problems.

However, it is useful to explore what happens when we depart from this as-
sumption. This section will explore the consequences (or lackthereof) of non
positive semidefiniteness.

The generalized random dot product graph
Even if P is not positive semidefinite, it can still be decomposed in the form
[6; 7]:

P = XIp,qX
> (5.7)

Where X is the real latent position matrix. Since X is a n × d matrix, Ip,q
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will be a d × d square matrix. In particular, Ip,q will be a special “variation” of
the identity matrix. It will be a diagonal matrix whose diagonal entries are p
consecutive 1s, followed by q consecutive −1s. Since a d× d diagonal matrix has
d diagonal elements, we have the restriction that p+ q = d.

Notice that if p = d, then q = 0 and therefore P = XX>, so P is positive
semidefinite because it can be decomposed into the product of a real matrix and
itself. However, if p < d and consequently q > 0, this matrix is not necessarily
positive semidefinite.

Even when P is not positive semidefinite, ase can still recover estimates X̂ of
X (up to an orthogonal transformation) that are reasonable [7], in the same sense
that ase was reasonable for networks with underlying positive semidefinite prob-
ability matrices (Section 5.3.3). Further, these latent positions X share several
of the convenient features that latent position matrices for positive semidefinite
SBMn(~z,B) and DCSBMn(~z, ~θ,B) random networks share in Section 4.7.8.

If the random network is an SBMn(~z,B), PSD block matrix or not, the
latent position vectors ~xi from the decomposition in Equation (5.7) will still
be the same for all nodes in the same community. If the random network is a
DCSBMn(~z, ~θ,B), PSD block matrix or not, the latent position vectors ~xi from
the decomposition in Equation (5.7) will also be the same (up to a rescaling by
the degree-correction factor) for all nodes in the same community.

The fact that ase (and likewise, lse, omni, and mase) can recover reasonable
estimates X̂ of X suggests that we can still use X̂ to recover latent structure
in the estimates of the latent positions produced with these strategies, even if
positive semidefiniteness is not a reasonable assumption about the networks.

This way of representing P given in Equation (5.7) is known as the generalized
Random Dot Product Graph, or GRDPGn (X) model with “signature” (p, q).
This model is equivalent hierarchically in Figure 4.11.1 to the IERn(P ) simple
random networks. For a simple random network, for every probability matrix
P , there exists some latent position matrix X that has d ≤ n latent dimensions
and Ip+q where P = XIp,qX

>. This makes the GRDPG an extremely powerful
theoretical tool for network embeddings, because it can be used to conceptualize
any probability matrix. The GRDPG is analyzed in more depth in Appendix
A.7.

To motivate the utility of the ase outside of positive semidefinite contexts, let’s
perform ase on a sample of an SBMn(~z,B) random network with a disassortative
block matrix from Section 4.5. Remember that disassortative block matrices have
off-diagonal entries greater than the on-diagonal entries, so the determinant is
negative by design and the block matrix is not PSD:

from graspologic.embed import AdjacencySpectralEmbed as ase

from scipy.spatial import distance_matrix

nk = 50 # the number of nodes in each community

B_indef = np.array([[.1, .5], [.5, .2]])

np.random.seed(0)
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A_dis, z = sbm([nk, nk], B_indef, return_labels=True)

Xhat = ase(n_components=2, svd_seed=0).fit_transform(A_dis)

D = distance_matrix(Xhat, Xhat)

Figure 5.7.2 (A) a sample of a random network with an indefinite block matrix, and
hence indefinite probability matrix, (B) a scatter plot of the estimated latent
positions via ase, (C) the distance matrix between pairs of estimated latent positions.

Figure 5.7.2(A) visualizes a sample of the random network with a non PSD
probability matrix, where it is evident that between-community connections (the
off-diagonal blocks of the adjacency matrix in the upper-right and lower-left cor-
ners) are more frequent than within-community connections (the on-diagonal
blocks of the adjacency matrix). This reflects the idea that the underlying ran-
dom network has a non PSD probability matrix. The estimated latent positions
are shown in Figure 5.7.2(B). Notice that even though the block matrix (and
consequently the probability matrix) of the underlying random network is not
PSD, ase still produced a meaningful embedding, in that nodes from the same
community are still more similar than nodes from different communities. This
insight can be confirmed by looking at the pairwise distance matrix (Figure
5.7.2(C)). While some of the strategies we discussed were developed prior to
these results, such as the omni embedding [13], it is likely that they produce
principled estimates of latent positions even under certain types of non PSD
structure.

Hopefully, this provides a level of credence to the idea that spectral embeddings
are flexible, and can be used to derive latent structure from network samples
across many (not just PSD) contexts.
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Part III

Applications





6 Applications for a single network

In Part II, we came quite a long way. We first defined a number of random
network models in Chapter 4. Then, given data – network observations – Chapter
5 used these models to transform our observations into useful representations.

Now, we show what can be done with our representations. Chapter 6 begins
by exploring applications for single networks. We then compare two networks in
Chapter 7, and many networks in Chapter 8. We conclude with a discussion on
deep learning methods in Chapter 9. Figure 6.0.1 describes the process on the
right.

We begin by deriving insights from a single network:

1 Section 6.1 introduces the community detection problem, and how we can use
network embeddings to impute community labels for our network.

2 Section 6.3 tests whether groups of edges differ in the network.
3 Section 6.4 determines appropriate levels of model complexity for our network.
4 Section 6.5 introduces the vertex nomination problem, which allows us to find
nodes that are “similar” to reference nodes.

5 Section 6.6 embeds new nodes into an existing network embedding.

Figure 6.0.1 The statistical learning pipeline. In this chapter, we will learn to apply
network machine learning systems to make inferences about the underlying network
population.
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6.1 The community detection problem

Until now, when dealing with stochastic block models, we assumed that we
knew the community assignments ahead of time. In Section 4.7.8, we saw
that nodes within the same community share identical latent positions, up
to degree correction. We also learned how spectral embedding techniques
like ase and lse can estimate these latent positions up to an orthogonal
transformation from observed networks (Sections 5.3 and 5.4).

This section tackles the practical challenge of estimating community
structure when true community labels are unknown. We will:

1 Estimate latent community assignments from spectral embeddings,
2 Evaluate the homogeneity of estimated communities,
3 Assess the distinctness of detected communities, and
4 Explore techniques for determining the number of communities.

To do this, we assume familiarity with several concepts from unsupervised
learning, including the k-means algorithm, the Adjusted Rand Index (ARI),
confusion matrices, and the silhouette score. The unsupervised learning
basics section of Appendix C.1 covers the required background knowledge
for these concepts.

Let’s revisit the Section 5.4 example of communities in schools. We sampled
from a homophilic DCSBMn(~z, ~θ,B) random network which originally had two
communities. Here we will sample from a similar random network with three
communities instead of two. We will also permute the nodes of the matrix ran-
domly, since in practice, nodes will not initially be ordered to reflect community
structure:

import numpy as np

from graphbook_code import dcsbm

nk = 100 # 100 nodes per community

K = 3 # the number of communities

n = nk * K # total number of nodes

zs = np.repeat(np.arange(K)+1, repeats=nk)

# block matrix and degree-correction factor

B = np.array([[0.7, 0.2, 0.1], [0.2, 0.5, 0.1], [0.1, 0.1, 0.4]])

theta = np.tile(np.linspace(start=0, stop=1, num=nk), reps=K)

# generate network sample

np.random.seed(0)

A = dcsbm(zs, theta, B)

# permute the nodes randomly

vtx_perm = np.random.choice(n, size=n, replace=False)

Aperm = A[vtx_perm, :][:,vtx_perm]
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zperm = zs[vtx_perm]

The network probability matrix is shown in Figure 6.1.1(A), and the adjacency
matrix is shown in Figure 6.1.1(B). Looking at the adjacency matrix, there is no
obvious structure to the network.

Figure 6.1.1 (A) the probability matrix for the DCSBMn(~z, ~θ,B) random networks,
and (B) a sample of the random network.

If we were to make a histogram of the node degrees, we would see that the
network appears to be slightly heavy-tailed, and so the reasoning in Section 5.4.3
would encourage the use of lse . However, for the purposes of this section, we
will proceed with ase.

6.1.1 Spectral clustering with a pre-defined number of communities

When we embed a network with a predefined number of communities K, the
true number of embedding dimensions is usually taken to be the number of
communities. Concept 5.3.9 discussed the reasoning for this.

In our example, since K = 3, we embed with 3 embedding dimensions:

import scipy as sp

from graspologic.embed import AdjacencySpectralEmbed as ase

Xhat = ase(n_components=3, svd_seed=0).fit_transform(Aperm)

D = sp.spatial.distance_matrix(Xhat, Xhat)

Figure 6.1.2(A) plots the second and third embedding dimensions as a scatter
plot. Even though the nodes in Aperm were completely randomized, the estimated
latent positions still retain a “blob” structure, where groups of nodes in the same
community look spatially close to one another. This is reflected in the distance
matrix in Figure 6.1.2(B), where we can see that the within-community pairwise
distances are usually smaller than the between-community pairwise distances.



294 Applications for a single network

Figure 6.1.2 (A) a spectral embedding of the randomly ordered adjacency matrix. (B)
the pairwise distances between the estimated latent positions for each pair of nodes.
Note that nodes are ordered by community, rather than randomly as in Figure 6.1.1.

6.1.1.1 Estimating community assignments via KMeans

We will use sklearn’s implementation of KMeans, an unsupervised clustering al-
gorithm, to estimate the latent community assignment vector. We denote this
estimate by ~̂z:

from sklearn.cluster import KMeans

labels_kmeans = KMeans(n_clusters = 3, random_state=0).fit_predict(Xhat)

As this procedure is fully unsupervised, there is no reason for the labels to
“align” with true descriptors (such as communities) with the nodes. In this case,
we have no reason to believe that community 1 produced by KMeans will corre-
spond to community 1 in our network. For this reason, we need to be careful
when evaluating unsupervised clustering techniques.

Evaluating the clustering
Because we are using simulated data, the true community labels are already
known. When we know true node labels ahead of time, we can leverage special
tools to evaluate clustering performance. The first of these is the confusion ma-
trix, produced with sklearn’s confusion_matrix(). The confusion matrix is a
table that illustrates how an unsupervised classification model stratifies points
into predicted labels on the basis of a known set of true labels.

from sklearn.metrics import confusion_matrix

# compute the confusion matrix between the true labels z

# and the predicted labels labels_kmeans

cf_matrix = confusion_matrix(zperm, labels_kmeans)

Figure 6.1.3(A) shows the confusion matrix. When we have a clustering that
aligns well with the true labels, the predictions tend to be homogeneous: a par-
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ticular true label will correspond to a particular predicted label, and vice-versa.
We can evaluate this homogeneity using the Adjusted Rand Index (ARI), where
a score of closer to 1 indicates that the true and predicted labels are perfectly
homogeneous:

Figure 6.1.3 (A) the confusion matrix. (B) the estimated latent positions, along with
whether the node was classified correctly (or not) after realigning the predicted
communities with the true communities.

from sklearn.metrics import adjusted_rand_score

ari_kmeans = adjusted_rand_score(zperm, labels_kmeans)

print(ari_kmeans)

# 0.490

A score of 0 indicates that the predicted community labels do not align with the
true labels, and a score of 1 indicates that the predicted communities perfectly
align with the true labels.

Evaluating the error rate
By remapping the labels, we can evaluate the error rate. From the confusion
matrix in Figure 6.1.3, we have a reasonable pattern:

1 Nodes assigned a predicted label of 0 tend to correspond to community 3,
2 Nodes assigned a predicted label of 1 tend to correspond to community 1, and
3 Nodes assigned a predicted label of 2 tend to correspond to community 2.

It seems clear that this would make for a reasonable correspondence between
the predicted and true labels. A correspondence between two sets (in this case,
the predicted and true labels for node communities) is a mapping that pairs the
elements of one set to elements in another set.

Results that are not as homogeneous as they are here can be complicated,
and we will not discuss them here. We can remap the labels with graspologic’s
remap_labels() utility:
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from graspologic.utils import remap_labels

labels_kmeans_remap = remap_labels(zperm, labels_kmeans)

With the labels from KMeans properly aligned to the true community labels, we
can evaluate the error rate of our function with numpy like this:

# compute which assigned labels from labels_kmeans_remap differ from the true labels z

error = zperm - labels_kmeans_remap

# if the difference between the community labels is non-zero, an error has occurred

error = error != 0

error_rate = np.mean(error) # error rate is the frequency of making an error

In Figure 6.1.3(B), we visualize the misclassified points as a function of the
data matrix that is being leveraged to estimate community assignments, the
estimated latent position matrix. We do a good job of classifying points in the
“arms” of the individual blobs of nodes (the clusters), but tend to do worse for
the points that are located between the clusters of nodes. This happens because
of the manner in which predicted community labels are applied by KMeans. See
Remark 6.1.1 and Appendix C.1 for more detailed commentary about why this
happens.

Box 6.1.1 Why does KMeans perform well for clustering samples of block
models?

When we cluster points using KMeans, we will tend to identify clusters which
correspond to blobs of points in our data which have similar pairwise (often
Euclidean) distances. Points are assigned to the cluster that they are closest
to, and as the KMeans algorithm iterates, it attempts to identify cluster centers
which minimize the cumulative pairwise distance from each set of points to
the nearest cluster.
Recall from Section 4.7.8 that with stochastic block models, the true under-
lying latent positions are identical for all nodes in the same community, and
from Section 5.3 that the estimated latent positions tend to “approximate” the
true latent positions. The estimates will retain this feature and the estimated
latent positions will be similar (in terms of their Euclidean distance) if they
are in the same community for the stochastic block model.

In the case of the degree-corrected stochastic block model, the underlying la-
tent positions are identical up to a rescaling along the direction of the community-
specific latent position vector. This will tend to materialize as elliptically-shaped
“blobs” in the estimated latent positions along the direction of the rescaling in the
underlying community-specific latent position vector. This is undesirable when
we try to cluster, because KMeans is effectively “penalizing” a difference between
a point and the community center symmetrically in Euclidean space. In reality,
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we would want the “penalty” to be applied asymmetrically. Because degree het-
erogeneity is a common problem with real networks, we are often motivated to
use other clustering techniques such as GMM which are more adaptive to rescalings
along the community-specific latent position vectors. See the exercise in Remark
6.1.2.

Exercise 6.1.2 Using GMM for clustering samples of block models

Here we walk through the steps for using GMM for clustering. First, simulate
from a DCSBMn(~z, ~θ,B) random network, like we did above, but skew the
degree-correction vector more dramatically, with K = 2 communities.

1 Spectrally embed the adjacency matrix into two dimensions, and illustrate
that the estimated latent positions appear to be elliptical.

2 Apply GMM to cluster the estimated latent positions, using
GaussianMixture from sklearn. Use the techniques that we described in
this section to evaluate the clustering procedure.

3 Following the tutorial [1], plot the community centers (the means_

attribute of the instantiated class) estimated by GMM, and plot ellipses
reflecting the estimated covariance (the covariances_ attribute) about the
community centers.

4 For each point in the network, compute the probability that the point is
from its assigned cluster, using the predict_proba() function from the
GaussianMixture object. Plot the estimated latent positions, with the
color going from low probability (red) to high probability (green).

Use the objective function for GMM to argue that GMM tends to penalize points
less if they are farther away from the community center but along the prin-
cipal axis of the community-specific ellipse, and more if they are farther
away from the community center but not along the principal axis of the
community-specific ellipse. Argue why this makes sense in the context of
the DCSBMn(~z, ~θ,B) random network underlying the network sample by
discussing the degree-correction factor heterogeneity.

6.1.2 Spectral clustering with an undefined number of communities

In real data, we almost never have a beautiful canonical modular structure that
makes choosing a number of communities obvious. Further, by applying unsuper-
vised clustering algorithms in the first place and attempting to learn community
labels from the data, it’s likely that we will not know reasonable community
labels in advance. This means that we will very rarely know the “true” number
of communities, K, nor the number of embedding dimensions ahead of time.

To estimate the community assignment vector in this case, we use a procedure
similar to the one we used in Section 6.1. We embed, but because we do not know
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Box 6.1.3 Nomenclature about clusters and communities

With unsupervised classification, groups of points that are assigned to the
same group by the trained classifier are typically called a cluster. However, in
our case, they are more than just clusters: they are predicted node community
labels. For this reason, when we are referring specifically to the assignments
themselves, we will often refer to this concept as “predicted communities” or
something of the like. When we are referring to “blobs of points”, we will often
default to calling them clusters of points.

the number of communities we are looking for, we use automatic elbow selection
from Section 5.7. When we do not specify a number of dimensions explicitly,
graspologic does this by default:

Xhat = ase(svd_seed=0).fit_transform(Aperm)

print("Estimated number of dimensions: {:d}".format(Xhat.shape[1]))

# Estimated number of dimensions: 3

Examining the pairs plot, we again find that Dimensions 2 and 3 show stratified
blobs in the estimated latent positions, in Figure 6.1.2(A).

Since we do not know the optimal number of communities K nor the true com-
munity assignments, we must choose an unsupervised clustering technique which
allows us to compare clusterings with different choices of community counts.

The Silhouette Score
We can use the silhouette score (Appendix C.1) to deduce a reasonably ap-
propriate number of communities. We first choose a range of communities that
we think might be appropriate for our network. For instance, we think there
might be as many as 10 communities in our dataset. We perform a clustering
using unsupervised learning for all possible numbers of communities, from 2 to
the maximum number of communities we think could be reasonable. Then, we
compute the silhouette score for predictions with each number of communities.
Finally, we choose the predictions corresponding to the number of communities
that has the highest silhouette score.

Let’s see how to do this, using graspologic’s KMeansCluster() function:

from graspologic.cluster import KMeansCluster

km_clust = KMeansCluster(max_clusters = 10, random_state=0)

labels_kmclust = km_clust.fit_predict(Xhat)

To determine an optimal number of clusters, we visualize the silhouette score
as a function of the number of clusters:

import seaborn as sns

from pandas import DataFrame as df
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nclusters = range(2, 11) # graspologic nclusters goes from 2 to max_clusters

silhouette = km_clust.silhouette_ # obtain the respective silhouettes

# place into pandas dataframe

ss_df = df({"Number of Communities": nclusters, "Silhouette Score": silhouette})

sns.lineplot(data=ss_df, x="Number of Communities", y="Silhouette Score")

In Figure 6.1.4(A), we look at the number of communities as a function of the
silhouette score. Notice that KMeans with silhouette score analysis determines
that the optimal number of communities is K̂ = 4.

Figure 6.1.4(B) shows the predicted communities for each node coloring the
estimated latent dimensions. It appears that KMeans has been “fooled” by the
elliptical, non-spherical embeddings, and determined that optimal unsupervised
classification performance could be achieved by adding a fourth community to the
center of the estimated latent positions. This is because KMeans and the silhouette
score penalize all dimensions equally, which might not always be desirable.

Figure 6.1.4 (A) an analysis of the silhouette scores as a function of the number of
communities. (B) the predicted communities for each node. (C) the confusion matrix
with K̂ = 4. (D) the misclassified points.

Interpreting community predictions
To determine what the predicted communities correspond to, we plot the con-
fusion matrix as a function of the true node community in Figure 6.1.4(C). The
“arms” of the ellipses in Figure 6.1.4(B) correspond to predicted labels of 0, 2,
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and 3 respectively, and nearly perfectly correspond with the true underlying node
communities 1 through 3 respectively in Figure 6.1.4(C). On the other hand, the
1 community at the center of the arms does not correspond to any specific true
label particularly well, and is an agglomeration of points at the bases of the arms
across all three true communities. We visualize the points that are misclassified
in Figure 6.1.4(D), which correspond to the points assigned to the 1 community.

Determining what predicted communities mean
By now, we know how to apply spectral clustering to network data and evaluate
it when we have a single node covariate. However, real data typically have many
covariates associated with each node, some of which might not even have discrete
(one of K) labels. For instance, in Figure 2.6.1, each node had a spatial position.
This would not be an easy framework for interpreting our communities.

For this reason, there is an art in determining what predicted communities
mean, much like many other applications of unsupervised learning. For instance,
we may have to determine which lobe of the brain each spatial position listed
above falls into to obtain a sensible interpretation of the communities.

In many contexts, we might not even know what these predicted communities
correspond to at all, and we might have to rethink how the network was collected
and work from the ground up to try to find meaning in the predicted commu-
nities. In this sense, once we perform community detection and identify stable
communities, our role as a network learning scientist has really just started.

6.1.3 Extending community detection to other formulations

Algorithm 20 provides a generic formulation of the community detection process
for network data with adjacency representations using KMeans and ase. These
procedures generalize readily to alternative approaches in which the network
data can be represented as a matrix.

For instance, we could substitute lse for ase, and potentially be more robust
to degree variation in the network. If we had many networks with an underly-
ing shared structure, we could run mase on our collection of networks, and use
unsupervised learning techniques to learn about the underlying shared latent
position matrix. If we had particular node covariates that we wanted to incor-
porate into our clustering, we could use case to embed a weighted combination
of the network topology with node-specific covariates, and produce communities
that might meaningfully inform our ability to learn from our network data. Fur-
ther, we could look to non-spectral embedding techniques as well to learn latent
representations. We discuss a few in Section 9.

Finally, as we covered in Remark 6.1.2, there are many other unsupervised
learning techniques such as GMM that we could leverage to estimate community
labels from our network. If we do not specify the number of communities ahead
of time and wish to evaluate a range of possible numbers of communities, it is
important to choose evaluation criteria that will reflect our choice of clustering
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Algorithm 20: Unsupervised spectral community detection from net-
work data with KMeans

Data: A the adjacency matrix of your network.
d Optionally, a number of embedding dimensions.
K Optionally, a number of communities.

Result: predicted community assignments.
1 Let X̂ = ase(A, d). If the dimensionality d is unspecified, estimate it

through elbow selection in Section 5.7.
2 Train a KMeans classifier, using the representation X̂, to identify K

communities. If the number of communities is unspecified, evaluate the
classifier over a range of reasonable numbers of communities, and
evaluate the clusterings using a pre-defined evaluation metric. Represent
this trained classifier as the community centers ~̂µk for each community k.

3 For all points, compute dik = ‖~̂xi − ~̂µk‖2, or the distance from each node
i’s estimated latent position to the community center k, for all
communities.

4 Let ẑi = argminkdik be the predicted community for node i, which is the
community corresponding to the center that is closest to the estimated
node latent position for node k.

5 return ẑ

technique. GMM gives us flexibility in terms of degree-heterogeneities that may
materialize in our embeddings. These heterogeneities make the naive Euclidean
distance potentially unsuitable if the communities in our network are elliptical.
The evaluation criteria that we used for KMeans (the silhouette score) also uses
Euclidean distance, and therefore might run into similar issues if used as a metric
for identifying a suitable number of communities. For this reason, it is useful to
think about other evaluation metrics as well. In GMM, for instance, a popular
choice is the number of communities which minimizes the Bayesian Information
Criterion (BIC), another metric used to determine the optimal number of clusters
that measures the trade-off between the likelihood and the complexity of the
model.
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6.2 Sparsity and Storage

In Section 3.3.1, we introduced the network density as a key descriptive
property of networks. Building on this foundation, we now explore the
related and more applied concept of network sparsity, which has impor-
tant implications for both the theoretical analysis and practical handling of
large-scale networks. Large networks, in particular, benefit from a rigorous
treatment of sparsity, because in practice nodes in large networks often have
few edges relative to the total possible edge count. Using sparse methods
in these common cases can dramatically improve computational efficiency.

This section will cover the following:

1 Introduction to network sparsity and its relationship to density,
2 Formal definitions and mathematical properties of sparse networks,
3 Implications of sparsity for network learning algorithms,
4 Efficient data structures and storage methods for sparse networks, and
5 Computational advantages of leveraging sparsity in network analysis.

We will begin by revisiting the concept of network density and showing
how it relates to sparsity. Then, we will define sparse networks, building on
the properties of random networks discussed in Section 4.6. This section as-
sumes familiarity with concepts such as sequences, algorithmic complexity,
and asymptotic notation, summarized in Remark 6.2.2. For readers seeking
additional background on algorithmic complexity, see the Wikipedia page
on the topic [2].

To illustrate the ideas in this section, we will use a working example of aca-
demic scholars, introduced in Case Study 6.2.1.

We can produce our network with the following code, similarly to how we
generated a DCSBMn(~z, ~θ,B) sample in Section 4.7. We separate out the con-
struction of the probability matrix here so that we don’t have to sample the
entire network every time:

import numpy as np

from graspologic.simulations import sample_edges

from graphbook_code import generate_sbm_pmtx

def academic_pmtx(K, nk=10, return_zs=False):

"""

Produce probability matrix for academic example.

"""

n = K*nk

# get the community assignments

zs = np.repeat(np.arange(K)+1, repeats=nk)

# randomly generate proteges and lab leaders

unif_choices = np.random.uniform(size=n)
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Case Study 6.2.1 Network of academic scholars

The nodes of a toy network represent academic scholars in computer science
from K universities. For every university, we select 10 scientists at random
from the community. An edge exists if a pair of researchers have co-authored
a paper together. Researchers who work with more people will have more
edges, and consequently, a higher node degree.
Most researchers publish many papers with their working groups. Every re-
searcher will publish at least one paper with someone else at the same uni-
versity, so the within-university probability will be 1. The between-university
probability will be 0.01, meaning the network is extremely homophilic.
70% of the researchers are junior members of a research group: they are not
yet running a lab, so most of their work occurs with close collaborators at their
university. These researchers have a degree-correction factor that is Beta(1, 4)

distributed; this means that their degree-correction factors will be between 0

and 1, but will tend to be low (on average, 1
1+4 = 1

5 ).
On the other hand, 30% of the researchers are lab leaders; they spend a lot
of time working with researchers both within and outside of their university.
These researchers will have degree-correction factors that are Beta(2, 1) dis-
tributed. In this case, the degree-correction factors will be between 0 and 1,
but will tend to be higher (on average, 2

1+2 = 2
3 ).

thetas = np.zeros(n)

# 90% are proteges

thetas[unif_choices > .1] = np.random.beta(1, 5, size=(unif_choices > .1).sum())

# 10% are lab leaders

thetas[unif_choices <= .1] = np.random.beta(2, 1, size=(unif_choices <= .1).sum())

# define block matrix

B = np.full(shape=(K,K), fill_value=0.01)

np.fill_diagonal(B, 1)

# generate probability matrix for SBM

Pp = generate_sbm_pmtx(zs, B)

Theta = np.diag(thetas)

# adjust probability matrix for SBM by degree-corrections

P = Theta @ Pp @ Theta.transpose()

if return_zs:

return P, zs

return P

def academic_example(K, nk=10, return_zs=False):

P = academic_pmtx(K, nk=nk, return_zs=return_zs)

if return_zs:

return (sample_edges(P[0]), P[1])

else:

return sample_edges(P)
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Concept 6.2.2 Asymptotic notation

Asymptotic notation is a description of what happens at the limits of the
domains of functions. Suppose that f(x) and g(x) are two functions defined
for real values x. Common asymptotic notations include:

1 f(x) = O(g(x)): “f(x) is big-O of g(x)” means that g(x) is a rate that
upper-bounds f(x). Formally, there exists a constant multiplier c and a
value xc where for any value x ≥ xc:

|f(x)| ≤ cg(x).

The intuition is to establish g(x) as a ceiling function that bounds the
growth of f(x), allowing for a proportional scaling factor c.

2 f(x) = O(g(x)): “f(x) is little-o of g(x)” means that for any positive
constant ε, there exists an xε where for any value x ≥ xε:

|f(x)| ≤ εg(x).

The intuition is that g(x) is growing so much faster than f(x) for large
values of x, that if we chose any arbitrarily miniscule multiplier ε, we
could find a value xε where g(x) is still going to be much larger than
|f(x)|, even after we rescale by ε, for any x ≥ xε.

The key distinction between big-O and little-O notation is that for big-O
notation, we only need to be able to find a single choice of a constant c where
the inequality holds. However, for little-O notation, the relationship can be
found for any choice of a constant ε.
In this sense, for a function f(x) to be big-O of g(x), it can be growing at
the same speed, or slower, than g(x), just as long as it is eventually (for all
x ≥ xc) multiplicatively close for some factor c. On the other hand, for f(x)

to be little-O of g(x), it must be so much smaller than g(x) that we could
always go “farther out” in the domain (x) and have the inequality hold.

6.2.1 Formal definitions of sparse networks

Let’s imagine that we have a collection of random networks
{
A(1),A(2), . . .

}
.

This collection is called a sequence of random networks, because we assume that
the collection contains a random network A(n) for every possible indexing value
of n (extending all the way out to infinity). In this case, A(n) is a random network
with n nodes. The collection is called a sequence because there is an order (the
number of nodes in the network).
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A formal definition of sparsity
A sequence of networks is sparse if:

E

∑
j>i

a
(n)
ij

 = O

((
n

2

))
. (6.1)

For a network A(n) with n nodes, E
[∑

j>i a
(n)
ij

]
can be thought of as the ex-

pected number of edges in the network, and
(
n
2

)
is the (constant) number of

potential edges in the network. With the characterization of asymptotic nota-
tion in Concept 6.2.2 in mind, this means that, “the expected number of edges
in the networks grows much slower than the number of potential edges”.

By the definition of asymptotic notation O(·), this means that for any value
ε > 0, we can find an nε where for all n ≥ nε:

E

∑
j>i

a
(n)
ij

 ≤ ε(n
2

)
. (6.2)

Let’s see how this looks for the academic random networks in Case Study
6.2.1. The degree-correction factors give the probability matrix some element of
randomness, so we won’t get exactly the same results every time if we do not
use random seeds. We will run the simulation and average over 50 repetitions
per setting to account for this added source of randomness:

import pandas as pd

from tqdm import tqdm # optional

results = []

nrep = 50

for K in tqdm(np.linspace(start=2, stop=128, num=10, dtype=int)):

for j in range(nrep):

P = academic_pmtx(K)

n = P.shape[0]

results.append({"Count": np.triu(P, k=1).sum(), "Edges": "Expected",

"#Nodes": n, "Index": j})

results.append({"Count": n*(n - 1)/2000, "Edges": "Potential/1000",

"#Nodes": n, "Index": j})

df = pd.DataFrame(results)

df_mean=df.groupby(["Edges", "#Nodes"])[["Count"]].mean()

We normalize the number of potential edges by a factor of 1000 so that these
two values could exist on the same plot (the number of potential edges grows
quickly). Figure 6.2.1(A) shows a plot of the number of potential edges

(
n
2

)
against the number of expected edges:

ax = sns.lineplot(data=df, x="#Nodes", y="Count", hue="Edges")

ax.set(yscale="log")

The number of potential edges is growing much faster with the number of nodes
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Figure 6.2.1 (A) the direct definition of sparsity, (B) the equivalent definition of
sparsity using the expected network density, (C) the equivalent definition of sparsity
using the expected average node degree.

than the average number of expected edges. If ε = 0.00145, for instance, with
nε = 440 (vertical gray bar), then the number of potential edges, (bottom hori-
zontal line) is 96, 580 (follow the horizontal line to the y-axis, and then multiply
by 1000). The average number of edges, (top horizontal line) is about 140 (follow
the horizontal line to the y-axis). Note that 140 ≈ 96, 580 · ε. For any choice of
n > nε, the average number of edges is less than the number of potential edges
multiplied by such a choice of ε. We could repeat this process for any choice of ε,
however small (noting that we might have to make our simulation have a much
higher number of nodes for extremely small values of ε).

Relating sparsity to the network density
Assume that we are given a value ε > 0, and nε is chosen such that Equation
(6.2) holds for all n ≥ nε.

Dividing through by
(
n
2

)
we see that for this ε and nε pair and see that it is

also true that for all n ≥ nε:

E
[
density

(
A(n)

)]
=

E
[∑

j>i a
(n)
ij

]
(
n
2

) ≤ ε, (6.3)

where we used the definition of the expected density from Section 4.6.3.1. This
shows that another equivalent characterization of sparse networks is:

E
[
density

(
A(n)

)]
= O(1).

that is, the expected density is decreasing to 0 as the number of nodes grows.
We can repeat this with our experimental data by simply dividing the number

of expected edges by the number of potential edges (adjusting for the normal-
ization we made), like so:

df_wide = pd.pivot(df_mean.reset_index(), index="#Nodes", columns="Edges", values="Count")

# remember normalizing constant of 100 for potential edges

df_wide["Density"] = df_wide["Expected"]/(1000*df_wide["Potential/1000"])
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df_wide = df_wide.reset_index()

# plot it

sns.lineplot(data=df_wide, x="#Nodes", y="Density", color="black")

Figure 6.2.1(B) shows that for any choice of ε, we could choose some value nε
where the expected density is less than ε.

Relating sparsity to the expected average node degree
In Section 4.6.3.1, we wrote the expected network density as:

E
[
density

(
A(n)

)]
=

E[d(n)]

n− 1
,

where E[d(n)] = 1
n

∑n
i=1 E[d

(n)
i ] was the expected average node degree.

Similarly, for the same choice of ε and nε as in Equation (6.3), if Equation
(6.3) holds for any ε > 0 and n ≥ nε, it is also the case that:

E
[
density

(
A(n)

)]
=

E[d(n)]

n− 1
≤ ε

⇒ E[d(n)] ≤ (n− 1)ε ≤ nε,

where the last inequality is because ε > 0, so (n− 1)ε ≤ nε. This shows that in
a sparse collection of networks, the expected node degree E

[
d(n)

]
= O(n).

This gives us our final equivalent characterization of sparse networks as net-
works where the expected average degree grows sublinearly with the number of
nodes in the network.

We can perform such an experiment as before using pandas, as:

df_wide["Degree"] = df_wide["Density"]*(df_wide["#Nodes"] - 1)

sns.lineplot(data=df_wide, x="#Nodes", y="Degree", color="black")

Figure 6.2.1(C) shows a diagonal line growing with a rate proportional to n
for ε = 0.001. Notice that the average node degree is growing slightly slower
than the diagonal line (sublinearly). Again, we could repeat this process for any
choice of ε, however small (noting that we might have to make our simulation
have a much higher number of nodes for extremely small values of ε).

Equivalent characterizations of sparsity
In total, we have three identical characterizations of sparse networks:

1 The expected number of edges grows slower than the total number of potential
edges: E

[∑
j>i a

(n)
ij

]
= O

((
n
2

))
,

2 The expected network density decreases as the number of nodes grows: E
[
density

(
A(n)

)]
=

O(1), and
3 The expected average degree grows slower than the number of nodes in the

network: E[d(n)] = O(n)
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Concept 6.2.3 Ultrasparse networks

A further class of sparse networks, the ultrasparse networks, is a collection of
networks where E[d(n)] = O(1). This means that the expected average degree
is constant, so the nodes in the network will have an average degree that does
not grow as more nodes are added to the network.
Our example academic scholars networks do not appear to be ultrasparse,
because the expected average node degree is growing (albeit, slower than the
number of nodes is increasing). To determine whether the sparsity is leveling
off to some finite number or growing to infinity as n → ∞ would require
background in real analysis.

6.2.2 Data wrangling and matrix sparsity

In addition to network sparsity being a substantial nuisance when running many
standard network learning techniques, it also plays a big role in the data wran-
gling step for network data. Data wrangling refers to the process of manipulating
data into a format that makes it more appropriate and valuable for analytical
purposes. An n× d matrix with non-negative entries is said to be sparse if most
of its entries are zero. On the other hand, an n × d matrix with non-negative
entries is said to be dense if none of its entries are zero.

We say that a matrix is sufficiently sparse with respect to some sparse algo-
rithm if the matrix has enough of a fraction of the entries being zero that the
sparse algorithm has a faster runtime than its dense counterpart.

Let’s explore some applications of matrix sparsity. Our working example will
be a sample of our academic networks from Case Study 6.2.1, with K = 10

communities and n = 1000 nodes:

np.random.seed(0)

K = 10; nk = 100

P, zs = academic_example(K, nk=nk, return_zs=True)

A = sample_edges(P)

print(f"# Non-zero entries: {A.sum().astype(int)}")

# Non-zero entries: 5308

print(f"# Number of entries: {A.size}")

# Number of entries: 1000000

Figure 6.2.2(B) plots the adjacency matrix for our example.

Storage implications of sparse adjacency matrices with network data
Throughout this book, we typically encounter networks as dense adjacency ma-
trices. This means that we store the entire adjacency matrix (all n× n entries).
When the adjacency matrix is sufficiently sparse, this is an extremely inefficient
approach to storing network data.
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The academic network has n = 1000 nodes. The simplest way to store its
adjacency matrix, as an n × n matrix, means that we have 1, 000, 000 entries.
Each of these entries defaults to a float64 in numpy, which is a 64-bit number.
This means that our network, occupies 10002 · 64 = 64 million bits (Mb), or
64/8 = 8 million bytes (MB).

We have many redundancies. First, the network is simple, so edges are un-
weighted. When the edges are unweighted, we only need a single bit to represent
each edge. Unfortunately, RAM is divided by bytes, so the best we can do is 1

byte per entry using standard python approaches. We will cast each entry of A

to a uint8, which is an 8 bit unsigned integer. That it is unsigned simply means
that the entry cannot be negative. Let’s see how much space we save:

print(f"Size in KB: {A.nbytes/1000:.3f} KB")

# Size in KB: 8000.000 KB

B = A.astype(np.uint8)

print(f"Size in KB: {B.nbytes/1000:.3f} KB")

# Size in KB: 1000.000 KB

Byte separation aside, this is still considerably more space than necessary.
First, the total number of entries being stored is 10002 = 1 million, but there
are only

(
1
0

)
002 = 499, 500 unique entries (remember that a simple network is

loopless and undirected, which means that we only need to keep track of the
upper triangle of the adjacency matrix, and we can ignore the diagonal entries
entirely) so we are overcounting by about a factor of two.

This means that we could simply ignore everything but the upper triangle,
and still recover the entire adjacency matrix. Let’s see how to do this with scipy

sparse matrices:

import scipy.sparse as sparse

Btriu = sparse.triu(B)

print(f"Size in KB: {Btriu.data.size/1000:.3f}")

# Size in KB: 2.654 KB

This has reduced the size of the network from 8000 KB to just 2.390 KB,
which is about four hundred times smaller.

How did scipy do this?

Let’s just print out Btriu and see what scipy did:

Btriu

# <1000x1000 sparse matrix of type ’<class ’numpy.uint8’>’

# with 2654 stored elements in COOrdinate format>

COOrdinate format is an efficient way to represent the entries of a sparse ad-
jacency matrix. To illustrate the COOrdinate format, imagine that we have the
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simple 5× 5 adjacency matrix for a network with 5 nodes shown below:

A =


0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

 (6.4)

scipy stores the matrix as shown in Table 6.1. It looks at each non-zero edge
in the upper triangle of the adjacency matrix for the network (for instance,
a12 = 1, so we will arbitrarily call this the first edge), and then records the row
and column of those edges. The second edge is a14 = 1, and the third edge is
a34 = 1. The adjacencies in the lower triangle (a21, a41, and a43) are redundant,
so they are omitted from the representation entirely.

Row Column Value
0 1 1
1 3 1
2 2 1

Table 6.1 The adjacency matrix in Equation (6.4), in COOrdinate format. For larger
networks, this pattern would continue for every non-zero entry in the adjacency matrix in
the upper right triangle.

In effect, scipy ignored storing the matrix entry-wise: it simply stored the
rows and columns of the upper-triangular non-zero entries of B, each as a single
byte. Next, it stored the total size of the matrix in another spot (which was
1000× 1000) so that we could “recover” the entire matrix B from the COOrdinate

format in Btriu. When the underlying network is simple, we can just use utilities
from Section 3.7.2 to symmetrize Btriu if we want to recover the original matrix
A.

from graspologic.utils import symmetrize

# cast the sparse matrix back to a dense matrix,

# and then triu symmetrize with graspologic

A_new = symmetrize(Btriu.todense(), method="triu")

np.array_equal(A_new, A) # True

With sufficiently sparse adjacency matrices, we can exploit this structure to
get vastly improved storage compression. Since sizable networks tend to be suffi-
ciently sparse, the most common storage format we will find with simple networks
is something similar to this COOrdinate format, called an edge list, which is a csv

(comma-separated values), ssv (space-separated values), or tsv (tab-separated
values) file, as shown in Table 6.2 for the simple example in Equation (6.4). With
csv or ssv formats, instead of having tabs separate the node indexing columns
of the edge list, we could also have spaces or commas (or any suitable delimiter).

The appropriate format for storing networks differ depending on their proper-
ties. When networks are simple, an edgelist, where each line indicates the node
indices of non-zero entries in the upper triangle of the adjacency matrix, works
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Node 1 Node 2

1 2
1 4
2 3

Table 6.2 The upper triangle of the adjacency matrix, stored as a tsv (tab-separated
values) file, for the adjacency matrix in Equation (6.4).

well. When the network is weighted, there is often a third column corresponding
to the edge-weight, which is redundant in unweighted networks. When the net-
work is directed, the lower triangle entries are also typically stored. When the
network is undirected but may include loops, the edgelist will typically include
the all nodes in the upper triangle in addition to the diagonal.

With so many possible representations of networks in edgelist or sparse for-
mats, it is imperative to first ascertain the underlying properties of the networks
we work with. Understanding these properties will indicate how to properly “un-
pack” an edgelist or sparse representation to recover an adjacency matrix.

Algorithmic implications of matrix sparsity
When we represent the adjacency matrix using sparse formats, we benefit by
leveraging algorithms designed for sparse data. Let’s see, for instance, how long
it takes for scipy to run a sparse svd when we pass the data in a dense format
(a standard numpy array) and use a standard svd, compared to when we use a
sparse format and use a partial svd, to embed into 20 dimensions. A full svd for
an n× n square matrix will compute all n left and right singular vectors (along
with their singular values). A partial svd will only compute the top (or bottom)
subset of these:

import time

import scipy as sp

# a naive full svd on the dense matrix

timestart = time.time()

U, S, Vh = sp.linalg.svd(A)

Xhat = U[:, 0:10] @ np.diag(np.sqrt(S[0:10]))

timeend = time.time()

print(f"Naive approach: {timeend - timestart:3f} seconds")

# we get about 0.55 seconds

# a sparse svd on the sparse matrix

Acoo = sparse.coo_array(A)

timestart = time.time()

U, S, Vh = sp.sparse.linalg.svds(Acoo, k=10)

Xhat = U @ np.diag(np.sqrt(S))

timeend = time.time()

print(f"Sparse approach: {timeend-timestart:3f} seconds")

# we get about .01 seconds

We see roughly a factor of ten speed improvement, (depending on the hard-
ware). As matrices grow in size, and have an increasingly small fraction of their
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entries being non-zero, sparse approaches tend to dramatically outperform naive
implementations.

When data gets large enough, we may not even be able to execute standard
functions on standard arrays, and might be required to use sparse approaches.

6.2.3 Practical applications of network and matrix sparsity

Matrix and network sparsity have a unique interplay when dealing with network
data represented as an adjacency matrix. This case we will consider deals directly
with a familiar strategy: spectral embeddings of network data. For this example,
we will see a unique problem that the adjacency spectral embedding can run into
with sparse networks with sparse adjacency matrices.

Let’s consider our example from Section 6.2 with K = 10 communities and
n = 1000 nodes. The underlying probability matrix and the adjacency matrix
for the network are shown in Figure 6.2.2(A) and (B) respectively. We can see
fairly prominent modular structure, so we could try a spectral embedding and
a clustering (Chapter 5 and Section 6.1) to identify community assignments. To
determine whether lse or ase is appropriate for our data, we compute the node
degrees like we did in Section 5.4:

degrees = A.sum(axis=0)

The degree distribution for the network is shown in 6.2.2(C). It looks right-
skewed or heavy-tailed, so it would be appropriate to do a spectral embedding
with lse (Section 5.4).

Figure 6.2.2 (A) the probability matrix, (B) the adjacency matrix, and (C) the
heavy-tailed degree histogram for a network from a sparse sequence of networks.

We will look at the top 5 left singular vectors of the DAD Laplacian. lse is a
function of these vectors (rescaled by the singular values) in Algorithm 17. We
will do this with scipy’s faster sparse svd (note: this will still take some time).

from graspologic.utils import to_laplacian

from graspologic.plot import pairplot

# use sparse svd, so that we don’t need to compute
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# 1000 singular vectors and can just calculate the top 10

U, S, Vh = sp.sparse.linalg.svds(to_laplacian(A), k=10, random_state=0)

# plot the first 4

pairplot(U[:,0:4], labels=zs, title="Eigenspokes in the Laplacian")

We visualize the top 4 singular vectors as a pairplot in Figure 6.2.3(A). Each
node is a point in this plot. What we notice is rather unusual. In many dimen-
sions, such as dimensions 2 and 3, nodes appear to have an “all or nothing”
pattern: entire communities of nodes have a 0 along almost all of the singular
vectors, except for the long spoke that they stretch along. For instance, in di-
mension 2, notice that the brown community has a long spoke pattern, and the
other communities are bunched up. In dimension 3, we can see that the purple
and yellow communities stretch downwards along the spoke, and the other com-
munities are bunched in the top. Along many of the other dimensions, such as 3

and 4, almost all of the nodes simply have a value of 0.
This “all-or-nothing” pattern is what is known as an EigenSpoke [3]: some

communities are clearly separated along a subset of axes, but have no separation
along other axes. This all-or-nothing EigenSpoke behavior presents a challenge
for techniques like KMeans and GMM, which tend to favor spherical and elliptical
“blobs” respectively.

Figure 6.2.3 (A) Eigenspokes in the singular vectors of the laplacian, (B) moderate
spokes in the singular vectors of the adjacency matrix.

It seems pretty clear from Section 6.1 that we don’t have the setup that KMeans
or GMM do well in (structured blobs in the pairplots), so let’s try looking at the
singular vectors associated with the ase instead of the lse:

U, S, Vh = sp.sparse.linalg.svds(A, k=10, random_state=0)

# plot the first 4

fig = pairplot(U[:,0:4], labels=zs, title="Eigenspokes in the adjacency matrix")

These aren’t quite “EigenSpokes”, in that the spokes aren’t as apparent as
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they were with the Laplacian, but they are still quite spokey in shape. Here,
too, naive community detection approaches like KMeans will not work well, even
though some of the communities look less poorly separated. This would be clear if
we were to visualize the distance matrix between pairs of nodes, as in Section 5.4,
armed with the intuition from Section 6.1 about KMeans for community detection
in mind.

As it turns out, spectral approaches do not work well with sparse networks.
For this reason, we can identify when we might run into these patterns by looking
at the sparsity of its adjacency matrix. We will typically run into sparse network
troubles when the number of edges is “close to” the number of nodes in the
network, and when it is far less than the number of potential edges. We can
calculate these with:

print("# Expected edges: {:.2f}".format(np.triu(P).sum()))

# Expected edges: 2654.00

print("# True edges: {:d}".format(np.triu(A).sum().astype(int)))

# True edges: 2654

print("# Potential edges: {:d}".format(int(K*nk*(K*nk - 1)/2)))

# Potential edges: 499500

When the number of observed edges is orders of magnitude less than the num-
ber of potential edges, many naive spectral techniques (such as ase, lse, and
derived approaches like mase and omni) will probably not produce embeddings
which will easily facilitate downstream analysis like community detection [4].
We may need to turn to alternative techniques such as [5; 6] to achieve high
performance in these settings, where we incorporate different functions of the
adjacency matrix that are better behaved for sparse regimes all together or ap-
ply penalties to nodes with low degrees to, in some sense, force the embeddings
to avoid spoke-like patterns, or turn to other analysis techniques entirely. While
these situations are not common in most network learning problems, knowing
when they might occur and how to discern them (through visualization via pair-
splots or other heuristics, such as looking at network density) are valuable tools
for your arsenal.

Remark 6.2.4 Simulating EigenSpokes is not an exact science

We know that EigenSpokes can arise in sparse networks, but we don’t know
how to reliably obtain them from random network samples.
Changing seeds may result in needing to run simulations a few more times
to produce “EigenSpoke”-like patterns that run perfectly parallel along eigen-
vectors. This shouldn’t be too difficult; running the examples in this section
yields spokes about 20% of the time and nonsensical embeddings in the other
cases.
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Network sparsity and sparse matrices
In Section 6.2, we defined sparsity as a property that occurs over a sequence
of random networks. Next, we showed that when a network had relatively few
entries so that its adjacency matrix was sparse, we could identify odd behaviors
in particular algorithms like the lse and ase. These two ideas feel at odds because
the definition of sparsity does not apply to network samples; however in practice,
we only have network samples.

In Section 5.3.3, we justified the use of ase by arguing that, when we have a
network sample from a random network, as the network gets larger and larger,
the estimated latent position matrix gets increasingly close to the true latent
position matrix of the underlying random network. However, the underlying
random network must have a probability matrix that obeys certain conditions
[7; 5] that ensure that the sequence of networks are not sparse.

When networks fail to satisfy these conditions, the naive ase loses its meaning.
As the number of nodes increases, instead of the estimated latent position matri-
ces getting increasingly close to the true latent position matrix of the underlying
random network, the estimates become increasingly nonsensical. At some level,
we lose the ability to say that the estimated latent position matrix X̂ is a rea-
sonable estimate of the true underlying latent position matrix X. This is why
we observed “puzzling” behaviors in the spectral embeddings of realizations of
sparse networks.

Concept 6.2.5 Complementary definitions of sparsity

network sparsity is a property of an underlying sequence of random networks
(with nodes and potential edges), but matrix sparsity is a property of the
adjacency matrix (or a function thereof, such as a network Laplacian) for an
actual network (with nodes and edges).
A network with a sufficiently sparse adjacency matrix will often run into
problems associated with sparse sequences of random networks, and samples
from sparse sequences of networks with enough nodes will often have suffi-
ciently sparse adjacency matrices which cause odd results in network learning
algorithms, so these two definitions prove complementary in network science.
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6.3 Testing for differences between groups of edges

In Chapter 4, we explored stochastic block models (Section 4.3) and their
degree-corrected variants (4.7). We also introduced the Structured Inde-
pendent Edge Model, or SIEM (Section 4.8), which generalizes the SBM
by allowing for more flexible edge clustering. All SBMn(~z,B) random net-
works can be reformulated as SIEMn(Z, ~p) random networks. This section
uses the SIEM to develop statistical tests for determining whether different
groups of edges differ from one another. As the SIEM generalizes stochastic
block models, these techniques readily apply to SBMs.

We cover the following topics:

1 Review of the SIEM framework and its relationship with SBMs,
2 Introduction to hypothesis testing in the context of edge groups,
3 Development of test statistics for comparing edge probabilities across

clusters,
4 Application of these tests to SBMs for comparing community-level con-

nectivity, and
5 Discussion of practical considerations and limitations of edge group test-

ing.

We begin by revisiting the SIEM framework, where the parameter Z
defines individual edge clusters and the vector ~p specifies edge probabilities
for each cluster.

Whenever a network has a set of node or edge groupings, we can conceptualize
it as a sample of an SIEMn(Z, ~p) random network. We learned in Section 5.1
how to estimate probabilities from collections of edges, and these strategies apply
readily to the SIEMn(Z, ~p) random networks.

By the argument we made regarding maximum likelihood estimation, if we
have a network sample with edge clusters given by the matrix Z, we can compute
the estimated probability for edges in cluster k with:

p̂k =

∑
i,j:zij=k

aij

nk
,

where nk is the total number of edges that are assigned to cluster k, and is given
by
∑
i,j:zij=k

1. The denominator sums over all possible edges in cluster k, and
the numerator sums only edges in k which exist.

Let’s return to the SIEMn(Z, ~p) brain hemisphere example from Section 4.8,
and use a probability vector ~p> = [0.4, 0.6]. We can build the edge cluster as-
signment matrix and a probability vector like this:

import numpy as np

from graphbook_code import siem
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Figure 6.3.1 (A) the edge-cluster assignment matrix, (B) the adjacency matrix, (C)
a contingency table for the two edge-clusters in the network sample.

n = 100

Z = np.ones((n, n))

# Fill the upper and lower 50th diagonals with 2

# and the main diagonal with 0

np.fill_diagonal(Z[:, 50:], 2)

np.fill_diagonal(Z[50:, :], 2)

np.fill_diagonal(Z, 0)

p = [0.4, 0.6]

np.random.seed(0)

A = siem(n, p, Z)

Figure 6.3.1(A) shows the edge cluster assignment matrix Z. A sample of the
network is shown in Figure 6.3.1(B). The edges corresponding to edge-cluster 2

in Figure 6.3.1(A) stand out from the other edges in the adjacency matrix (B),
but it looks far from definitive. We can compute the estimated edge probabilities
(per edge-cluster) using the below code:

est_pvec = {k: A[Z == k].mean() for k in [1, 2]}

print(est_pvec)

# {1: 0.3955102040816327, 2: 0.6}

The estimated edge probabilities appear to be quite different from just looking
at the sample. When we observe the sample, we don’t initially know whether
the underlying random network truly has a different probability for each edge
cluster. This means that if we want to determine whether the estimated edge
probabilities are appreciably different, we have some work to do.

6.3.1 Two-sample hypothesis testing

With two samples of data, a key question is determining whether their differences
are due to random chance, or whether the samples were drawn from fundamen-
tally different distributions. This is known as a two-sample test.

A sample of an SIEMn(Z, ~p) random network A has binary edges aij . For
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a pair of communities k and l (which are two of the K total clusters in our
network), we want to choose between two possible scenarios that describe their
respective probability distributions. These scenarios are known as hypotheses for
a hypothesis test. In this case our hypotheses are:

H0 : pk = pl against HA : pk 6= pl

In general, we assume that the null hypothesis, H0, represents an “uninteresting”
or “default” effect for our system. In our example, our null hypothesis is that pk =

pl, or that the underlying probabilities are identical between the two clusters (the
two clusters are not different in probability). The capital H denotes that this is
a hypothesis, and the lowercase 0 just indicates “null”.

The alternative hypothesis HA is the scenario in which H0 is false. This will
typically denote the “interesting” effect that we wish to illustrate that our real
data supports. In our example, the alternative hypothesis is that pk 6= pl, or that
the underlying probabilities differ between the two edge clusters.

We read the hypothesis as: we are testing H0 the null that pk = pl and the
underlying probabilities are identical against HA the alternative that pk 6= pl
and the underlying probabilities differ.

Hypothesis tests come from a branch of statistics known as statistical inference,
which attempts to make informed decisions about a population based on data
sampled from it. We perform statistical inference with hypothesis tests by looking
at how well-aligned our data are with an assumption by proceeding with the
assumption that the null hypothesis is true. This means that either the data
looks like what we would expect under the null hypothesis, or the data does
not look like what we would expect under the null hypothesis. We convey the
degree to which the data looks different from what we would expect under the
null hypothesis with the p-value, which is explained in Concept 6.3.1.

6.3.2 Two-sample hypothesis testing with binary-valued data

In the coin flip example of Concept 6.3.1, we might construct a two-sample
hypothesis that:

H0 : p1 = p2 against HA : p1 6= p2, (6.5)

where p1 is the probability that the first coin lands on heads, and p2 is the
probability that the second coin lands on heads. When each of the two samples
(the ten coin flips from each of the two coins) are independent and have binary-
valued outcomes (heads or tails), a common summary measure is a contingency
table. The contingency table is shown in Table 6.3.

The contingency table conveys everything of statistical value between our two
samples of data (the columns) and is known as a test statistic. A test statistic
is a quantity computed from data (here, the contingency table) that is used for
statistical inference. Since each of the two samples were comprised of independent
coin flips of coins where each flip of a given coin has the same probability of
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Concept 6.3.1 The p-value is the unit used for decision making in
hypothesis tests

When performing hypothesis tests, we fundamentally use the p-value for
decision-making. The p-value is:

p = Pr
(
we falsely reject H0 in favor of HA

∣∣H0 is true
)

The vertical bar in statistics means “conditioned on”, which means that the
probability is being computed under the assumption that the null hypothesis
is true. The implications of this statement are critical to a quality statistical
analysis.
For a hypothesis test, we first begin by deciding the assumptions that we have
about how the system behaves. For network science, these assumptions are
conveyed by the statistical models in Chapter 4.
After we assume the statistical model, our hypotheses typically reflect possible
ways in which the data might behave with respect to the parameters of our
model. For instance, in the SIEMn(Z, ~p) model, we assume that the edges
aij are independent coin flips with probability given by pzij .
Finally, we usually structure the null hypothesis as a distribution with well-
known properties. If we were to flip two coins with potentially different prob-
abilities of landing on heads, we can explicitly determine the amount of vari-
ation that we would expect in the number of heads that two identical coins
would receive in a particular number of coin flips.
Intuitively, if we flip 2 coins 10 times each and one gets 3 heads and the
other 7, we can quantify whether the number of heads that we obtain is “close
enough” to the level of variability that we would expect if the coins had the
same probability of landing on heads.

Number of heads Number of tails
Coin 1 3 7
Coin 2 7 3

Table 6.3 A contingency table for the coin flip example in Concept 6.3.1.

landing on heads, we have no reason to believe that anything other than the
number of heads and tails in ten flips is important for ascertaining whether
there is a difference between the coins.

One method of testing the hypothesis in Equation (6.5) is Fisher’s exact test.
This test computes the probability of observing the contingency table in Table 6.3
if both columns have independent, binary entries where the underlying random
events (the coin flips) have the same probability.

We can assemble our contingency table using numpy arrays, and we can perform
Fisher’s exact test using scipy:

from scipy.stats import fisher_exact
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import numpy as np

# assemble the contingency table indicated

table = np.array([[3, 7], [7, 3]])
_, pvalue = fisher_exact(table)

print(f"p-value: {pvalue:.3f}")

# p-value: 0.179

Given that one coin obtained 3 heads and 7 tails and the other obtained 7

heads and 3 tails, we conclude that there is a 17.9% chance that the contingency
table that we observed in Table 6.3 (or one with a more extreme disparity in the
number of heads and tails, such as 2 and 8) could have been observed if both of
the coins had the same true probabilities of landing on heads.

At this point, we may suspect that the coins are not identical. However, per-
haps we made erroneous assumptions somewhere along the way, or perhaps we
want to be extra safe before we make a determination.

For this reason, statisticians usually choose a decision threshold ahead of time,
known as the α (alpha) of the test. The α indicates a threshold for the p-values
noteworthy enough to declare that the data do not support the null hypothesis. A
commonly chosen threshold which we will use throughout this book is α = 0.05,
which means that we will decide that our data do not support the null hypothesis
when p-values are below 0.05.

Here, we would determine that the data are insufficient to reject the null
hypothesis that the coins have the same underyling probability, since the p-value
of 0.179 > 0.05.

Faithfully representing underlying network structure
In Section 3.7.5, we learned that when networks are undirected and loopless
(both of which are true for simple networks), it is imperative to be careful when
computing summary statistics from data.

A common strategy is to compute summary statistics entirely from one “triangle”
from the adjacency matrix; we use the upper triangle throughout this section.
When performing hypothesis testing, the amount of variation to be expected is
directly tied to the sample size. The adjacency matrix is simply a representation
of our simple network: it can be misused in that aji is not relevant if we have
already included aij in our analysis. These two entries are deterministically iden-
tical (they are always the same) as a property of the network (simple networks
are undirected), and deterministic features are not relevant to statistics since
there is no randomness. Likewise, if the network is loopless, we must exclude the
diagonal.

When two coins are flipped 10 times and one yields 3 heads but the other 7

heads, the p-value is only 0.179. However if the coins are flipped 20 times and
one yields 6 heads but the other 14 heads, the p-value plummets to 0.026, despite
the fact that the “rate of heads” in each sample was the same.

In much the same way, had we analyzed all of the adjacency matrix instead
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of just the upper triangle, the number of edges would be artificially inflated (by
way of the deterministic identicality of the upper and lower triangles) and we
would artificially add the diagonal placeholders (the network is loopless, so the
diagonal values of 0 are simply placeholders).

With larger experiments, we can be more confident that smaller amounts of
variability are not random, so it is important not to artificially “double” the
number of edges that we count or include placeholders such as the diagonal.

6.3.3 Applying hypothesis testing to samples of SIEMn(Z, ~p) random networks

We can apply hypothesis testing for detecting differences in estimated probabil-
ities for samples of SIEMn(Z, ~p) random networks. We begin by constructing
contingency tables, as we did with coin flips in the previous section. We can do
this with numpy, by simply counting the number of edges that had a value of 1 and
0 for each cluster. Since the network is simple, we take care not to double-count
edges in the lower triangle nor include the diagonal:

# compute an upper-triangular mask to only look at the

# upper triangle since the network is simple (undirected and loopless)

upper_tri_mask = np.triu(np.ones(A.shape), k=1).astype(bool)

column_clust1 = [

A[(Z == 1) & upper_tri_mask].sum(),

(A[(Z == 1) & upper_tri_mask] == 0).sum(),

]

column_clust2 = [

A[(Z == 2) & upper_tri_mask].sum(),

(A[(Z == 2) & upper_tri_mask] == 0).sum(),

]

cont_tabl = np.vstack((column_clust1, column_clust2))

The resulting contingency table is plotted as a heatmap in Figure 6.3.1(C).
We can apply Fisher’s exact test to this contingency table:

_, pvalue = fisher_exact(cont_tabl)

print(f"p-value: {pvalue:.5f}")

# p-value: 0.00523

We end up with a p-value that is close to zero. With our decision threshold still
at α = 0.05, the p-value of our test is < α. Therefore, we have evidence to suggest
that we should reject the null hypothesis.

6.3.4 Caveats of hypothesis testing

Now that we have covered some basics about how to perform hypothesis tests
with random networks, we hope to emphasize a few misconceptions about hy-
pothesis testing that permeate science. Even without a substantial background
in statistics, these tips can hopefully give some insight into interpreting statis-
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tical analyses in the remainder of this book and in applying hypothesis tests.
These caveats are not limited in applicability to network data alone.

Statistical models are almost always wrong
True or false, in the context of a hypothesis test performed on real data, do not
mean true or false in the traditional sense. A hypothesis test is tied directly to
the statistical model used to describe the data: a hypothesis can be true or false
with respect to a statistical model which is assumed to be true, but hypotheses
on the basis of real data can either be supported by the data or unsupported by
the data.

This is because statistical models used to describe real data are not true. This
statement applies to network data or non-network data. This does not invali-
date the approaches in Chapters 4 and 5, nor does it invalidate every statistical
method developed over the last hundred years, which rest on similar sets of
assumptions.

While these assumptions are imperfect, they still allow us to describe behaviors
that arise in our network data (or any data for that matter). This allows us to be
specific about a context in which our results can be interpreted. In the absence
of this context, we would have no way to determine whether irregularities in our
data are anomalous or whether they are the result of the normal variation that
we can expect from imperfect data.

Parameters of the underlying model
Hypothesis tests make statements about the true parameters of a statistical
model based on data and dependent on assumptions made about the statistical
model. For example, in coin flipping, we consider the actual probabilities p1 and
p2 (true probabilities of heads) rather than p̂1 or p̂2 (estimated probabilities of
heads).

Even if the statistical model used is correct (e.g., in simulations), analysis
rarely provides the true underlying parameters. Flipping a fair coin 101 times
(with a true probability of 0.5 for heads) will not yield exactly 50.5 heads. We
can only conclude that a hypothesis (about the true parameters of the assumed
statistical model) is supported or unsupported by the data.

The null hypothesis
Statistical hypothesis testing makes statements about whether we have evidence
or not that the null hypothesis is unsupported by the data. These are the only two
outcomes for a typical hypothesis test with real data. In the first outcome, where
the null hypothesis is unsupported by the data, we “reject the null hypothesis
in favor of the alternative hypothesis.” The possible second outcome is that we
“cannot reject the null hypothesis.” Note that this second outcome makes no
statement about the null hypothesis being supported by the data: we do not
accept a null hypothesis, we simply do not have enough evidence to reject it.

Consider, for instance, the example from Section 6.3.2 where we flipped two
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coins 10 times, and saw three heads for one coin and seven heads for the other
coin. Just because the p-value (0.179) exceeded α = 0.05 does not mean that
the data provide evidence that the null hypothesis is true (the coins have the
same probability). There just is not enough evidence (yet) to support that they
are different. If we performed our experiment again with more coin flips, we
might be able to obtain that evidence. This point is frequently misunderstood
and misapplied by many excellent scientists.
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6.4 Model selection with stochastic block models

We have now thought about block models in some applied scenarios, in-
cluding community assignment estimation (Section 6.1) and testing for dif-
ferences between edge clusters (Section 6.3).

This section focuses on differentiating between possible block matrix
structures and selecting the appropriate model, leveraging the various struc-
tures introduced in Section 4.5 to develop a systematic approach for model
selection. We will:

1 Introduce the concept of model selection for stochastic block models,
2 Explore methods for choosing between models of different complexity,
3 Apply the principle of parsimony in model selection,
4 Demonstrate a step-by-step procedure for model comparison using the

likelihood ratio statistic, and
5 Walk through a practical example using a simulated network.

Section 4.5 covered many separate models to describe 2× 2 random net-
works with block structures. Some of the models could fully describe others,
but not necessarily the other way around. For instance, a homophilic block
matrix could be further categorized as a planted partition block matrix,
but not vice-versa. Understanding model selection builds on the commu-
nity detection ideas introduced in Section 6.1 to give us a systematic way
to balance model complexity with explanatory power.

Let’s imagine that we have a network sample with a set of community assign-
ments for each node. In the below code, we will take a look at one such sample
from an SBMn(~z,B) random network with a homophilic block matrix:

import numpy as np

from graspologic.simulations import sbm

nk = 50 # 50 nodes per community

K = 2 # the number of communities

n = nk * K # total number of nodes

zs = np.repeat(np.arange(1, K+1), repeats=nk)

# block matrix

B = np.array([[0.6, 0.3],[0.3, 0.5]])

# generate network sample

np.random.seed(0)

A = sbm([nk, nk], B)

A plot of the true underlying block matrix is shown in Figure 6.4.1(A), and
the adjacency matrix is shown in Figure 6.4.1(B).

From what we learned in Section 5.1, given a network and a set of community
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assignments, a logical step to learn more about the network is to estimate the
block probability matrix. We can do this using the below code:

from graspologic.models import SBMEstimator

# instantiate the class object and fit

model = SBMEstimator(directed=False, loops=False)

model.fit(A, y=zs)

# obtain the estimate of the block matrix

Bhat = model.block_p_

The estimated block matrix is shown in Figure 6.4.1(C). The estimated prob-
abilities support a homophilic structure: the two on-diagonal entries exceed the
estimated off-diagonal entries.

However, in Section 6.3, a key focus was determining when differences between
estimated probabilities indicated that the true underlying probabilities differed.
Even though two probability estimates might be different, we leverage statistical
strategies to determine whether these differences are more or less than we would
expect given natural variation that can arise in the data. When the observed
differences are less than we would expect with natural variability, we determined
that we did not have evidence to reject the null hypothesis. When the observed
differences exceed what we would expect with natural variability, we determined
the data supported rejecting the null hypothesis.

Figure 6.4.1 (A) the true block matrix underlying the SBMn(~z,B) random network,
(B) a sample of the random network, (C) the estimated block matrix.

6.4.1 Model selection and random networks

Model selection is the task of selecting among several possible statistical models
which we think may describe our sample. We do this using quantitative strategies
to determine which statistical models are best supported by the data.

In Remark 6.4.1, we introduce the idea of model selection in terms of whether
a collection of twenty coin flips (from two samples of data) should be described
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Remark 6.4.1 Model selection with coin flips

In Section 6.3.2, we introduced a simple two-sample test for coin flip data to
determine whether the two coins had the same probability. The null hypothesis
was H0 : p1 = p2, against HA : p1 6= p2.
This question can be approached as a two-sample test, which we described in
Section 6.3.2. Our question can also be thought of as determining whether or
not there were really two-samples of data in the first place.
Under our null hypothesis, we are asking whether a coin with the same prob-
ability was used for both of the samples. Under the alternative hypothesis,
we are asking whether two fundamentally different coins were used for each
of the samples.
So, the null can be reformulated as: can the two samples be described using
the same probability term, or can the two samples be best described using
different probability terms. Stated another way, does the most reasonable
model for the data have one parameter (the same probability term, for both
samples), or should we describe it with two parameters (a unique probability
term for each sample)?

using a single probability term for all twenty coin flips, or whether each of the
ten coin flips should be described using two probability terms.

We can formulate our block matrices under the same light. The block matrix
for a simple SBMn(~z,B) random network is organized as:

B =

[
b11 b12
b12 b22

]
.

The symmetry of B is because the underlying simple random network is undi-
rected (so b21 = b12). We want to ask formally: does the data provide us with
enough evidence to support the homophilic network not being a planted parti-
tion (does b11 6= b22)? Further, is there any reason to believe that there is block
structure?

From the estimated block matrix in Figure 6.4.1(C), it seems at first glance
that the network is homophilic – but “seems at first glance” is not quantitative
enough.

As we move to inceasingly complicated models, there is concurrently a tradeoff
known as model parsimony.Model parsimony is the idea that simpler models with
fewer parameters are preferable to complicated models with more parameters,
provided both models describe the data equally well. This idea ties directly into
the bias/variance tradeoff, which we discussed in Section 3.6.

This can be interpreted rigorously by considering the extremes. In the simplest
case, we could have a random network model with a single parameter (an ERn(p)

random network). In the most complicated case, we could have an IERn(P )

random network with a unique probability term pij for each edge.
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With most datasets, we can find a “happy medium” of parsimony, where the
model is complicated enough that it describes our system faithfully, but not so
complicated that we end up overfitting when we use our network sample to an-
alyze it. Through model selection, we attempt to develop principled strategies
that allow us to favor parsimonious models that are complicated enough to de-
scribe the data efficiently, but not so complicated that our data cannot support
the downstream conclusions that we develop.

Sequentially nested hypotheses
In model selection, we will exploit the fact that we have nested hypotheses with
2 × 2 block matrices. A hypothesis H1 is nested in another hypothesis H2 if,
whenever H1 is true, H2 is true too.

In the coin flip example, we can reformulate our two hypotheses H0 and HA

as a sequence of nested hypotheses. If H0 is true, the model could be described
with a single probability term p1 = p2 = a. On the other hand, if HA is true, the
model can be described by p1 = b and p2 = c. If HA is nested in H0, then even
if we use two numbers b and c as the probabilities of p1 and p2, we could always
just set b = c, and end up with the model in H0. If in the underlying system it is
the case that p1 6= p2 (and HA is true), then we need the additional delineation
of terms b and c. On the other hand, if in the underlying system it is the case
that p1 = p2, we can get away with just the one term.

Sequentially nested hypotheses for network data
To consider the idea of sequentially nested hypotheses for network data, let’s
think about the setting that we have with our 2 × 2 block matrix. In this case,
we have three groups of edges:

1 the group of edges where both nodes are from community one,
2 the group of edges where one node is from community one and the other from

community two, and
3 the group of edges where both nodes are from community two.

For each edge, we can build an edge group assignment matrix, which re-conceptualizes
our SBMn(~z,B) random network as an SIEMn(Z, ~p) random network. This is
simply to ease our ability to index the adjacency matrix by groups of nodes:

# upper left has a value of 1, lower right has a value of 2,

# and upper right, bottom left have a value of 3

Z = np.array(zs).reshape(n, 1) @ np.array(zs).reshape(1, n)

# make lower right have a value of 3

Z[Z == 4] = 3

This gives us three “samples” (to borrow the analogy from our coin flip model)
of data. Visually, the model looks homophilic, so this motivates the following
sequentially nested hypotheses:

1 H0: The block matrix is Erdös-Rényi, where b11 = b12 = b22 = a.
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2 H1: The block matrix is a planted partition, where b11 = b22 = a, but b12 = b,
and a > b. Note that H0 is nested in H1, as if H0 were true, H1 would also be
true if we were to choose b where a = b.

3 H2: The block matrix is homophilic with potentially heterogeneous on-diagonal
blocks, where b11 = a, b12 = b, and b22 = c, and b11, b22 > b12. Note that H1

is nested in H2, as if H1 were true, H2 would be true with a choice of c where
c = a.

Testing sequentially nested hypotheses
We first ask how to determine which of these sequentially nested hypotheses
to pick. In the two hypothesis case, we tested the null hypothesis against the
alternative hypothesis. In this case, we have three hypotheses, so we need a
different strategy.

Statisticians have come up with a simple but elegant solution to this problem.
We start with the simplest model that we could have (H0). We add a single
layer of complexity in the scope of the models that we think could be reasonable
(H1), and simply test H0 as the null hypothesis against H1 as the alternative
hypothesis.

For a sequence of nested hypotheses with N levels, for a hypothesis at level n
to be reasonable, then the hypothesis at level n − 1 has to be more reasonable
than the one at level n− 2 first. This amounts to determining that if the model
has a homophilic block matrix with a heterogeneous on-diagonal block structure,
we should first know whether a homophilic block matrix makes sense in the first
place. We follow this pattern backwards, which leads to the insight that we
should begin at H0 against H1.

Once we test H0 against H1, we have two routes: either the data does not
support H0 and we reject H0 in favor of H1, or we do not have evidence to reject
H0. If we do not have evidence to reject H0, we stop, since we only want to use
complicated models when strictly necessary (e.g., when we do not have evidence
to reject the simpler model). We repeat this process over and over again, in the
process known as forwards model selection, in Algorithm 21.

6.4.2 Applying sequentially nested hypotheses to network data

With network data, the network samples have binary adjacency matrix entries
aij (which take values of 0 or 1). When we have two samples of data, a suit-
able representation was the contingency table in Table 6.3. When we have three
samples of binary data, what else can we use?

The best way to summarize this data is another contingency table. The con-
tingency table for a 3-sample example is laid out in Table 6.4.

In the two-sample case with 2 columns, the Fisher’s exact test is the preferred
statistical test. However, most formulations of Fisher’s exact test (such as those
implemented by scipy) only work with two samples and not three. For this
reason, we turn to the likelihood ratio test, discussed briefly in Concept 6.4.2.
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Algorithm 21: Forwards model selection
Data: H0, H1, . . . ,HN a sequence of sequentially nested hypotheses

delineating different models to describe the data.
Result: The deepest hypothesis that is not rejected against the next

sequential alternative.
1 Set n = 1, and stop=False.
2 while stop = False do
3 Test Hn−1 as the null hypothesis against Hn as the alternative

hypothesis.
4 if no evidence to reject Hn−1 then
5 Let stop=True.
6 else
7 if n = N then
8 Let stop=True
9 end

10 Let n = n+ 1.
11 end
12 end
13 return Hn−1

Number of edge Number of non-edges
Edge-group 1
Edge-group 2
Edge-group 3

Table 6.4 A contingency table with three samples.

Applying this to our sequentially nested hypotheses, we can test whether the
block model is Erdös-Rényi against whether it is homophilic planted partition
directly, using the 2 × 2 contingency table in Table 6.5. This produces a test
statistic `(1,0) (the log likelihood ratio statistic), which has higher values when
it is more likely that the data do not support the null hypothesis. In this case,
the log likelihood ratio statistic between hypotheses n and n′ is:

`(n,n
′) = log

(
L(D;Hn)

L(D;Hn′)

)
,

where L(D;Hn) is the likelihood of observing the data D under the hypothesis
Hn (the statistic `(n,n

′) is the log of a “ratio” of likelihoods). By properties of
the logarithm, this is equivalent to:

`(n,n
′) = logL(D;Hn)− logL(D;Hn′). (6.6)

Intuitively, this test statistic is comparing the log likelihood ratio of observing
data D under the alternative hypothesis Hn with the log likelihood ratios of
observing the data D under some null hypothesis Hn′ that is nested in Hn.
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Concept 6.4.2 The likelihood ratio test for K × 2 contingency tables

The likelihood ratio test can be used to determine whether a categorical group-
ing of binary data (summarized by a contingency table) into one of K cate-
gories shows differences across the categories. As an asymptotic test, it works
best with large samples, unlike the Fisher’s exact test which is preferable for
smaller samples. Though exact tests are generally preferable, the likelihood ra-
tio test suffices for our purposes. In this context, we construct a contingency
table by counting the number of edges and non-edges across the different
(community, community) pairings of edges.
The test produces a statistic X that increases as the K groups differ more.
If the edges in the network are independent, and if the (community, com-
munity) pairings have no bearing on the probability of an edge existing, the
test statistic X will have approximately a chi-squared distribution for large
enough networks. By comparing the observed X to this distribution, we ob-
tain a p-value that quantifies how anomalous our observed data are under the
null hypothesis.

When this statistic has larger values, the log likelihood (and consequently the
likelihood) of observing the data under the alternative hypothesis Hn is higher
than it is under the null hypothesis.

We can use this to test H0 that the model is Erdös-Rényi against H1 that the
model is a homophilic planted partition. We perform this test by comparing `(1,0)

to the χ-squared distribution. To do so, we must also know the degrees of freedom
for the likelihood ratio test statistic under the null hypothesis. The degrees of
freedom is the number of parameters that are removed from the model in the
simpler hypothesis compared to the more complicated hypothesis. Here, since an
Erdös-Rényi block matrix has a single parameter (a) but the homophilic planted
partition block matrix has two parameters (a and b), the number of degrees of
freedom is 1.

Number of edges Number of non-edges
(1, 1) or (2, 2) blocks

(1, 2) block
Table 6.5 Contingency table for testing whether a block model is Erdös-Rényi against
whether it is homophilic planted partition.

In our data, the first step is to establish a model with the desired contingency
table. We do this by using a pandas dataframe where the rows are edges, the
first column indicates the value of the adjacency matrix for that particular edge,
and the second column indicate the edge-group. Here, the edge-group delineates
whether or not the edge is in an off-diagonal block or an on-diagonal block, which
includes the parameters relevant to the hypothesis delineated by H1 (that the
network is a planted partition):
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import statsmodels.api as sm

import pandas as pd

import statsmodels.formula.api as smf

from scipy import stats as spstat

# upper triangle since the network is simple (undirected and loopless)

upper_tri_non_diag = np.triu(np.ones(A.shape), k=1).astype(bool)

df_H1 = pd.DataFrame({"Value" : A[upper_tri_non_diag],

"Group": (Z[upper_tri_non_diag] != 2).astype(int)})

Then, we run a logistic regression model using the statsmodels package. We use
it to compute the log likelihood ratio statistic. The log likelihood ratio statistic
built-in to statistical modelling software will almost always correspond to the
`(n,0); that is, it will compare the log likelihood ratio of the data under our
present hypothesis Hn with the null hypothesis (there is no difference across the
samples). We can therefore compute `(1,0) directly from the model, and compare
to a chi-squared distribution with 1 degree-of-freedom:

# fit the logistic regression model, regressing the outcome (edge or no edge)

# onto the edge group (on-diagonal or off-diagonal), the grouping

# corresponding to H1

model_H1 = smf.logit("Value ~ C(Group)", df_H1).fit()

# compare the likelihood ratio statistic to the chi2 distribution

# with 1 dof to see the fraction that is less than l1

dof = 1

print(f"p-value: {spstat.chi2.sf(model_H1.llr, dof):.3f}")

# p-value: 0.00000

Once we know that the data supports rejecting the null hypothesis, we run a
second test, using the contingency table in Table 6.6. However, as we just learned
in the preceding paragraph, the log likelihood ratio statistic directly output by
the fit model is:

`(2,0) = L(D;H2)− logL(D;H0)

Which we can use directly to test H0 that the network is Erdös-Rényi against
H2 that the network is homophilic with potentially heterogeneous on-diagonal
blocks.

Number of edges Number of non-edges
(1, 1) block
(1, 2) block
(2, 2) block

Table 6.6 Contingency table for testing whether a block model is Erdös-Rényi against
whether it is homophilic planted partition.

Importantly, note that this is not the comparison we want to make: rather,
we want to compare whether H1 the network is a homophilic planted partition
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against H2 that the network is homophilic with potentially heterogeneous on-
diagonal blocks. A more suitable log likelihood ratio statistic would intuitively
be:

`(2,1) = L(D;H2)− logL(D;H1),

but this is not what statistical modelling software will give us out-of-the-box.
Fortunately, this statistic `(2,1) is trivial to derive from what we have already
learned. Note that:

`(2,0) − `(1,0) = logL(D;H2)− logL(D;H0)−
(logL(D;H1)− logL(D;H0))

= logL(D;H2)− L(D;H1)

= log

(
L(D;H2)

L(D;H1)

)
= `(2,1).

So, to compare L(D;H2) with L(D;H1), a suitable approach would be to look at
the statistic `(2,0) − `(1,0). More generally, we have that the log likelihood ratio
statistic for hypotheses Hn and H ′n when Hn′ is nested in Hn is:

`(n,n
′) = `(n,0) − `(n

′,0)

This means we can directly compare sequential nested hypotheses to one another
using sequential log likelihood ratio statistics. Additionally, this result is a basis
for why likelihood ratio tests are a powerful tool in the broader field of statistical
analysis.

As before, the number of degrees of freedom is the difference between the
number of possible parameters in the larger model that allows for a homogeneous
block model with potential on-diagonal heterogeneity in the block matrix (here,
3; a unique parameter for a, b, and c) and the number of possible parameters in
the smaller planted partition model (which was 2, a unique parameter for a and
b, with c = a). This gives us that there is 1 degree of freedom for our likelihood
ratio test:

df_H2 = pd.DataFrame({"Value": A[upper_tri_non_diag],

"Group": Z[upper_tri_non_diag].astype(int)})

model_H2 = smf.logit("Value ~ C(Group)", df_H2).fit()

lr_stat_H2vsH1 = model_H2.llr - model_H1.llr

print(f"p-value: {spstat.chi2.sf(lr_stat_H2vsH1, 1):.7f}")

# 0.00008

The p-value is below α = 0.05 for this test, too. So, we reject the null hy-
pothesis that the underlying block matrix is a homophilic planted partition, and
we conclude that the underlying block matrix is homophilic with heterogeneous
on-diagonal blocks.
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6.5 The vertex nomination problem

In Section 4.3, we introduced the SBMn(~z,B) random network as a con-
ceptual model for many real-world networks. Chapter 5 built spectral em-
bedding techniques that assume an RDPGn(X), and which can be applied
to SBMs. Section 6.1 explored community detection methods for estimating
network structure when we do not know the node community in advance.
However, in some applications, we do have partial community information.
This section addresses the vertex nomination problem, which aims to iden-
tify nodes without community assignments that are most similar to a set
of nodes with known assignments [8].

We cover the following:

1 Define the vertex nomination problem and its importance in network
analysis,

2 Introduce the concept of seed nodes and their role in vertex nomination,
3 Develop spectral vertex nomination techniques using estimated latent

positions,
4 Explore extensions of vertex nomination to related problems, and
5 Discuss alternative approaches to vertex nomination beyond spectral

methods.

The vertex nomination problem bridges the gap between fully labeled
and unlabeled network data, providing a framework for prioritizing nodes
for further investigation.

This approach is particularly useful in applications such as social network
analysis, where partial information about network covariate structure is
often available.

In Case Study 6.5.1, we explore an example in which the vertex nomination
problem can be used in practice: human trafficking. This case study will serve
as our motivating example for the remainder of the section.

We will use an SBMn(~z,B) random network with n = 1000 nodes representing
web pages. The community of each node represents whether the web page is
associated with human trafficking. 100 will be associated with human trafficking
and 900 will not be associated with human trafficking. Of the 100 web pages
associated with human trafficking, we will only know the community label for
20 of them.

from graspologic.simulations import sbm

# first 100 nodes are traffickers, second 900 are non-traffickers

ns = [100, 900]

B = np.array([[0.3, 0.1], [0.1, 0.2]])
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Case Study 6.5.1 Human trafficking and the vertex nomination problem

One of the most important jobs for law enforcement officers is to maintain an
understanding of the business dealings of criminals. In recent years, the inter-
net has become a popular medium for sharing and organizing illicit activity.
The US Department of Defense released the Memex tool, which facilitates
precise searches over isolated web domains.
This has allowed investigators to develop a network with tens of thousands
of nodes [8; 9], which represent individual web pages for job postings on the
internet. An edge exists between a pair of nodes if the contact information
(phone number) or the region (city) on the contact information is the same. A
small number of nodes in the network were identified directly as being tied to
human trafficking through the content on the webpage or the URL itself. The
goal is to produce the set of remaining nodes for which the human trafficking
status is unknown which are most likely to be tied to human trafficking, so that
the postings can be further monitored and investigated by law enforcement.

np.random.seed(0)

A = sbm(ns, B)

Figure 6.5.1(A) shows a plot of the adjacency matrix, with the nodes organized
by community.

The nomination task here is not just about classification, it is about prior-
itization. Of the remaining 980 web pages, we want to produce a list of the
remaining nodes, which are organized in the order we should prioritize them for
further investigation. If we are successful, our nomination list should contain the
remaining 80 nodes in the human trafficking community as the highest priority,
and the 900 nodes unassociated with human trafficking as lower priority.

6.5.1 The seed nodes

The key idea for addressing the vertex nomination problem is the use of seed
nodes, which are nodes in a network for which we know the true label.

In this case, we know the node labels for 20 of the human traffickers. We will
assume that the seed nodes are a random subset of human traffickers.

# the number of seed nodes

nseeds = 20

# The first ns[0] nodes are the human traffickers, so choose 20 seeds

# at random

seed_ids = np.random.choice(ns[0], size=20)
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6.5.2 Spectral vertex nomination (svn)

The first step to spectral vertex nomination is to use a spectral embedding to
obtain estimated latent positions. We can do this with ase:

from graspologic.embed import AdjacencySpectralEmbed as ase

Xhat = ase(n_components=2, svd_seed=0).fit_transform(A)

In Figure 6.5.1(B), the estimated latent positions for the seed (the web pages
confirmed to be associated with human trafficking, in black) and non-seed (for
which the human trafficking status is unknown, in gray) nodes are shown. Based
on Section 5.3 and 6.1, nodes in the same community tend to have similar esti-
mated latent positions. This was a consequence of the fact that the underlying
latent positions are identical for nodes in the same community, which we learned
from Section 4.7.8.

Figure 6.5.1 (A) The adjacency matrix for the web page network. (B) the estimated
latent positions for the nodes in the web page network (faint points). The centroid of
the seed nodes is annotated directly. (C) the nomination priorities for each of the
unlabelled nodes. Nodes which are closer to the seed centroid have higher priority.

In Section 5.3, we used the Euclidean distance from Concept 5.5.6 to quantify
what we meant by nodes from the same community having “similar” estimated
latent positions. When we used KMeans to estimate the unknown community
assignments in Section 6.1, the key idea was that we could exploit the fact that
nodes in the same community had similar latent positions to identify clusters
of nodes which had similar latent positions. This resulted in community-specific
mean vectors ~µk, and we assigned points to communities depending on their
proximity to the community-specific mean vectors.

Here, we use a similar insight. We already know the community assignments
for the seed vectors in our community of interest, and all nodes i from the same
community have the same underlying latent position ~xi. This property does not
hold in the estimated latent positions ~̂xi for the nodes in the same community,
since the latent positions are imperfectly estimated, which we know from Section
5.3.

Since the underlying latent positions of the random network are the same,
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a reasonable estimated latent position for the community can be obtained by
performing a spectral clustering via KMeans:

from sklearn.cluster import KMeans

# community detection with kmeans

km_clust = KMeans(n_clusters=2, random_state=0)

km_clust.fit(Xhat)

labels_kmeans = km_clust.fit_predict(Xhat)

For each seed node, we can obtain the surrogate for the estimated latent po-
sition associated with the community of the seeds by simply finding which of
the communities the seeds tended to be assigned to, and then using the centroid
associated with this community to find nodes most similar to the seed nodes:

from graphbook_code import ohe_comm_vec

# estimated community assignment matrix

Chat = ohe_comm_vec(labels_kmeans)

# get the community (class) with the most seeds

comm_of_seeds = np.argmax(Chat[seed_ids,:].sum(axis=0))

# get centroid of the community that seeds tend to be

# assigned to

centroid_seeds = km_clust.cluster_centers_[comm_of_seeds]

Figure 6.5.1(B) indicates the centroid of the community that the most seed
nodes were assigned to with the large star.

Finally, using the Euclidean distance, we can estimate the spatial proximity for
each unlabeled node to the centroid that the most the seed nodes were assigned
to. We will use this spatial proximity to the centroid as a surrogate for unlabeled
nodes being “similar” to the seed nodes in producing our nomination list:

from scipy.spatial.distance import cdist

from scipy.stats import rankdata

# compute the distance to the centroid for all estimated latent positions

dists_to_centroid = cdist(Xhat, centroid_seeds.reshape(1, -1)).reshape(-1)

# compute the node numbers for all the nonseed nodes

nonseed_bool = np.ones((np.sum(ns)))

nonseed_bool[seed_ids] = 0

nonseed_ids = np.array(np.where(nonseed_bool)).reshape(-1)

# isolate the distances to the centroid for the nonseed nodes

nonseed_dists = dists_to_centroid[nonseed_ids]

To produce the nomination list, we can sort the distances of the non-seed
nodes to the centroid, return the index-sorted ordering, and then output our
nomination list by reordering the non-seed indices in order of their distances.
The following code will do this:
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# produce the nomination list

nom_list_nonseeds = np.argsort(nonseed_dists).reshape(-1)

# obtain a nomination list in terms of the original node ids

nom_list = nonseed_ids[nom_list_nonseeds]

In Figure 6.5.1(C), we show the nomination priorities for each of the unlabelled
nodes by their spatial proximity to the seed centroid. The unlabelled nodes
that are closest to the seed centroid tend to have smaller distances, and are
hence higher priority in the nomination list (with a smaller numerical label in
nom_list).

This procedure is known as the “Spectral Partitioning Nomination Scheme”,
or sp, and has been studied in several areas of application [8; 9].

6.5.3 Extensions to other problems

There are many alternative ways to approach the vertex nomination problem.
Let’s take a look at a few of them. None of these approaches are “better” or
“worse”, than others, and each can be leveraged to answer a different network
learning question [10; 11; 9; 8; 12]. For any vertex nomination problem, we will
need to tailor the strategy based on the network data.

Different strategies for spectral partitioning
We assumed that our network had two communities, and two embedding dimen-
sions, which was largely a function of visual simplicity when viewing the node
nominations in Figure 6.5.1(C). However, there is no reason to assume the num-
ber of communities or the ahead of time, and we could have used dimensionality
selection as in Section 5.7, automated the community selection procedure like
we did in Section 6.1, or substituted different clustering algorithms and different
notions of similarity.

For instance, GMM is a popular choice for community detection in [9], where the
notion of similarity is the probability density of a particular unlabeled point
given the mean and variance of the cluster the most seeds are assigned to.
This enables robustness to networks where the underlying random network is
DCSBMn(~z, ~θ,B), as we learned in Section 6.1.

We also could have used the lse instead of ase as our embedding method if
we wanted to use a method more invariant to node degree.

Extending spectral partitioning to related problems
The spectral partitioning nomination scheme can be extended directly to many
other related problems. A key limitation here is that we are assuming that our
nodes are in one of two groups, and all of the labeled nodes that we pass in
are associated with the same group. Our goal is to prioritize nodes that are also
likely from that group.
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On the other hand, we could have identified nomination lists on a per-seed-
node basis; e.g., for each seed node, we could have found a set of unlabeled nodes
that have spatially proximal estimated latent positions. This extension provides
the intuitive foundation for the graph matching problem [8; 12], in Section 7.3.

Ignoring partitioning techniques
We could have ignored partitioning and latent community detection approaches
entirely, and simply estimated the “centroid” directly by taking the average esti-
mated latent position of all of the seed nodes.
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6.6 Out-of-sample embedding

So far, the networks we have been using have been relatively small. However,
as networks grow larger, the computational cost of embedding methods can
become a significant concern. We explored sparse methods for the large
network setting in Section 6.2. Now, we address the challenge of embedding
large-scale networks and introduce efficient strategies for handling network
growth.

We will cover the following topics:

1 Introduction to algorithmic complexity in the context of network embed-
ding,

2 Time and space complexity of spectral embedding methods,
3 Challenges of frequent re-embedding in growing networks,
4 Out-of-sample embedding techniques for efficient updating of network

representations, and
5 Methods for reusing existing embeddings to incorporate new nodes.

We will begin by discussing the concept of algorithmic complexity, fo-
cusing on time complexity (the computational time required) and space
complexity (the memory usage in RAM). We will examine how these fac-
tors impact the scalability of spectral embedding methods like the singular
value decomposition (SVD), which poorly scales asO(n3) in time andO(n2)

in space.
We will then build on our understanding of spectral embedding from

Section 5.3 to explore how out-of-sample embedding techniques can alleviate
the computational burden of repeatedly embedding large, growing networks.
These methods allow us to efficiently update network representations by
embedding new nodes without recomputing the entire embedding. Out-of-
sample techniques can be particularly valuable in dynamic network settings,
such as social networks, where the network structure evolves over time.

Imagine a network where nodes are web pages and edges are whether a pair of
web pages cross-link to one another. The network is huge, with n = 109 nodes,
and we suspect that there are homophilic communities (they have high within-
community block probabilities). For any given day, we want to have a record of
the estimated communities that exist in the network. We learned how to address
this task in Section 6.1: we begin by embedding the network, and then we train
an unsupervised classifier to identify estimated community structure from the
estimated latent positions.

The next day, another n′ = 3 web pages are added to the network. We could
simply re-execute the procedure from the previous day; however, due to time
and space complexities, this can quickly become cumbersome and costly.
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We would like to find a procedure to estimate the embeddings for our new
nodes without recomputing the svd. This is the problem that out-of-sample em-
bedding addresses.

6.6.1 Out-of-sample embeddings, a disclaimer

When we assume that a network A is a sample of an underlying random network
A as in Section 5.3.3, the estimates of latent positions produced by ase tend to be
close to the true underlying latent positions in the network (up to an orthogonal
transformation). As the network grows, these estimates get increasingly better
(on average). This means that if we embedded a network with n+ n′ nodes, the
embedding will be fractionally better than if we had just used n nodes.

This difference, however, will not be particularly substantial if n� n′. Outside
of network learning domains, it is often the case that we might train a machine
learning model, and then apply the learned model to new data, without recom-
puting. In much the same way, we might be willing to trade a slight loss in the
precision of our embedding for greater computational and algorithmic efficiency.
In these cases, we can use an out-of-sample embedding, or oose [13; 14], to embed
new nodes (the “out-of-sample” nodes) into an existing latent space computed
using only the original nodes (the “in-sample” nodes).

When we do this, we obtain estimated latent positions for our new nodes
in a shared space between the new and old nodes. While we might still want to
occasionally recompute the full embedding, in the short term we can save a lot of
computational resources and still obtain good enough estimated latent positions
for downstream analyses.

6.6.2 Adjacency matrix and adjacency vectors for each new node

For the out-of-sample embedding, we first need an n-node network (the “in-
sample” nodes). The crucial ingredient that we will need for the out-of-sample
nodes are instructions that tell us how the out-of-sample nodes are connected to
the “in-sample” nodes. This is accomplished via adjacency vectors, which can be
thought of as behaving like the rows of an adjacency matrix. An adjacency vector
for a node j in relation to an n-node network is a length-n vector ~aj , where aij
indicates whether node i and node j are connected.

For demonstration purposes, we will generate a sample from an SBMn(~z,B)

random network with n+ n′ nodes. The in-sample nodes will be 50 nodes from
community 1, and 50 nodes from community 2. The out-of-sample nodes will be
1 node from community 1, and 2 nodes from community 2:

import numpy as np

from graspologic.simulations import sbm

# the in-sample nodes

n = 100
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nk = 50

# the out-of-sample nodes

np1 = 1; np2 = 2

B = np.array([[0.6, 0.2], [0.2, 0.4]])

# sample network

np.random.seed(0)

A, zs = sbm([nk + np1, nk + np2], B, return_labels=True)

Next, we will remove the n′ “out-of-sample” nodes with graspologic. This will
give us an n× n adjacency matrix corresponding to the subnetwork induced by
the in-sample nodes, and an n×n′ matrix A′ of adjacency vectors, which indicate
the connectivity of out-of-sample nodes to in-sample nodes:

from graspologic.utils import remove_vertices

# the indices of the out-of-sample nodes

oos_idx = [nk, nk + np1 + nk, nk + np1 + nk + 1]

# get adjacency matrix and the adjacency vectors A prime

Ain, Aoos = remove_vertices(A, indices=oos_idx, return_removed=True)

In Figure 6.6.1(A), we plot the adjacency matrix of the in-sample nodes. Note
the modular community structure. In Figure 6.6.1(B), we show the adjacency
vectors for each of the 3 out-of-sample nodes, in relation to the in-sample nodes
from Figure 6.6.1(A). Further, notice that the out-of-sample nodes tend to fol-
low the patterns from their respective communities; out-of-sample node 1 is in
community 1, and tends to have more connections with nodes of community
1. Out-of-sample nodes 2 and 3 are in community 2, and tend to have more
connections with nodes of community 2.

Figure 6.6.1 (A) the adjacency matrix for the in-sample nodes. (B) the adjacency
vectors (columns) for each of the 3 out-of-sample nodes. (C) the estimated latent
positions for each of the in-sample nodes (faint blue and red) with the estimated
latent positions for the out-of-sample nodes (black).
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6.6.3 The probability vector for an out-of-sample node

If we add an out-of-sample node j to our simple network, the adjacency matrix
for the new network is:

A =

[
A ~aj
~a>j 0

]
Where the j simply denotes that we added the node j to the network, and

~aj is the adjacency vector for node j. If we assume that this new network is a
sample from an RDPGn+1(X ′) random network, the latent position matrix is:

X ′ =


` ~x>1 a
...
` ~x>n a
` ~x>j a

 =

[
X

` ~xj a

]
(6.7)

where ~xj is the latent position (the quantity that we want to obtain) associated
with our out-of-sample node j, and X is a matrix comprised of latent positions
for the other n nodes.

For an RDPGn+1(X ′) random network, for all pairs of nodes i and i′, pii′ =

~x>i ~xi′ . Therefore, the matrix product X~xj is:

X~xj =

` ~x>1 a
...
` ~x>n a

 ~xj =

~x
>
1 ~xj
...

~x>n ~xj

 =

p1j...
pnj

 = ~pj ,

where we used the standard rules of matrix multiplication for the second equality,
and then used the definition of pij for the in-sample nodes. We will call this vector
~pj the probability vector of node j, which has entries pij for all n in-sample nodes.
In particular, this implies that:

X~xj − ~pj = ~0 =

0
...
0

 , (6.8)

where ~0 is the n-dimensional 0 vector.

6.6.4 Estimating the out-of-sample node’s latent position

Our goal is to obtain an estimate of ~xj . In Equation 6.8, we have two unobserved
quantities, X and ~pj (the probability vector for the node j).
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Estimating the unobserved quantities
The latent positions of the in-sample nodes
Using the notation of Equation (6.7), the probability matrix for ourRDPGn+1(X ′)

random network is:

P ′ = X ′X ′> =

[
X

` ~x>j a

] >
X> ~xj

⊥


=

[
XX> X~xj
~x>j X ~x>j ~xj

]
,

where XX> is a n×n probability matrix, ~x>j X is a 1×n probability vector, X~xj
is a n× 1 probability vector, and ~x>j ~xj is a probability. In particular, P = XX>

is a probability matrix for the subnetwork induced by the first n nodes, and the
first n nodes (the in-sample nodes) are an RDPGn(X) random network.

By the logic that we developed in Section 5.3, we can use ase to estimate
latent positions for the in-sample nodes. We do this using graspologic:

from graspologic.embed import AdjacencySpectralEmbed as ase

oos_embedder = ase()

# estimate latent positions for the in-sample nodes

# using the subnetwork induced by the in-sample nodes

Xhat_in = oos_embedder.fit_transform(Ain)

The in-sample estimated latent positions are shown in Figure 6.6.1(C), with
the faint colored nodes. The estimated latent positions are as-described for the
estimated latent positions of a two-community SBMn(~z,B) random network:
two relatively homogeneous (in terms of the latent positions) clusters of nodes.
Remember that this is a function of the fact that the latent positions for a
SBMn(~z,B) random network are identical within-community as-per Section
4.7.8, and the estimated latent positions are estimating the latent positions.

The probability vector
Next, we’ll estimate ~pj by solving a least-squares optimization problem.

In Section 5.1, we covered a basic result from probability theory for finding
maximum likelihood estimates for coin flips. Recall that we concluded that, if a
coin that lands on heads with probability p is flipped m times, giving samples
of coin flips yi, a reasonable estimate of the probability that the coin lands on
heads is given by the maximum likelihood estimate (MLE):

p̂ =
1

m

m∑
i=1

yi,

which is simply the fraction of the m coin flips that landed on heads.
A direct extension of this is that, if we flip the coin only once, the MLE would

just be the outcome of that coin flip. With an identical rationale, we estimate ~pj
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using:

p̂ij = aij .

We estimate the probability that the in-sample nodes nodes i and the out-of-
sample node j are connected as the adjacency value aij between them. Accumu-
lating these p̂ij into a vector over all i in-sample nodes, we will estimate ~̂pj with
~aj .
X̂ is only an estimate of X, and is also inexact (see Section 5.3.3). Likewise, it

is unlikely that p̂ij = pij ; that is, estimating the probability that the in-sample
node i and the out-of-sample node j are connected with a single observation
from the adjacency vector is probably not going to give us a particularly exact
solution.

We will instead define a least-squares problem using what we established in
Equation (6.8) (see Concept 6.6.1 for a refresher). For a more detailed overview,
check out [15].

Since our estimates of X via X̂ and ~pj via ~aj are imperfect, when we plug
these into Equation 6.8, our equation becomes:

X̂~xj − ~aj = ~ej ,

where ~ej is an n-dimensional error term. In an ideal world, ~ej would be exactly
the zero vector, but since we imperfectly estimated X and ~pj with X̂ and ~aj ,
this will not be the case. For this reason, we turn to least-squares regression.

Using the normal equations in Remark 6.6.1, the estimate of ~xj that minimizes
the mean-squared error is given by:

~̂xj =
(
X̂>X̂

)−1
X̂>~aj . (6.9)

This estimate ~̂xj is known as the least squares out-of-sample embedding of the
out-of-sample node j.

In the general case when we have n′ out-of-sample nodes with adjacency vec-
tors to the in-sample nodes, the least-squares out-of-sample embedding (least-
squares oose) for the out-of-sample nodes can be found using the procedure in
Algorithm 22.

We can perform embed the least-squares oose using graspologic:

Xhat_oos = oos_embedder.transform(Aoos)

Figure 6.6.1(C) shows the embedding for the out-of-sample nodes. Note that
out-of-sample node 1 was in community 1, and has an estimated latent position
near those of the in-sample nodes from community 1. Likewise, the out-of-sample
nodes 2 and 3 were in community 2, and have estimated latent positions near the
in-sample nodes from community 2. In this sense, least-squares oos has preserved
the relative homogeneity in the latent positions within-community for the out-
of-sample nodes with respect to the in-sample nodes, without requiring the in-
sample network to be re-embedded.
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Concept 6.6.1 Ordinary least-squares (OLS) regression

We observe n samples yi, along with a set of features ~xi, which is a d-
dimensional feature vector for each sample i. The goal of least-squares re-
gression is to identify a set of d coefficients ~β, where for all n samples:

~y =

y1...
yn

 = X~β =

` ~x>1 a
...

` ~x>n a


β1...
βd

 .
By subtracting Xβ from both sides, we obtain:

~y −X~β = ~0.

Unfortunately, samples are noisy in practice, So we are limited to getting a
close approximation of each sample:

yi − ~x>i β = ri, and consequently, ~y −Xβ = ~r

where ri is known as the residual or error associated with sample i in the
regression. We want this residual to be as small as possible. To accomplish
this, we minimize the mean-squared error, defined as:

MSE(~β) =
1

n

n∑
i=1

(ri)
2

=
1

n
‖X~β − ~y‖22.

Our goal is to find the choice of ~β that minimizes the mean-squared error.
With a bit of calculus, the solution to this is given in closed-form by:

~̂β = (X>X)−1X>~y.

which is the least squares estimate.

6.6.5 Computational Considerations

Recomputing spectral embeddings for a network with n nodes when n′ nodes are
added would require the computation of an svd. The time complexity of the svd

is O
(
(n+ n′)3

)
, and the space complexity is O

(
(n+ n′)2

)
.

On the other hand, the least-squares solution in Algorithm 22 has a time
complexity of O

(
d2(n+ n′)

)
. If the embedding is meaningful, the number of

estimated latent dimensions is usually far less than the number of nodes. So this
approach has far improved time scalability over re-embedding the entire network,
because for networks with large numbers of nodes (n+ n′)3 will be much larger
than d2(n+ n′).

Space-wise, when the number of in-sample nodes exceeds the number of es-
timated latent dimensions and the number of out-of-sample nodes, the space
complexity to solve a least-squares problem is O (d(n+ n′)). d(n + n′) is much
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Algorithm 22: Least-squares out-of-sample embedding (least-squares
oose)

Data: An estimated latent position matrix X̂ for the in-sample nodes.
A′, an n× n′ matrix whose columns ~aj indicate the adjacency
vectors ~aj for each of the n′ out-of-sample nodes with the
in-sample nodes.

Result: d× n′ matrix, whose columns indicate the estimated latent
positions for each of the n′ out-of-sample nodes.

1 Let X̂ ′ =
(
X̂>X̂

)−1
X̂>A′.

2 return X̂ ′

less than (n+n′)2, so the least-squares problem can be solved with far less space
than recomputing the embedding.
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7 Applications for two networks

This chapter focuses on the case of two networks. With two networks, we en-
counter additional algorithmic complexities, but we can also address new ques-
tions.

When we have two sufficiently similar networks, we can make explicit compar-
isons across them. We assume the networks have the same nodes, with only the
edges differing. In this case, we can learn properties of network models and make
comparisons between the networks by studying how these properties change be-
tween them. We end the chapter by discussing strategies to align (or, match) the
nodes when they are permuted (or, non-overlapping, in the case where networks
only share a subset of nodes) between the networks.

Here are the main topics we cover:

1 Section 7.1 introduces two-sample testing for networks, and how we can use
bootstrapping coupled with our statistical models to compare networks.

2 Section 7.2 covers two-sample testing for stochastic block models (SBMs).
We develop machinery specific to SBMs that explicitly leverages their block
structure.

3 Section 7.3 discusses the graph matching problem. We address the challenge of
identifying a correspondence, or a way to match, the nodes from one network
to the nodes of another, and techniques for overcoming problems where some
of the nodes may not be the same from one network to the next.

These tools are essential for analyzing evolving networks, comparing networks
from different sources, and integrating network data across multiple domains.
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7.1 Two-sample testing for networks

Co-authored with Sambit Panda
In Chapter 5, we introduced several spectral embeddings for networks, in-
cluding ase and lse. Chapter 6 demonstrated how these tools enable vari-
ous network analyses, such as for community detection (Section 6.1), ver-
tex nomination (6.5), and out of sample embedding (6.6). Remark 5.5.5
highlighted a limitation: non-identifiability prevents direct comparison of
spectral embeddings across networks.

We now turn to techniques comparing two networks. We begin by extend-
ing the two-sample testing framework from Section 6.3, which compared
edge clusters within a single network. Our goal is to determine whether two
network observations are sampled from the same random network, or from
different random networks.

We will:

1 Develop statistical tests for comparing latent position matrices across
networks,

2 Introduce non-parametric techniques for testing differences in network
distributions,

3 Explore methods to evaluate structural changes in networks over time,
and

4 Examine applications of two-sample testing in network comparison prob-
lems.

We apply these techniques to SBMs in Section 7.2. Section 8.1 extends
these ideas to timeseries sequences of networks.

We return to the alien and human brain networks example from Case Study
5.5.1. There are n = 100 brain areas, which represent the nodes of the network.
This time, we find a third group of aliens, and their brain structure is much more
similar to humans than our original group of aliens (they are still homophilic).
However, this group of aliens tends to have heterogeneities in the node degrees:
nodes with lower indices have a higher degree than nodes with higher indices.
The human brains tend to have more homogeneous structurings.

Imagine that we have one human brain and one alien brain:

from graspologic.simulations import sbm

import numpy as np

from graphbook_code import dcsbm, generate_dcsbm_pmtx, \

generate_sbm_pmtx

n = 100 # the number of nodes

# human brains have homophilic block structure
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Bhum = np.array([[0.2, 0.02], [0.02, 0.2]])

# alien brains add degree-correction

theta_alien = np.tile(np.linspace(1.5, 0.5, n // 2), 2)

# generate human and alien brain network

np.random.seed(0)

A_human, z = sbm([n // 2, n // 2], Bhum, return_labels=True)

A_alien = dcsbm(z, theta_alien, Bhum)

Phum = generate_sbm_pmtx(z, Bhum)

Palien = generate_dcsbm_pmtx(z, theta_alien, Bhum)

Plots of the networks are shown in Figure 7.1.1, where their underlying proba-
bility matrices are shown in (A) and (C). Note that the degree-correction factor
for the alien brain network has led to the nodes with lower indices in each com-
munity having higher probabilities of being connected to other nodes. Samples of
the human and alien brain networks are (B) and the alien brain network in (D).
It is less obvious that the networks are different when we look at the network
samples.

Just like when we were flipping coins we could not immediately conclude that
two coins were different because they produced a different number of heads in
a given number of flips, it would be unwise to conclude that the networks differ
fundamentally (that is, they have different probability matrices) because the
samples look different.

For this reason, it is important for us to build out our two-sample testing
procedures, so that we can determine whether the networks differ.

7.1.1 Two-sample tests and random networks

When we observe two random networks A(1) and A(2), we first need to determine
appropriate models. If we make the assumption that these random networks are
IERn

(
P (m)

)
from Section 4.1, the broadest class of independent-edge random

network models, then the probability matrix encodes the differences between the
two random networks. Therefore, our question is:

H0 : P (1) = P (2) against HA : P (1) 6= P (2), (7.1)

or whether the edge probability matrices are the same (under the null hypothesis)
against that the edge probability matrices differ (under the alternative hypoth-
esis). This is exactly the same question asked about determining whether two
coins are different, but generalized to n× n probability matrices.

The IERn
(
P (m)

)
random networks are difficult to deal with directly using

only a single network sample. This means that testing the hypotheses in Equation
(7.1) is impractical with only two networks, because there is only one sample a(m)

ij

to base the estimate of p(m)
ij on.
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Figure 7.1.1 (A) probability matrix underlying human brain network, (B) brain
network from human, (C) probability matrix underlying alien brain network, (D)
brain network from alien.

7.1.2 Latent position testing

For this reason, it is typical to make further assumptions about the network
structure. From Section 5.3, it is often reasonable to assume that the random
networks are RDPGn

(
X(m)

)
, with latent position matrices X(m). The latent

position matrix X(m) fully describes the probability matrix P (m), so it would be
equivalent to compare the latent positions directly:

H0 : X(1) = X(2) against HA : X(1) 6= X(2), (7.2)

Unfortunately, due to the non-identifiability problem in Section 5.5.2, this hy-
pothesis would not be entirely accurate as-written. For a network with a latent
position matrix X(m), for any d× d orthogonal matrix W :

P (m) = X(m)X(m)> = X(m)WW>X(m)>

This means that even if P (1) and P (2) were identical, they could still have differ-
ent latent position matrices; particularly, if W is a d× d orthogonal matrix, we
could have X(2) = X(1)W be an orthogonal transform of the first latent position
matrix. For this reason, we will make our hypothesis “robust” to this challenge,
and test:

H0 :X(1) = WX(2) for some orthogonal matrix W
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HA :X(1) 6= WX(2) for any orthogonal matrix W. (7.3)

The null hypothesis is that the latent positions are identical up to an orthogonal
transform (for some possible orthogonal matrix), and our alternative hypothesis
is that the latent positions are not orthogonal transforms of one another (for any
possible orthogonal matrix).

Learning orthogonal transforms from the data
From Section 5.3, we know that we can obtain estimates of X(m) by using the
ase, where X̂(m) = ase

(
A(m)

)
. How do we account for the possibility that X(1)

and X(2) are orthogonal transforms of one another?

The orthogonal Procrustes problem
To estimate a possible orthogonal transform, we will need to set up an optimiza-
tion problem. Our goal is to find the best possible orthogonal transform of X(2)

onto X(1). This method involves a matrix norm, the Frobenius norm, which we
introduced in Concept 5.5.4.

By the “best” possible orthogonal transform, we mean the orthogonal trans-
form where the Frobenius distance between X(1) and X(2) are minimized. We
can describe our goal as:

find W where
∥∥∥X(1) −X(2)W

∥∥∥
F

is minimized.

We can equivalently write this goal as:

Ŵ = argminW
∥∥∥X(1) −X(2)W

∥∥∥
F
. (7.4)

The idea is that if X(1) and X(2) are orthogonal transforms of one another,
the solution to this optimization problem is the d× d orthogonal matrix Ŵ that
properly aligns them. If such a matrix exists, the function that we are minimizing∥∥∥X(1) −X(2)Ŵ

∥∥∥
F

will have a value of 0 when we find the correct orthogonal
matrices because the transformed latent position matrices will be identical. The
problem of solving for optimal orthogonal transforms in Equation (7.4) is known
as the orthogonal Procrustes problem.

In practice, we only have estimates X̂(1) and X̂(2), so we will not find the per-
fect orthogonal transform of X̂(1) onto X̂(2) (even if such an orthogonal transform
exists for X(1) and X(2), because estimates using samples from random networks
are imperfect). Therefore, when we minimize

∥∥∥X̂(1) − X̂(2)W
∥∥∥
F
, we will just

want the Ŵ that makes them the most similar in terms of the Frobenius dis-
tance. If X(1) and X(2) are the same, we would expect that

∥∥∥X̂(1) − X̂(2)Ŵ
∥∥∥
F

would take a small value.
We can code this up as:

from scipy.linalg import orthogonal_procrustes

from graspologic.embed import AdjacencySpectralEmbed as ase
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Figure 7.1.2 (A) The observed statistic from the data (gray) compared to a histogram
from the r = 100 parametric replicates (black). (B) A comparison of the probabilities
for two buckets of coins of landing on heads, where each coin has a different
probability. (C) The observed statistic from the data (gray) compared to a histogram
from the r = 100 replicates (black). Figures were produced with nrep=1000 to smooth
out the null distributions, rather than nrep=100 as-indicated in the text.

d = 2

# estimate latent positions for alien and human networks

Xhat_human = ase(n_components=d).fit_transform(A_human)

Xhat_alien = ase(n_components=d).fit_transform(A_alien)

# estimate best possible orthogonal transform of Xhat_alien to Xhat_human by

# solving orthogonal procrustes problem

W = orthogonal_procrustes(Xhat_alien, Xhat_human)[0]

observed_norm = np.linalg.norm(Xhat_human - Xhat_alien @ W, ord="fro")

This gives us the value shown in Figure 7.1.2(A), in gray.

Estimating a p-value
In Section 6.3.1, we looked at how well the data reflect the null hypothesis.
Here, this is whether the latent positions for our networks are identical up to an
orthogonal transform.

With estimates computed from the data, we can determine directly by the
nature of the data and our assumptions exactly how “anomalous” the observed
difference is relative to what we would expect under the null hypothesis. In the
case of the contingency tables from Section 6.3.1, the Fisher’s exact test used the
assumptions that the two samples were independent binary events to compute
how anomalous the contingency table that we observed was.

In this case, however, without more assumptions we can’t quite compute this
value exactly. In the interest of keeping assumptions to a minimum, a popular
strategy is to use a bootstrap, a technique which attempts to quantify the sam-
pling distribution of some numerical quantity that is computed from the data (a
statistic). The sampling distribution refers to the distribution of the statistic, in
this case

∥∥∥X̂(1) − X̂(2)Ŵ
∥∥∥
F
.

To do this, we will use the parameter X̂(1) as the latent position matrix to
generate two new random networks, A′ and A′′. Then, we will generate two new
samples of these random networks:
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from graspologic.simulations import rdpg

def generate_synthetic_networks(X):

"""

A function which generates two synthetic networks with

same latent position matrix X.

"""

A1 = rdpg(X, directed=False, loops=False)

A2 = rdpg(X, directed=False, loops=False)

return A1, A2

Ap, App = generate_synthetic_networks(Xhat_human)

We then use these two new networks, and again estimate latent position ma-
trices for these:

def compute_latent(A, d):

"""

A function which returns the latent position estimate

for an adjacency matrix A.

"""

return ase(n_components=d).fit_transform(A)

Xhat_p = compute_latent(Ap, d)

Xhat_pp = compute_latent(App, d)

Finally, just like we aligned X̂(1) and X̂(2) via the “optimal orthogonal trans-
form” Ŵ , we will align X̂ ′ and X̂ ′′ via the “optimal orthogonal transform” Ŵ ′.
Then, we recompute our statistic of interest

∥∥∥X̂ ′ − X̂ ′′Ŵ ′∥∥∥
F

using these new
samples, where the underlying latent positions were truly identical:

def compute_norm_orth_proc(A, B):

"""

A function which finds the best orthogonal transform

of B onto A, and then computes and returns the norm.

"""

R = orthogonal_procrustes(B, A)[0]

return np.linalg.norm(A - B @ R)

norm_null = compute_norm_orth_proc(Xhat_p, Xhat_pp)

We keep repeating this process. Over time, we get some idea of what
∥∥∥X̂(1) − X̂(2)Ŵ

∥∥∥
F

would look like if the true latent positions X(1) and X(2) were identical up to an
orthogonal transform by W . This is known as a parametric bootstrap. It is called
parametric because we are using the assumption that the networks are RDPGs
to generate what X̂(1) and X̂(2) would look like under the null hypothesis.

The statistics we generate in this matter are collectively called the parametric
null replicates. 7.1.2(A) indicates these in black. The statistic is less extreme
than the one that we observed from the data, shown in gray.

The below code will repeat this procedure r = 100 times (the number of
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parametric null replicates), and keep track of the computed statistics under the
null hypothesis:

def parametric_resample(A1, A2, d, nreps=100):

"""

A function to generate samples of the null distribution under H0

using parametric resampling.

"""

null_norms = np.zeros(nreps)

Xhat1 = compute_latent(A1, d)

for i in range(0, nreps):

Ap, App = generate_synthetic_networks(Xhat1)

Xhat_p = compute_latent(Ap, d)

Xhat_pp = compute_latent(App, d)

null_norms[i] = compute_norm_orth_proc(Xhat_p, Xhat_pp)

return null_norms

nreps = 100

null_norms = parametric_resample(A_alien, A_human, 2, nreps=nreps)

What we see is that ||X̂(p) − X̂(r)Ŵ ||F is much larger than the almost all of
the values of ||X̂ ′ − X̂ ′′Ŵ ′||F that we calculated. We will use this to estimate
a p-value, and we will say that the p-value of H0 against HA is the fraction of
times that when the underlying latent positions were equal (for each replicate of
our parametric bootstrap), the value of the statistic that we calculated from the
observed data exceeded the statistic that we calculated from the replicate. We
add one to the numerator and denominator, since we observed one instance of a
value at least as big as that in the observed data: the observed data itself.

This means our p-value is:

pval = ((null_norms >= observed_norm).sum() + 1)/(nreps + 1)

print(f"estimate of p-value: {pval:.5f}")

# estimate of p-value: 0.00990

We then repeat this process, but we use A(2) as our reference network instead
of A(1). The overall p-value is the maximum of the two p-values produced with
this procedure.

This is called the latent position test, and it is implemented directly by graspologic.
Note that the p-value that we obtain from this process will likely differ every time
we run the test, since there is randomness in the generation process of the A′s
and the A′′s for every time we repeated the comparison. Making the number of
repetitions larger by setting n_bootstraps to a higher value will tend to yield
more stable p-value estimates for when we estimate p-values using resampling
techniques:

from graspologic.inference import latent_position_test

nreps = 100 # the number of null replicates

lpt = latent_position_test(A_human, A_alien, n_bootstraps = nreps, n_components=d,

workers=-1)
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print("estimate of p-value: {:.5f}".format(lpt[1]))

# estimate of p-value: 0.00990

The p-value is low, and below a typical decision threshold of α = 0.05. This
means we have evidence to reject the null hypothesis in favor of the alternative:
the latent position matrix for a human brain network differs from the latent
position matrix for an alien brain network (by more than just an orthogonal
transform).

Next, let’s see what happens if we have two networks with the same underlying
latent position matrices. We’ll make a second network from a human, and use
the latent position test to determine whether the networks have identical latent
position matrices (up to an orthogonal transform):

# generate a new human brain network with same block matrix

A_human2 = sbm([n // 2, n // 2], Bhum)

lpt_hum2hum = latent_position_test(A_human, A_human2, n_bootstraps=nreps, n_components=d,

workers=-1)

print("estimate of p-value: {:.5f}".format(lpt_hum2hum[1]))

# estimate of p-value: 0.386

The p-value is relatively large, so with α = 0.05, we fail to reject the null hypoth-
esis. We conclude that our data does not support that our two human networks
have different underlying latent position matrices. The latent position test is
described in [1].

7.1.3 Latent distribution testing

The latent position test allows us to determine whether the latent position ma-
trices for two random networks differ, using the realizations of our network with
the estimated latent position matrices. With latent distribution testing, we in-
stead ask: are the latent positions themselves fundamentally different, across all
nodes, for the two random networks?

To motivate a latent distribution test, we start with another coin example.
Imagine that two people have containers of 300 coins that were created by dif-
ferent coin manufacturers. Each container has coins that are not necessarily fair
(their probabilities of landing on heads may differ slightly from 0.5, due to, say,
manufacturing tolerances in coin construction). Each of these 300 coins can be
identified as the coin x

(1)
i or x

(2)
i , the ith coin in each of the two containers from

the different coin manufacturers.
The outcomes x

(1)
i and x

(2)
i are random. These coins all have different prob-

abilities of landing on heads, p
(1)
i and p

(2)
i , again for each of the manufacturers

respectively, and the probabilities that the coins land on heads is random too.
Let’s say, for sake of example, that on average, both coin manufacturers produce
fair coins (the average probability of landing on heads is 0.5). However, for one
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Concept 7.1.1 The basics of the beta distribution

The Beta distribution is a continuous probability distribution for probabilities.
In particular, if p is a Beta(α, β) random variable, samples p are probabilities
(they are values which will fall between 0 and 1). The expected value of
Beta(α, β) random variables is given by:

E[p] =
α

α+ β
,

and the variance of Beta(α, β) random variables is given by:

var(p) =
αβ

(α+ β)2(α+ β + 1)
.

manufacturer of coins, the variability of this probability exceeds the other. We
can do this with the Beta distribution, described in Concept 7.1.1:

ncoins = 300 # the number of coins in each container

# the probabilities from container 1 landing on heads

# with a much larger variance

pi1 = np.random.beta(a=4, b=4, size=ncoins)

# the probabilities of container 2 landing on heads,

# with a much smaller variance

pi2 = np.random.beta(a=15, b=15, size=ncoins)

Using the logic that we have developed thus far, we could directly compare
the coins themselves to test whether each individual coin is different from one
manufacturer to the next. However, there are more interesting questions that
we could ask about the coins from the different manufacturers. In particular,
we might ask, even though the two containers may contain coins with the same
probability (on average) of landing on heads, does one manufacturer have tighter
tolerances for their coins’ variability? Formally, we might ask:

H0 : var(p
(1)
i ) = var(p

(2)
i ) against HA : var(p

(1)
i ) 6= var(p

(2)
i ).

Histograms of the probabilities p(m)
i underlying the 300 coins for each bucket

are illustrated in Figure 7.1.2. Note that even though the two containers appear
to contain coins with approximately the same average probability of landing on
heads (about 0.5), the second manufacturer has much tighter tolerances than the
first manufacturer. The histogram for the second manufacturer is much narrower
than the first, indicating that the second manufacturer has lower variance to the
probabilities of the coins landing on heads.

Much the same, we could assume that not only are the latent positions for
humans and aliens different, but random too, like the probabilities of the coins.
When we say that the latent position matrices are random, we mean that the
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latent position vectors ~x(1)i and ~x
(2)
i for each of the n total nodes may not be

fixed quantities, but observations of random variables x̃
(1)
i and x̃

(2)
i associated

with probability distributions.

The idea is that the latent position vectors for each node x̃
(1)
i and x̃

(2)
i may

have underlying parameters as well, just like the random probabilities of heads
for the coins in our example above. The characteristics that determine how the
human or alien latent position vectors can be realized are governed by the dis-
tributions of these vectors. We use the symbol F (1) and F (2), respectively, to
denote the distribution of the humans’ latent position vectors and the aliens’
latent position vectors, respectively. When we ask questions about whether P(1)

and P(2) differ, we are no longer checking whether the latent positions themselves
are different, but whether the distributions of these latent positions are differ-
ent. Note that the latent position vectors x̃

(m)
i are random, and consequently,

the latent position matrices X(m) are also random. Since P(m) = X(m)X(m)>,
the probability matrices are random as well. Hence, the probability matrices are
boldfaced here.

As before, we will design null and alternative hypotheses. The null hypothesis
will be that H0 : F (1) = F (2)W , which means that the distributions of the
latent positions are the same. Like before, we allow for a possible orthogonal
matrix W . The alternative hypothesis will be that the latent positions for the
humans and the aliens have a different distribution for any possible orthogonal
transformation, HA : F (1) 6= F (2)W .

We will assume as little as possible about the distributions for the latent
positions. Two good ways to do this are using distance correlation [2] or the mul-
tiscale generalized correlation (MGC) [3], which are described briefly in Concept
7.1.2. For this we can use graspologic, through the latent_distribution_test

function:

from graspologic.inference import latent_distribution_test

nreps = 100

approach = ’mgc’ # the strategy for the latent distribution test

ldt_dcorr = latent_distribution_test(A_human, A_alien, test=approach, metric="euclidean",

n_bootstraps=nreps, workers=-1)

print("estimate of p-value: {:.5f}".format(ldt_dcorr.pvalue))

# estimate of p-value: 0.00990

For the latent distribution test, we again look at the p-value:

print("estimate of p-value: {:.4f}".format(ldt_dcorr[1]))

The null replicates against the observed test statistic are shown in Figure
7.1.2(C). For more details on this approach, check out [4].
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Concept 7.1.2 Independence testing and two-sample testing

A common scenario in machine learning involves two random quantities, xi
and yi. We suspect that for each i, xi and yi are drawn in a related manner.
This idea is captured by a “joint distribution”, meaning that (xi,yi) for each
i are sampled from some distribution Fx,y. For example, a joint distribution
could be the multivariate normal distribution, where each dimension of a ran-
dom vector follows a normal distribution. If we assume that the pair (xi,yi)

are multivariate normally distributed, then xi is a N (µx, σx) random variable,
yi is a N (µy, σy) random variable, and corr(xi,yi) = ρ is their correlation.
A formulation of our question is known as the independence testing problem
and can be written:

H0 : Fxi,yi = FxiFyi against HA : Fxi,yi 6= FxiFyi ,

which tests whether xi and yi are independent against the alternative they
are not. The independence testing problem assumes nothing about the distri-
bution or nature of xi or yi (they could be either random variables or vectors,
for instance). If yi takes one of two possible values, the two-sample test can
be reformulated as an independence test. Thus, independence tests can serve
as an alternative for two-sample tests.

7.1.4 The latent distribution test versus the latent position test

The latent distribution test is non-parametric because it does not make the
assumption that the networks are RDPGs with fixed latent position matrices. In
this sense, the latent distribution test tends to be a little bit more general than
the latent position test, and will tend to be more conservative. In statistics, a
conservative test is a testing procedure which tends to err on the side of caution:
the p-values, and consequently the conclusions, will tend to err towards shying
away from rejecting the null hypothesis. When we obtain results in favor of
rejecting H0 in favor of HA with conservative tests (such as a small p-value), we
have a little bit more confidence that our results hold up to scrutiny. This comes
with the caveat that, since the test is conservative (and therefore will tend to
prioritize rejecting H0 in favor of HA only when the data supports a high degree
of evidence to do so), that we will end up with fewer discoveries of potentially
truthful differences between our networks.

Moreover, the latent position test assumes that the two networks are node-
matched: node 1 in the first network has the same interpretation as node 1 in the
second network, and so on for all n nodes in the network. The latent distribution
test does not make this rather limiting assumption: we can perform a latent
distribution test when the nodes differ in both interpretation (nodes don’t need
to be matched) and in number. This makes the latent distribution test more
flexible than the latent position test.
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Generalizing to other network models
The results in this section generalize directly to all random network models which
can be described as RDPGn(X) random networks. This includes any network
model where the probability matrix has a positive semi-definite structure. As
we learned in Section 4.5, many network models have this structure, such as
DCSBMs and SBMs with positive semi-definite block matrices.

The utility of these techniques, however, generalizes beyond just theRDPGn(X)

random networks, and probably (but not provably) includes some types of GRDPG
random networks. This is because the primary piece of information that is needed
to motivate the techniques described here is that X̂(1) and X̂(2) are reasonable
(unbiased and consistent) estimates of the latent position matrices X(1) and
X(2) (up to an orthogonal transformation). In Section 5.7.3, we saw that spec-
tral embedding techniques can produce similarly reasonable estimates of latent
position matrices for GRDPG random networks. While there is no direct theory
that asserts that the latent position and latent distribution tests are appropriate
for GRDPG, it is reasonable to expect them to apply for GRDPG (with po-
tentially non positive semi-definite probability matrices), and this is empirically
true in practice. For the latent position test, a key modification would be that
the parametric bootstrap would need to consider samples from GRDPG random
networks, and not RDPGn(X) random networks.

Appendix A.6 discusses the foundational assumptions for the latent distribu-
tion test, the a posteriori Random Dot Product Graph. Appendix B.2 discusses
the implications of latent distribution testing with respect to spectral embed-
dings.
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7.2 Two-sample testing for SBMs

In Section 7.1, we introduced a framework for comparing two networks
using latent position testing. We found that for networks characterized
by RDPGs, we could test whether the latent positions for the underly-
ing RDPGs are the same by taking advantage of the orthogonal Procrustes
method to find orthogonal transformations that allow us to avoid the non-
identifiability problem. This approach extends to positive semi-definite block
models, including SBMs (Section 4.3) and DCSBMs (4.7), as discussed in
Section 4.11.3.

While the latent position test is generalizable, it may disregard specific
features of block models that could yield more sensitive and specific tests.
This section develops machinery tailored to SBMs, leveraging their explicit
community structure. We will:

1 Explore how incorporating model-specific features can improve test sen-
sitivity,

2 Develop test statistics that explicitly account for SBM community struc-
ture,

3 Compare the performance of SBM-specific tests to more general ap-
proaches, and

4 Discuss practical considerations for choosing between general and specific
tests.

SBMs are a widely used model in network analysis, and model-specific
tests can often detect differences with smaller sample sizes than more gen-
eral approaches. Building model-specific intuition for this model can there-
fore be helpful for building model-specific intuition more generally. This
exploration builds on concepts from maximum likelihood estimation (Sec-
tion 5.1), hypothesis testing (Section 6.3), and model selection (Section
6.4).

In Section 4.5.8, we learned that the latent position matrix for positive semi-
definite block matrices is a function of the community assignment vector and the
block matrix. Therefore, if two networks have the same community assignment
vectors but their positive semi-definite block matrices are unequal, their latent
position matrices are unequal. In this case, we can use the machinery that we
developed in Section 7.1 directly to test whether the block matrices are unequal.

However, we can approach this question more directly for SBMs by testing
whether the block matrices are unequal directly. In Case Study 7.2.1, we develop
an interstate traffic pattern example we will work with for this section.

Let’s generate the community assignment vector and the block matrices for the
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Case Study 7.2.1 Traffic patterns

Transit planners are determining how to allocate resources for a new high-
speed rail project. To do so, the planners seek to understand vehicular traf-
fic patterns, to prioritize which routes could benefit from additional public
transit options, and how those options could be best offered to offset traf-
fic congestion. We have two networks which summarize the traffic patterns
amongst n = 100 interstate exits (represented by the nodes in our network)
across K = 3 states (represented by the communities in our network). The
first 45 exits are in New York (NY, the first community), the second 30 exits
are in New Jersey (NJ, the second community), and the third 25 exits are in
Pennsylvania (PA, the third community).
We measure the number of drivers who commute from one exit to another
over the course of a month through highway toll records. If more than 1, 000

drivers make the commute more than five times over a single interval, we
add an edge between the pair of exits. We know that people commute more
frequently within their state, so the probability that an edge exists between
pairs of exits in the same state exceeds the probability that an edge exists
between pairs of exits which are not in the same state. Further, people tend
to commute more frequently to states they are next to; e.g., drivers are more
likely to commute to New York from New Jersey than from Pennsylvania,
because Pennsylvania is generally farther away from New York than New
Jersey.
The first goal for transit planners is to determine whether there is a time effect
to the highway networks; that is, whether (and how) the networks differ during
the day versus night. We measure over two time windows: 7 AM and 7 PM
(covering the bulk of the work day), and between 7 PM and 7 AM (covering
the bulk of night time). We know that a lot of people in New Jersey tend to
commute to New York for the work day, so the probability of an edge existing
between a New Jersey exit and a New York exit are higher during the day
than the night.

day and night time for Case Study 7.2.1. The day time network will be network
(1), and the night time network will be network (2):

import numpy as np

from graspologic.simulations import sbm

ns = [45, 30, 25] # number of exits

states = ["NY", "NJ", "PA"]

# z is a column vector indicating which state each exit is in

z = np.repeat(states, ns)

Bnight = np.array([[.3, .2, .05], [.2, .3, .05], [.05, .05, .3]])
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Figure 7.2.1 (A) the block matrix for night time, (B) the block matrix for day time,
(C) the adjacency matrix for night time, (D) the adjacency matrix for day time.

Bday = Bnight*2 # day time block matrix is generally 50% more than night

# people tend to commute from New Jersey to New York during the day

# at anomalously high rates

Bday[0, 1] = .5; Bday[1,0] = .5

np.random.seed(0)

Anight = sbm(ns, Bnight)

Aday = sbm(ns, Bday)

The block matrices, and the two network samples, are shown in Figure 7.2.1.
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7.2.1 Block matrices in an SBM

For Case Study 7.2.1, we know ahead of time that the block matrices for the
SBMs are different. We would like a method of testing this formally. We will
start by defining what we mean by “different”. We introduce some new variables
for the block matrices during the day time (B(1)) and at night time (B(2)) clearly.
The block matrices are:

B(1) =

b
(1)
11 b

(1)
12 b

(1)
13

b
(1)
21 b

(1)
22 b

(1)
23

b
(1)
31 b

(1)
32 b

(1)
33

 ; B(2) =

b
(2)
11 b

(2)
12 b

(2)
13

b
(2)
21 b

(2)
22 b

(2)
23

b
(2)
31 b

(2)
32 b

(2)
33


We want to test the null hypothesis that the block matrices are the same,
H0 : B(1) = B(2), against the alternative hypothesis that the block matrices
are different, HA : B(1) 6= B(2). Two matrices are equal if all of the entries
are identical, and unequal if at least one of the entries are unequal. We can
reformulate the null and alternative hypotheses with this logic.

For the null hypothesis, H0 : B(1) = B(2), the statement is equivalent to saying
that for all pairs of communities k and l, b(1)kl = b

(2)
kl . We will write each of these

statements down as individual hypotheses for all pairs of communities, using the
convention H0,kl : b

(1)
kl = b

(2)
kl .

Therefore, the null hypothesis H0 is equivalent to saying that for every pair
of communities k and l, H0,kl is true.

For the alternative hypothesis, HA : B(1) 6= B(2), the statement is equivalent
to saying that for at least one pair of communities k and l, b(1)kl 6= b

(2)
kl . We

will write down each of these statements as well as individual hypotheses for
all pairs of communities using the convention HA,kl : b

(1)
kl 6= b

(2)
kl . Therefore, the

alternative hypothesis HA is equivalent to saying that for at least one pair of
communities k and l, HA,kl is true.

Testing whether a pair of block probabilities between communities k and l

are the same, H0,kl, against whether the pair of block probabilities between
communities k and l are different, HA,kl, is again the two-sample testing problem
from Section 6.3.1. We addressed this problem using Fisher’s exact test, and that
is what we will do here, too.

Remember that with Fisher’s exact test, when we want to compare two prob-
abilities, we construct a contingency table. In this case, we will have

(
K
2

)
+ K

contingency tables (one for each unique pair of communities, plus the on-diagonal
edges where both nodes have the same community). An example is shown in Ta-
ble 7.1.

In the table, entry a is the total number of edges between nodes of community
k with nodes of community l in the day time network, and b the number of
non-edges. The entry c the total number of edges between nodes of community
k with nodes of community l in the night time network, and d the number of
non-edges.
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Number of edges Number of non-edges
Day time a b
Night time c d

Table 7.1 An example of a contingency table for testing for a difference in the block
matrices between two SBMs.

(
K
2

)
+K of these contingency tables are constructed,

corresponding to the contingency tables between nodes in community k and l for all
possible pairs of communities (including the K community-to-community pairs).

We implement this using numpy and scipy for each pair of communities. To
identify which adjacency matrix entries correspond to a given pair of communi-
ties, we use np.outer. Since the network is simple, we also exclude the on-diagonal
entries, and avoid double counting by only looking at the upper-right triangle of
the adjacency matrix:

from scipy.stats import fisher_exact

K = 3

Pvals = np.empty((K, K))

# fill matrix with NaNs

Pvals[:] = np.nan

# get the indices of the upper triangle of Aday

upper_tri_idx = np.triu_indices(Aday.shape[0], k=1)

# create a boolean array that is nxn

upper_tri_mask = np.zeros(Aday.shape, dtype=bool)

# set indices which correspond to the upper triangle to True

upper_tri_mask[upper_tri_idx] = True

for k in range(0, K):

for l in range(k, K):

comm_mask = np.outer(z == states[k], z == states[l])

table = [[Aday[comm_mask & upper_tri_mask].sum(),

(Aday[comm_mask & upper_tri_mask] == 0).sum()],

[Anight[comm_mask & upper_tri_mask].sum(),

(Anight[comm_mask & upper_tri_mask] == 0).sum()]]

Pvals[k,l] = fisher_exact(table)[1]

This gives us a matrix of p-values, corresponding to tests of H0,kl against HA,kl

for all pairs of communities k and l. However, directly attempting to interpret
these p-values may be misleading.

Adjusting for multiple comparisons
When performing multiple statistical tests, we run into the multiple hypothesis
correction problem. Imagine that we have 5000 coins, and each of these coins has
a true probability of landing on heads of 0.5. We flip each coin 500 times, and
for each coin i, we estimate the probability that the coin lands on heads by just
counting the number of heads and dividing by 500. For each coin, we want to
test whether the probability that the coin lands on heads is different from 0.5: we
test H(i)

0 : p(i) = 0.5 against H(i)
A : p(i) 6= 0.5. For this problem, an appropriate
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Figure 7.2.2 (A) a histogram of the p-values before multiple comparisons adjustment,
(B) a histogram of the p-values after adjusting for multiple comparisons, by
preserving the FWER via Holm-Bonferroni correction.

statistical test is known as the binomial test, a way of testing whether the data
supports (or does not support) a probability being equal to a fixed constant.
Let’s run our experiments:

import numpy as np

from graspologic.simulations import er_np

import seaborn as sns

from scipy.stats import binomtest

ncoins = 5000 # the number of coins

p = 0.5 # the true probability

n = 500 # the number of flips

# the number of heads from each experiment

experiments = np.random.binomial(n, p, size=ncoins)

# perform binomial test to see if the number of heads we obtain supports that the

# true probabiily is 0.5

pvals = [binomtest(nheads_i, n, p=p).pvalue for nheads_i in experiments]

A histogram of the p-values from all 5000 tests (one for each coin) is shown in
Figure 7.2.2(A). In general, we will fail to reject the null hypothesis. This is great,
since pi is, in fact, 0.5 as specified by the null hypothesis H(i)

0 . However, for a
portion of the tests, we are wrong. We obtain many p-values which are under our
decision threshold of α = 0.05, and would incorrectly reject the null hypothesis
in favor of the alternative, that pi is not 0.5. This is both wrong and extremely
problematic. The p-value was defined in Concept 6.3.1 as the probability that
the null hypothesis (here, that pi = 0.5) would be incorrectly rejected in favor of
the alternative hypothesis (here, that pi 6= 0.5). If the null hypothesis were true,
we would expect to see p-values of at most α being reported about α of the time
(this assumes all of the coins are independent, but even when they are not all
independent, we still obtain a similarly shocking conclusion). This means that
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with n = 5000 tests and α = 0.05, we would expect to be wrong about n ·α = 50

times.
The essential problem is that while each test individually only has an α = 0.05

chance of incorrectly rejecting the null hypothesis (when it is true), by running
multiple tests, we have increased the familywise error rate to be well north of
α = 0.05. The familywise error rate (FWER) is the probability that we make an
error and incorrectly reject the null hypothesis for any one of the hypothesis tests
we ran. Collectively, this issue is known as the multiple comparisons problem. See
[5] for more detail.

One focus of statistics in recent decades has been the development of methods
which, in effect, inflate the p-values based on the number of tests that we perform,
so that we run into this issue at much lower rate than n · α of the time. These
strategies are collectively known as multiple comparisons adjustments. There are
many methods for multiple comparison adjustments implemented in common
statistical libraries. In Python, given a list of p-values pvals, we can simply
adjust the p-values using the multipletests() method from statsmodels. This
will give protection for this “multiple comparisons” issue in analyses in exchange
for more conservative tests: The tests will tend away from rejecting the null
hypothesis, as-per the definition in Section 6.3.1.

Let’s see what happens when we adjust our p-values here using a popular
method called Bonferroni-Holm adjustment [6]:

from statsmodels.stats.multitest import multipletests

alpha = 0.05 # the desired alpha of the test
_, adj_pvals, _, _ = multipletests(pvals, alpha=alpha, method="holm")

Figure 7.2.2(B) shows a histogram of the p-values after adjustment. After
adjusting for multiple comparisons, we end up with all of the p-values being 1.
Therefore, we no longer incorrectly reject the null hypothesis after adjustment.

In general, for multiple hypothesis correction, we recommend using Holm-
Bonferroni correction, encoded with the parameter method="holm". We recom-
mend the use of the Holm-Bonferroni procedure because it ensures that our
p-values produced by using multiple statistical tests controls the FWER with no
additional restrictions on the hypotheses being tested. While other adjustment
techniques may situationally give more precise p-values, they typically make
assumptions about relationships between the hypotheses that entail a more nu-
anced discussion.

Let’s adjust our p-values for the pairwise community comparisons for our net-
works, upper-right symmetrize the resulting matrix of p-values (because we only
ran tests on the upper-right triangle of the adjacency matrix), and then plot the
result:

from graspologic.utils import symmetrize

Pvals_adj = multipletests(Pvals.flatten(), method="holm")[1].reshape(K, K)
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Figure 7.2.3 (A) p-values for test of a difference between the Case Study 7.2.1 block
matrices, (B) p-values for test of a difference between the block matrices, after
rescaling.

Pvals_adj = symmetrize(Pvals_adj, method="triu")

The matrix of p-values (after adjustment for multiple comparisons) is shown
in Figure 7.2.3(A). The p-values are all extremely small, so we can conclude that
the block matrices B(1) and B(2) differ for all entries. The p-value for the test
of H0 that the block matrices are identical against HA that the block matrices
are different can be taken to be the minimum of all of the adjusted p-values,
due to the fact that the block matrices are different if any individual entries are
different:

pval_dif = Pvals_adj.min()

print(f"p-value of block matrix difference: {pval_dif:.4f}")

# p-value of block matrix difference: 0.0000

which is so small that it rounds to 0. With α = 0.05 as usual, we reject the null
hypothesis that the block matrices are identical in favor of the alternative that
the block matrices are different.

7.2.2 Testing for whether the block matrices in an SBM are rescalings

In Section 4.6.3 we learned a useful summary statistic for random networks, the
expected density:

E[density(A)] =

∑n
i=1 E[di]

n(n− 1)
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Which is the expected average degree of each node in the network, divided by
the maximum possible degree each node could have.

The network density plays a large role in virtually every property of networks
which we estimate in machine learning, including the block matrices. From Con-
cept 4.7.2, for a SBMn(~z,B) random network, the average degree for a node in
community k is:

E
[
d
(m)
i ; zi = k

]
=
∑
l 6=k

nlb
(m)
lk + (nk − 1)b

(m)
kk

so it is clear that the expected node degree is a function of the block matrix.
Recalling from Equation (4.14) that the expected density is a function of the
expected degrees:

p(m) = E
[
density

(
A(m)

)]
=

∑n
i=1 E

[
d
(m)
i ; zi = k

]
n(n− 1)

,

by transitivity, the expected density is a function of the block matrix. Note in
a network with known communities, ~z is fixed, so E[di; zi = k] is equivalent
to E[di] (which is the original notation used in Equation (4.14)) for a node i
in community k, since expected values are over random quantities (and zi is
not random). We could also reverse this argument, and establish a relationship
between the block matrices and the expected density in the network.

This means that if the expected densities are different, the block matrices will,
by default, also be different.

For instance, in our example, we know that the block matrix indicated that in
general there are twice as many edges during the daytime than during the night.
As effective transit planners, we want to identify the fine points to anomalies in
the traffic patterns. We want to find the topological differences between the two
networks that go above and beyond a simple rescaling. That is, that the day time
driving patterns between New Jersey and New York exits exceed the two times
increase in traffic we otherwise saw. For this reason, we revamp our hypothesis.

We tested the null hypothesis H0 : B(1) = B(2) that the two block matrices
are the same against the alternative HA : B(1) 6= B(2) that the block matrices
differ. Now, our null hypothesis becomes H0 : B(1) = β ·B(2) that the two block
matrices are the same up to a rescaling against HA : B(2) 6= β · B(2), that they
differ even after possible rescalings.

In this case, we choose the value β to be the difference in expected network
densities between the day time and night time networks, that is, the quantity
β = p(1)

p(2)
. In practice, we use an estimate of this quantity, β̂ = p̂(1)

p̂(2)
, where p̂(1)

is the network density of the day time network and p̂(2) is the network density
of the night time network. Accepting the alternative hypothesis here means that
the block matrices of the day and night time network are not simply multiples
of each other.

We address this problem similarly to Section 7.2.1, but instead use the chi-



370 Applications for two networks

Case Study 7.2.2 Bilateral symmetry in fruit fly brains

In the 1860s, a scientist named Paul Broca definitively established that the
brain of human beings is asymmetric: different sides of the brain are responsi-
ble for related but distinct functions [7]. Broca discovered that patients with
brain lesions to the same area of the left frontal portion of the brain experi-
enced similar symptoms of speech loss. The fact that two patients with similar
lesions experienced the same symptoms provided evidence that brain function
was localized. Later observations made by psychologists led to conclusions that
took this a step further, showing that different hemispheres of the brain were
responsible for different functions.
In a recent paper [8], investigators were able to demonstrate a similar “lo-
calization of connectivity” in the wiring of the brain itself. The investigators
used connectomes of a fruit fly, where the nodes were individual neurons and
the edges were individual synapses. Using statistical methods based on the
techniques outlined in this section, they were able to show that some types
of cells in the brain had totally different densities of edges between the two
hemispheres. After accounting for these hemisphere density disparities, spe-
cific neural cell types still showed disparate connectivity patterns, indicating
asymmetry and localization of function in insect brains.

squared test for non-unity probability ratios from [9]. We covered the chi-squared
test in Section 6.4 when we were covering model selection. Whereas before, the
chi-squared test allowed us to test whether our grouping of the edges in the net-
work had differing probabilities based on the edge group, the non-unity probabil-
ity ratio test allows us to incorporate the rescaling parameter β. We implement
this using graspologic. This approach is described in [8]:

from graspologic.inference import group_connection_test

stat, pval_diff_rescale, misc = group_connection_test(Aday, Anight,

labels1=z, labels2=z, density_adjustment=True)

Pval_adj_rescaled = np.array(misc["corrected_pvalues"])

print(f"p-value of block matrix difference, after rescaling: {pval_diff_rescale:.4f}")

# p-value of block matrix difference, after rescaling: 0.0005

This new matrix of p-values is shown in Figure 7.2.3(B). After we adjust
the block matrix for changes in network density, the difference in the block
probability for traveling between New York and New Jersey is still significant.

Therefore, after adjusting for density, we can still reject the null hypothesis
in favor of the alternative that the block matrices for day and night time are
different. This difference can be accounted for by different traffic patterns be-
tween New York and New Jersey in day time versus night time, that exceed
simple traffic density differences. For an example of the use of these strategies in
practice, see Case Study 7.2.2.
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7.3 The graph matching problem

Co-authored with Ali Saad-Eldin
So far in Part III, we have explored methods for comparing networks under
the assumption that they have the same nodes, and that those networks
are node-aligned. However, real-world networks rarely have index-aligned
nodes, and the networks that we wish to compare often have varying num-
bers of nodes. Figure 4.3.2 showed us that simply reordering node indices
dramatically alters an adjacency matrix.

These challenges motivate the graph matching problem, which addresses
the challenge of identifying node correspondences between networks.

We will:

1 Define the graph matching problem and its importance in network com-
parison,

2 Explore intuitive approaches for aligning nodes across networks,
3 Introduce optimization-based methods for graph matching, and
4 Discuss applications and limitations of graph matching techniques.

Graph matching will allow us to make principled comparisons from one
network to the next if the networks are not node-aligned. While a rigorous
treatment requires a background in nonlinear optimization, our focus will
be on building intuition. Graph matching gives us a basic and regularly
useful tool for multi-network analysis.

7.3.1 A failure of brute force

To begin to understand the graph matching problem, we will revisit the stochas-
tic block model in Section 4.3.5. We saw that, when the nodes were ordered by
community, we obtained a prominent modularity pattern characteristic of many
of the block models that we have seen so far in the book (Figure 4.3.2(A)).
However, when we reordered the nodes in the adjacency matrix randomly (and
changed nothing else about the network), the adjacency matrices looked radi-
cally different, despite the fact that the underlying networks remained otherwise
the same. Without knowing in advance, how could we have discovered that the
networks were identical up to a permutation of node indices?

If we did not already know the sorting, we might simply take a brute-force
approach: iterate over every possible way that one could sort the nodes of one
network, and continue until we reach a sorting that perfectly matches the other
network.

Unfortunately, this solution has a number of limitations. First, for network
pairs with n nodes, there are n! possible mappings. This means that when n =
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100, there are more than 10157 possible matchings, a computationally infeasible
number of possibilities. Our task is to figure out which mapping is best without
the computationally intractable task of checking each one. For a thorough review
of the history of different ways of approaching this problem, see [10].

The social network example in Case Study 7.3.1 will motivate the remainder
of the section.

Case Study 7.3.1 Graph matching across social networks

Suppose all Instagram users’ names and handles have been somehow been
deleted, and our task is to recover the lost information. We have a resource to
help with this task: the Facebook social network. We know all Facebook users
and who they are friends with. Since only the Instagram usernames are lost, we
can still see which unnamed Instagram users follow each other. Our goal is to
use the Facebook network connectivity data to relabel the Instagram network.
In other words, we are “aligning” or “matching” Instagram to Facebook.
In the two social networks, each user is a node. An edge in Facebook exists
if two users are friends, and an edge in Instagram exists if two users follow
each other. We will define the Facebook and Instagram networks as F and T
respectively, with associated adjacency matrices A(F ) and A(I). Our goal is for
one of the Instagram users to be assigned the user name of the Facebook user
with the most connections in common. This is done for the whole network,
with the end result being that overall the structure is preserved.

7.3.2 Defining a similarity metric

To begin to address the graph matching problem, we first must define a notion
of similarity for two networks via a metric f(A(1), A(2)). We want this metric to
be small when the two networks are similar, and large when they are not. For
graph matching, we use the squared Frobenius distance from Concept 5.5.4:

f
(
A(1), A(2)

)
=
∥∥∥A(1) −A(2)

∥∥∥2
F
.

To understand this metric, consider the best possible case where the two net-
works are identical; i.e., A(1) = A(2).

A(1) =

0 1 2

0

1

2

 0 1 1

1 0 1

1 1 0

 , A(2) =

0 1 2

0

1

2

 0 1 1

1 0 1

1 1 0
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A(1) −A(2) =

0 1 2

0

1

2

 0 0 0

0 0 0

0 0 0


∥∥∥A(1) −A(2)

∥∥∥2
F

= 0.

The difference will be a matrix of all zeros, and taking the squared Frobenius
norm will yield f

(
A(1), A(2)

)
= 0. This is because all of the element-wise differ-

ences a(1)ij − a
(2)
ij are zero, and hence both their square (and sum) will also be

zero. Next, we remove one edge from A(2):

A(1) =

0 1 2

0

1

2

 0 1 1

1 0 1

1 1 0

 , A(2) =

0 1 2

0

1

2

 0 1 1

1 0 0

1 0 0



A(1) −A(2) =

0 1 2

0

1

2

 0 0 0

0 0 1

0 1 0


∥∥∥A(1) −A(2)

∥∥∥2
F

= 2.

Because these networks are unweighted and undirected, we are effectively
counting the total number of disagreements in the adjacency matrices between
A(1) and A(2).

Graph Matching Small Networks
We will use I and F for the Instagram and Facebook networks respectively. We
first use a four-person subgraph for simplicity. Our two networks, with adjacency
matrices A(I) and A(F ), then have four nodes each: {0, 1, 2, 3} for A(I), and
{a, b, c, d} for A(F ). We will assume we have a node correspondence:

• Person 0 on Instagram is person a on Facebook,
• Person 1 on Instagram is person b on Facebook,
• Person 2 on Instagram is person c on Facebook,
• Person 3 on Instagram is person d on Facebook.

A correspondence is a mapping from one set of items to those of another. Here,
we have a correspondence between each user’s profile on Instagram and Face-
book. We say that a node in one network is matched to a node in the other if
the two nodes are linked by the correspondence. For instance, in the above cor-
respondence, person 1 on Instagram is matched to person b on Facebook. When
all of the nodes from two networks are matched, we will refer to the networks
themselves as matched (or, alternatively, aligned).
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The importance of node ordering
The adjacency matrices of the two networks are equal to each other when the
nodes are laid out for A(I) as {0, 1, 2, 3}, and when the nodes are laid out for
A(F ) as {a, b, c, d}. Figure 7.3.1(A) illustrates the two networks with their nodes
laid out with respect to the node correspondence. Below, we compare the two
adjacency matrices, and find that the absolute difference matrix

∣∣A(F ) −A(I)
∣∣ is

a matrix of zeros (the two adjacency matrices are identical).

A(F ) =

0 1 2 3

0

1

2

3


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 , A(I) =

a b c d

a

b

c

d


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


∣∣∣A(F ) −A(I)

∣∣∣ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



Figure 7.3.1 (A) the social networks, with the nodes aligned. (B) the social networks,
with the nodes mis-aligned. (C) the social networks, with the nodes mis-aligned, but
with the topology of the network identical.

If we permute the node indices of both networks and the permuted nodes
still respect the node correspondence, the Frobenius difference between their
adjacency matrices will be the same as if the networks were not permuted at all
(here, 0).

We reorder the nodes for Instagram and Facebook as {2, 0, 1, 3} and {c, a, b, d}
respectively. We will call these new adjacency matrices A(T )′ and A(F )′ respec-
tively:
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A(T )′ =

2 0 1 3

2

0

1

3


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 , A(F )′ =

c a b d

c

a

b

d


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


∣∣∣A(T )′ −A(F )′

∣∣∣ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Even though the ordering of the nodes is different, the first node for Instagram

is node 2 and the first node for Facebook is node c (which was a matching noted
by our correspondence), the second node for Instagram is 0 and the second node
for Facebook is node a (a matching noted by our correspondence), and so on.
The node orderings preserve the correspondence between the nodes of Instagram
with the nodes of Facebook.

Networks rarely come pre-ordered
The ordering of the nodes in a network’s adjacency matrix may often be arbitrary,
which can make it hard to tell whether two networks are the same.

Let’s say we had an arbitrary ordering of the nodes for Facebook. The nodes
are ordered {a, b, d, c} instead of {a, b, c, d}. Instagram’s nodes are still ordered
as {0, 1, 2, 3}. Figure 7.3.1(B) illustrates this. We use A(F )′′ to denote the new
ordering. The adjacency matrices are no longer equal:

A(I) =

0 1 2 3

0

1

2

3


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 , A(F )′′ =

a b d c

a

b

d

c


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 (7.5)

∣∣∣A(I) −A(F )′′
∣∣∣ =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0


Our similarity metric changes as well: f

(
A(I), A(F )′′

)
= 8, since there are 8

entries which are different in the adjacency matrices between A(I) and A(F )′′ .
The network is undirected, so adjacency disagreements are effectively counted
twice: a single edge disagreement for an edge (i, j) also yields a disagreement
for edge (j, i). By comparing the networks with the nodes misaligned, we have
broken the node correspondence between the nodes of Instagram and Facebook.



376 Applications for two networks

Remark 7.3.2 Low numbers of edge disagreements do not imply node
correspondence

We mix the ordering of the nodes for Facebook a third time, instead using
{b, a, d, c}, to yield another adjacency matrix A(F )′′′ , illustrated in Figure
7.3.1(C). Note that the adjacency matrices are identical for A(F )′′′ and A(I),
despite the face that the nodes for Facebook are not ordered with respect to
the node correspondence of the Instagram network:

A(I) =

0 1 2 3

0

1

2

3


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 , A(F )′′′ =

b a d c

b

a

d

c


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


∣∣∣A(I) −A(F )′′′

∣∣∣ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


The fact that the adjacency matrices can be identical even when we do not
have a correspondence of the nodes between the two networks presents a
challenge and limitation for the graph matching problem. If two networks are
identical (up to an ordering of the nodes), there may be multiple ways to
orient the nodes of the networks to give no edge disagreements. We could
have multiple different networks where the topology is the same.

Let’s explore how to manipulate our adjacency matrices such that we can find
alignments that match well.

7.3.3 Permutation Matrices

Permutation matrices are commonly used as a method to move the rows and
columns of a square matrix. A permutation matrix is a matrix where, for every
row and column, exactly one entry has a value of one and the rest are zero.

P>A permutes rows
Consider the matrix A shown in Figure 7.3.2(A.I), where all entries of the first
row have a value of one, all entries of the second row have a value of two, all
entries of the third row have a value of three, and all entries of the fourth row
have a value of four. We can apply a permutation matrix P to swap the rows
around with the following heuristic: If the matrix P has the value one in entry
pij , then in the resulting matrix P>A, the row j will be the row i from the
matrix A we permuted.
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In Figure 7.3.2(A.II), the values in p12, p21, p33, and p44 are all one. We reorder
the rows of A so that in P>A the top row is the second row from the original
matrix (and has a value of two), the second row will be the first row from the
original matrix, the third row will be the third row from the original matrix, and
the fourth row will be the fourth row from the original matrix.

We apply this “row” permutation with the matrix multiplication P>A:

import numpy as np

A = np.array([

[1,1,1,1],

[2,2,2,2],

[3,3,3,3],

[4,4,4,4]

])

P = np.array([

[0,1,0,0],

[1,0,0,0],

[0,0,1,0],

[0,0,0,1]

])

row_reordering = P.T @ A

Figure 7.3.2(A.III) shows a plot of the resulting row permutation.

BP permutes columns
Column permutations behave similarly. Consider a matrix B, where the first
column has a value of one, the second column has a value of two, the third column
has a value of three, and the fourth column has a value of four, shown in Figure
7.3.2(B.I). We use the same permutation matrix, where here, pij indicates that
column j of the new matrix BP will be column i from the matrix B before the
permutation was applied. This permutation is shown again in Figure 7.3.2(B.II).
We apply the column permutation matrix as BP :

B = np.array([

[1,2,3,4],

[1,2,3,4],

[1,2,3,4],

[1,2,3,4]

])

column_reordering = B @ P

Figure 7.3.2(B.III) shows a plot of the resulting column permutation. The
column with a value of 1 has been “shifted” to column 4, and the values of
columns 1 through 3 are now 2 through 4 respectively.
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Figure 7.3.2 Row (A) shows a row permutation via pre-multiplication by P>, Row
(B) shows a column permutation via post-multiplication by P , and row (C) shows a
row and column permutation via pre-multiplication by P> and post multiplication by
P .

P>CP permutes rows and columns concurrently
We can apply these operations sequentially to concurrently reorder both rows
and columns. Consider a permutation matrix where row/column 1 of the original
matrix becomes row/column 2 of the new matrix, and likewise, row/column 2 of
the original matrix becomes row/column 1 of the new matrix. We consider the
matrix C shown in Figure 7.3.2(C.I) where the first row and first column both
have entries of all ones, and the rest of the matrix has the value zero.

C = np.array([

[1,1,1,1],

[1,0,0,0],

[1,0,0,0],
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[1,0,0,0]

])

row_reordering_C = P.T @ C

row_column_reordering = row_reordering_C @ P

When we pre-multiply by P>, we end up swapping row 1 with row 2, as we
would expect from Figure 7.3.2(A). When we post-multiply P>C by P , we end
up swapping columns 1 and 2, as we would expect from Figure 7.3.2(B). This
results in concurrently swapping the rows and columns 1 and 2, shown in Figure
7.3.2(C.III). If C were an adjacency matrix with nodes indexed {1, 2, 3, 4}, this
would have the effect of permuting the node ordering of the adjacency matrix to
{2, 1, 3, 4}.

Permutations on adjacency matrices
For our networks, the indexing for the adjacency matrix, (i, j), is over a single
set: the nodes. Therefore, if we want to change node indices, we need to permute
both the rows and the columns of the adjacency matrix concurrently. If we had
a permutation of the nodes given by P , we would reorder the adjacency matrix
by permuting the rows and columns of A by using P>AP .

Suppose we want to “undo” a permutation with matrix P . We remember from
above that every row and every column in a permutation matrix has a single
entry which takes a value of one. Assume that pij = 1, which means that if we
were to use P as a row permutation we would flip rows i and j, and as a column
permutation we would flip columns i and j. If we were to use it for both a row
and column permutation, we would flip rows/columns i and j.

If for any pair of indices pij = 1, then (P>)ji = 1: the (i, j) entry of the
transpose is also one. This is just the definition of the matrix transpose operation.
Let’s look at what happens when we multiply P> and P together:

P>P =

(P>)11 ... (P>)1n
...

. . .
...

(P>)n1 ... (P>)nn


p11 ... p1n

...
. . .

...
pn1 ... pnn

 .
When we use the definition of the transpose, this becomes:

P>P =

p11 ... pn1
...

. . .
...

p1n ... pnn


p11 ... p1n

...
. . .

...
pn1 ... pnn

 .
The resulting matrix P>P has entries i, j where:

(P>P )ij =

n∑
k=1

pikpjk. (7.6)

But, as we know, for a particular row i and column k, exactly a single entry has
a value of 1 (this is the definition of a permutation matrix). This means that for
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any i 6= j, pikpjk will be equal to zero, because two different rows of the same
column k cannot both take the value of 1.

If i = j, then there must be some k where pik = 1, because at least 1 entry of
each row of P must be 1 by definition. Since i = j, pjk = 1.

Therefore, (P>P )ij = 1 if i = j, and (P>P )ij = 0 everywhere else. This is
the definition of the identity matrix, so P>P = In×n. Since the transpose of the
identity matrix is also the identity matrix, PP> = In×n, too.

Using these facts, we arrive at Concept 7.3.3.

Concept 7.3.3 Unshuffling a shuffled adjacency matrix

Suppose that B is a shuffling of the adjacency matrix A by P ; that is, B =

P>AP . Letting Pu = P>, permuting the rows and columns of B by Pu gives:

P>u BPu = PBP>,

where we used that Pu = P>. Writing B as P>AP :

P>u BPu = PP>APP>

= A,

because PP> = In×n. Thus B can be unshuffled to recover A by permuting
B with the matrix Pu = P>, and P is an orthogonal matrix.

7.3.3.1 Permutation Matrices for Network Matching
Let’s return to Case Study 7.3.1 for Instagram and Facebook. We have a node
correspondence where person 0 from Instagram is the same as person a from
Facebook, person 1 from Instagram is the same as person b from Facebook, and
so on.

We assume that the nodes from Instagram are given to us in order, {0, 1, 2, 3}.
In the ideal case, the nodes from Facebook would respect the node correspon-
dence and be ordered as {a, b, c, d}. The problem we illustrated in Equation (7.5)
was that, if the nodes for Facebook were ordered {a, b, d, c}, then f

(
A(I), A(F ′′)

)
=

8.
We want to construct a permutation matrix P which will preserve the indices

of a and b, but swap nodes c and d. We can do this using with the following:

insta = np.array([

[0,1,1,0],

[1,0,0,1],

[1,0,0,1],

[0,1,1,0]

])

facebook_permuted = np.array([

[0,1,0,1],

[1,0,1,0],
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Figure 7.3.3 (A) The adjacency matrix for Instagram A(I), (B) The permuted
adjacency matrix for Facebook, A(F ′′), (C) The unpermuted adjacency matrix for
Facebook, after swapping nodes c and d via an unshuffling permutation matrix.

[0,1,0,1],

[1,0,1,0]

])

# the permutation to unshuffle the facebook

# permuted adjacency matrix

Pu = np.array([

[1,0,0,0],

[0,1,0,0],

[0,0,0,1],

[0,0,1,0]

])

fb_unpermuted = Pu.T @ facebook_permuted @ Pu

The permuted Facebook adjacency matrix (after unshuffling) is shown in 7.3.3(C).
The permutation matrix swaps nodes c and d, to recover the original node cor-
respondence between Instagram and Facebook, and the networks are identical
after pre- and post-multiplying by the permutation matrix.

We now define a function which creates random permutation matrices below.

def make_random_permutation(n, random_seed=0):

"""

A function that generates a random permutation matric $P$ for n elements.

1. Generate indices from 0 to n-1

2. shuffle those indices

3. Place 1s in the matrix P at the positions defined by the shuffled indices.

"""

rng = np.random.default_rng(seed=random_seed)

starting_indices = np.arange(n)

destination_indices = rng.permutation(n)

P = np.zeros(shape=(n,n))

P[destination_indices, starting_indices] = 1

return P
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We are ready to formalize graph matching as an optimization problem in
Concept 7.3.4. We then explore methods for solving it.

Concept 7.3.4 Formalizing the Graph Matching Problem

We can now formalize the graph matching problem. For two adjacency ma-
trices A,B, we seek to minimize:

gP (A,B) =
∥∥A− P>BP∥∥2

F

over all possible P , with the restriction that P is a permutation matrix.
Minimizing this cost function finds the matrix P that permutes the rows and
columns of B such that it is as close as possible to A in squared Frobenius
norm. Intuitively, the solution to the graph matching problem identifies the
“optimal” (in terms of the squared Frobenius distance) unshuffling matrix for
B with respect to A.

Gradient descent, a brief refresher
To solve the optimization problem defined in Concept 7.3.4, we will employ an
algorithm closely related to gradient descent. Gradient descent works to minimize
a cost function, by taking steps in the direction of a local gradient (closely related
to a higher dimensional version of the derivative) with respect to some parameter.
Once the gradient is zero, a local minimum has been found and the algorithm is
stopped.

This process is illustrated in Figure 7.3.4 for a one-dimensional parameter θ.
The y-axis represents the cost fθ(X) of a particular parameter choice θ, given
the data X (solid line).

Figure 7.3.4 (A) the cost function with an initial starting position, (B) the cost
function, optimized via gradient descent.

In Figure 7.3.4(A), an initial parameter value θ0 is chosen to begin the opti-
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mization routine. The gradient is computed at the point θ0. With one parameter,
this gradient is the slope of the tangent line to fθ(X) at θ0 (solid line). Since
the slope is negative, this indicates that increasing the value of the parameter an
arbitrarily small amount past θ0 will decrease the cost. If the slope were positive,
decreasing the value of the parameter an arbitrarily small amount past θ0 would
decrease the cost. Figure 7.3.4(B) illustrates the effects of repeating this process.
Successive “learning steps” repeat this process until the tangent line has a slope
of zero, at which point a local minimum for the cost function fθ(X) at θ∗ has
been found.

To perform gradient descent, we first choose a suitable initial position. We
then gradually improve the cost function one step at a time until the gradient
is within ε of zero. It is not guaranteed that gradient descent will find a global
minimum, only that it will find a local minimum to the initial position as long
as the function is sufficiently smooth.

7.3.4 Solving the graph matching problem

To solve the optimization problem defined in Concept 7.3.4, we will employ an op-
timization strategy known as the Fast Approximate Quadratic (FAQ) algorithm
[11]. FAQ uses a slight variation on gradient descent to find a local solution to
the graph matching problem, which is otherwise computationally intractable.

We will match two networks with a known node mapping that preserves a
common network structure. To do this, we simulate a single sample from an
ER12(0.5) random network. Then, we generate B by randomly permuting the
node labels of A.

from graspologic.simulations import er_np

n = 12

p = 0.5

np.random.seed(0)

A = er_np(n=n, p=p)

# make a random permutation matrix

P = make_random_permutation(n)

B = P.T @ A @ P

disagreements = np.linalg.norm(A - B)**2

The network sample is shown in Figure 7.3.5(A), and the network after a
random shuffling of the nodes is shown in Figure 7.3.5(B).

Now, we create a model to solve the Graph Matching Problem using the
graph_match function. We pass in two networks, A and B, that we wish to “match”.
We pass the random seed rng=0 to ensure reproducibility.

from graspologic.match import graph_match

gmp = graph_match(A,B, n_init=10, rng=0)
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Figure 7.3.5 (A) the original adjacency matrix, (B) the shuffled adjacency matrix B,
using the random permutation P , (C) the unshuffling of B, after graph matching to
A, (D) the edge disagreement matrix.

Remark 7.3.5 Seeds vs Random Seeds

There will be two uses of the word “seed” being used in this chapter. The first
is a random seed, passed into random functions for reproducibility to ensure
that they always return the same output. The second is a network seed, which
is a set of nodes for whom the correspondence between two networks is already
known. We will always use “random seed” to refer to the former, and “seed”
to refer to the latter.

The graph_match() function initializes and returns a MatchResult object af-
ter solving the graph matching problem for two input adjacency matrices A

and B. After fitting, the MatchResult features two attributes of note, indices_A
and indices_B (the “permuted indices”). indices_A and indices_B are such that
indices_A[i] is the node from the first input matrix that is matched to indices_B[i]
the node from the second input matrix. When A and B are the same size,
the behavior defaults to matching nodes of B to nodes of A; e.g., indices_A

= np.arange(0, n) for a network with n nodes (A is not resorted).
We can use these indices to construct an “unshuffling” permutation matrix for

network B. Our goal is to construct an unshuffling matrix for B, where Pu[i,j]

= 1 if node j in B should be moved to position i in the “unshuffling” of B with
respect to A. This logic follows directly from the intuition learned in Section
7.3.3.

def make_unshuffler(destination_indices):

"""

A function which creates a permutation matrix P from a given permutation of the nodes.

"""

n = len(destination_indices)

Pu = np.zeros((n, n))

starting_indices = np.arange(n)

Pu[destination_indices, starting_indices] = 1

return Pu
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Pu = make_unshuffler(gmp.indices_B)

B_unshuffled = Pu.T @ B @ Pu

disagreements = np.linalg.norm(A - B_unshuffled)**2

print(f"Disagreements: {int(disagreements):d}")

# Disagreements: 0.0

In this case, we are estimating the unshuffling matrix, so we produce an esti-
mate P̂u. When we unshuffle B with P̂u, we obtain the matrix P̂>u BP̂u, which
is shown in Figure 7.3.5(C). Note that there are no edge disagreements between
P̂>u BP̂u and A, shown in Figure 7.3.5(D).

Because the algorithm is randomly initialized, unlucky readers using different
random seeds may not get a perfect unshuffling.

The match ratio of nodes
We can evaluate the quality of an unshuffling using the proportion of nodes which
are correctly matched to their partners in the other network, called the match
ratio.

Recall that given a permutation matrix P , the “unshuffling permutation ma-
trix” Pu was Pu = P>. By definition of a permutation matrix, we found in
Section 7.3.3 that PP> = P>P = In×n, the identity matrix. This followed di-
rectly from Equation 7.6, by noting that the kth column of P could only have a
single entry with a value of 1 (by definition of a permutation matrix), so pik and
pjk would only be non-zero when i = j. Since Pu = P>, PPu = PuP = In×n.

Consequently, if we have an estimate of an unshuffling matrix P̂u and the
true permutation matrix P , we can count “correct matches” by looking at the
diagonal entries of P̂uP . This is because (P̂uP )ii = 1 whenever a node i is
properly unshuffled, and is zero otherwise.

With this in mind, we can just take the match ratio to be the fraction of times
the diagonal of P̂uP or PP̂u is 1:

match ratio(P, P̂u) =
1

n

n∑
i=1

1
{

(P̂uP )ii = 1
}

=
trace(P̂uP )

n

Remembering that P is a permutation matrix and Pu is an estimated unshuffling
matrix.

The function 1{x} is an indicator that has a value of 1 if the statement inside
the braces is true, and 0 if it is false. Here, it has a value of 1 if (P̂uP )ii = 1,
and a value of 0 if (P̂uP )ii 6= 1. We write a simple utility to do this, and then
call it on our permutation and un-shuffling matrix to see that the match ratio is
1 here (we perfectly unshuffled B):

def match_ratio(P, Pu):

n = P.shape[0] # the number of nodes

return (np.diag(Pu @ P) == 1).sum()/n
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print(f"match ratio: {match_ratio(P, Pu):.3f}")

# match ratio: 1.000

As-before, you may not necessarily receive identical results to us, as the GraphMatch
object relies on random initializations.

7.3.5 Seeded graph matching (SGM)

As networks become larger, they quickly become difficult to match. One method
to mitigate this difficulty is to use seeds. Seeds are a subset of a node correspon-
dence between two networks that we already know before we perform the graph
matching. For example, if we are given the Instagram and Facebook networks T
and F with 225 nodes each, we might already know ten node matches between T
and F . Having this prior information dramatically improves our ability to match
the networks.

To demonstrate the effectiveness of Seeded Graph Matching (SGM) [12; 13], we
will apply the algorithm on a pair of simpler correlated SBM networks, which is
an adaptation of the ρ-correlatedRDPG from Section 4.9.3. Like the ρ-correlated
RDPG, we have two normal SBMs, but edges a

(1)
ij and a

(2)
ij in the SBMs will

have correlation ρ.
Note that unlike preceding examples, the underlying networks for this example

are not completely identical (even when unshuffled), but in general closely related
(the networks are correlated). This scenario is far more realistic when attempting
to align two networks in practice, the two networks will often be similar but with
a few underlying differences (for instance, the networks may represent a different
social network, where individuals may follow/be followed by similar but not
identical people). This is due to the fact that networks that we encounter often
reflect some degree of randomness in their behavior, as-per Section 1.3.

The block matrix is:

B =

0.7 0.1 0.4

0.1 0.7 0.1

0.4 0.1 0.7


The first 75 nodes in the network will be from community one, the second 75

nodes in the network will be from community two, and the third 75 nodes in the
network will be from community three:

from graspologic.simulations import sbm_corr

n_per_block = 75

n_blocks = 3

block_members = np.repeat(n_per_block, repeats=n_blocks)

n_nodes = block_members.sum()

rho = 0.5

block_probs = np.array(

[[0.7, 0.1, 0.4],

[0.1, 0.3, 0.1],
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[0.4, 0.1, 0.7]]

)

np.random.seed(0)

A1, A2 = sbm_corr(block_members, block_probs, rho)

disagreements = np.linalg.norm(A1 - A2)**2

print(f"Disagreements (Unshuffled): {int(disagreements):d}")

# Disagreements (Unshuffled): 8041

Figure 7.3.6(A) and (B) shows the networks A(1) and A(2). The networks
have a similar topological structure. However, even when perfectly unshuffled,
there are still edge disagreements, because the networks have differing (albeit,
correlated) topologies.

Figure 7.3.6 (A) The network A(1), (B) the network A(2) which is ρ-correlated to
A(1), (C) the network A(2),r, A(2) with 25 nodes removed per community.

To emphasize the effectiveness of SGM, as well as why having seeds is important,
we will randomly shuffle the vertices of network B.

P = make_random_permutation(n_nodes)

A2_shuffle = P.T @ A2 @ P

disagreements_shuffled = np.linalg.norm(A1 - A2_shuffle)**2

print(f"Disagreements (Shuffled): {int(disagreements_shuffled):d}")

# Disagreements (Shuffled): 22201

We will call the version of A(2) after shuffling A(2)′ . The network A(1) and the
shuffled network A(2)′ are shown in Figure 7.3.7, along with the edge disagree-
ments. Note that the number of disagreements has increased considerably after
shuffling.

Matching the networks without seeds
First, we will run SGM on network A(1) and the shuffled network A(2)′ with no
seeds. We use the code for computing the unshuffling matrix, the match ratio,
and the number of edge disagreements that we developed previously.
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Figure 7.3.7 (A) the original network A(1), (B) the shuffled network A(2)′ which is a
shuffling of a network ρ-correlated to A(1), (C) the edge disagreements between A(1)

and A(2)′ .

# fit with A and shuffled B

gm = graph_match(A1, A2_shuffle, rng=0)

# obtain unshuffled version of the shuffled B

P_unshuffle_noseed = make_unshuffler(gm.indices_B)

A2_unshuffle_noseed = P_unshuffle_noseed.T @ A2_shuffle @ P_unshuffle_noseed

# compute the match ratio

match_ratio_noseed = match_ratio(P, P_unshuffle_noseed)

print(f"Match Ratio, no seeds: {match_ratio_noseed:.3f}")

# Match Ratio, no seeds: 0.004

disagreements_noseed = np.linalg.norm(A1 - A2_unshuffle_noseed)**2

print(f"Disagreements, no seeds: {int(disagreements_noseed):d}")

# Disagreements, no seeds: 12810

The original network A(1), the unshuffled network P̂>u A(2)′ P̂u, and the edge
disagreements between the original network and the shuffled correlated network
(after unshuffling is estimated without seeds) are shown in Figure 7.3.8. While the
predicted unshuffling for A(2)′ was relatively successful in recovering the basic
structure of the network A(1), we see that the number of edge disagreements
between them is still quite high, and the match ratio of successfully unshuffled
nodes is quite low (it is about 0). Note that edge disagreements are fairly frequent.

Matching the networks with seeds
Next, we run SGM with 10 seeds randomly selected from the optimal permuta-
tion vector found earlier. Although 10 seeds is only about 4% of the 225 node
network, we will observe below how much more accurate the matching will be
compared to having no seeds. First we add a helper function, which takes a
permutation matrix and a desired number of seeds, and indicates where the
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Figure 7.3.8 (A) the original network A(1), (B) the unshuffling of the correlated
network P̂>u A(2)′ P̂u, (C) the edge disagreements between the original network and
the unshuffled network.

identified seed nodes (from the unshuffled network) would be permuted to (after
shuffling):

def gen_seeds(P, n_seeds, random_seed=0):

"""

A function to generate n_seeds seeds for a pair of matrices A1 and P^TA2P

which are initially matched, but P has been applied to permute the nodes

of A2.

"""

rng = np.random.default_rng(seed=random_seed)

n = P.shape[0]

# obtain n_seeds random seeds from 1:n

seeds = rng.choice(n, size=n_seeds, replace=False)

# use the permutation matrix to find where each seed was permuted to

seeds_permuted = [np.where(P[i, :] == 1)[0] for i in seeds]

return (seeds, seeds_permuted)

Next, we run seeded graph matching, using the graph_match function from
graspologic, by passing seeds as parameters:

nseeds = 10 # the number of seeds to use

# select ten nodes at random from A which will serve as seeds

# obtain seeds for nodes of A1 with nodes of A2 after shuffling

seedsA1, seedsA2_shuffled = gen_seeds(P, nseeds)

# run SGM with A1 and shuffled A2, but provide the seed nodes from A as ref_seeds

# and the corresponding position of these seed nodes after shuffling as permuted_seeds

sgm = graph_match(A1, A2_shuffle, partial_match=(seedsA1, seedsA2_shuffled), rng=0)

P_unshuffle_seeds = make_unshuffler(sgm.indices_B)

A2_unshuffle_seeds = P_unshuffle_seeds.T @ A2_shuffle @ P_unshuffle_seeds

match_ratio_seeds = match_ratio(P, P_unshuffle_seeds)

print(f"Match Ratio, seeds: {match_ratio_seeds:.3f}")

# Match Ratio with seeds: 1.000
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disagreements_seeds = np.linalg.norm(A1 - A2_unshuffle_seeds)**2

print(f"Disagreements, seeds: {int(disagreements_seeds):d}")

# Disagreements, seeds: 8041

The resulting unshuffling steps for A(2)′ are shown in Figure 7.3.9. Compared
to Figure 7.3.8, we can see that the unshuffling produces far fewer edge disagree-
ments than when we used unseeded graph matching. Further, using just 10 seeds;
(about 4% of the nodes in the network), the match ratio increased to at or near
perfect.

Figure 7.3.9 (A) the original matrix A(1), (B) the unshuffling of the shuffled and
correlated matrix P̂>u A(2)′ P̂u, and (C) the edge disagreements when we graph match
using seeds.

Our conclusions can be summarized as follows:

1 When two networks have misaligned nodes, in that the nodes are not ordered
the same but the networks are otherwise identical, graph matching strategies
can often efficiently recover an unshuffling matrix to align the nodes between
the two networks.

2 When two networks have misaligned nodes and the underlying networks are
closely related (but not identical; e.g., they are conceptually correlated), graph
matching strategies will generally reasonably match the overall topological
structure of the two networks, but will often produce poor matches. Narrowing
down the scope of the problem (via known seed nodes, where we know the
matching ahead of time) can often still yield precise solutions.

7.3.6 Padded graph matching

So far, we have assumed that the two networks being matched must have the
same number of nodes. In practice, this is a restrictive limitation. Suppose we
want to match the nodes in a smaller network to a larger network, or vice versa.

We will do this through a technique called padded graph matching, in which we
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add new nodes to the smaller network until it has the same number of nodes as
the larger network, and then we run graph matching on the resulting networks
with an equal number of nodes. We have two techniques to add these isolated
nodes: naive and adopted padding.

For these examples, we’ll adjust our correlated network slightly from Section
7.3.5. Our first network A(1) will be the same one we sampled above from the
ρ-SBM. For A(2), we’ll arbitrarily take out the last 25 nodes of each block. This
new network will be called A(2)[N ]. Here, the notation A(2)[N ] denotes that it
is the subnetwork of A(2) induced by the set of nodes N , where N are the nodes
that we want to retain:

from graspologic.utils import remove_vertices

nremove = 25

# nodes to remove from A2

n_nodes_A2_N = n_nodes - nremove*n_blocks

base_range = np.arange(n_per_block - nremove, n_per_block)

block_offsets = np.array([0, 75, 150])

# repeat a base range for each block and add block offsets

nodes_to_remove = np.repeat(base_range, len(block_offsets))

nodes_to_remove += np.tile(block_offsets, nremove)

N = np.setdiff1d(np.arange(n_nodes), nodes_to_remove)

# use the remove_vertices function to compute

# the subnetwork induced by the nodes nodes_to_retain

A2_N = remove_vertices(A2, nodes_to_remove)

In the above code, we took care to obtain node indices of the nodes from
A(2) that are retained in A(2)[N ] so that we will be able to evaluate our graph
matching after we apply graph matching techniques. The network A(2) with the
last 25 nodes removed from it is shown in Figure 7.3.6(C). This network A(2)[N ]

and its corresponding underlying random network A(2)[N ] have only 150 instead
of 225 nodes.

Our task is to match the 150 nodes in A(2)[N ] to their corresponding matched
pair in A(1).

We want to match A(2)[N ] to a subnetwork of A(1) induced by the nodes for
which there is a corresponding matched pair. That is, we add the additional
hurdle that we must figure out which nodes in the larger network A(1) actually
have a matched pair in A(2)[N ], and ignore the other nodes entirely. The induced
subnetwork of A(1) by the retained nodes, A(1)[N ] can be obtained like this:

A1_N = remove_vertices(A1, nodes_to_remove)

Crucially, while in simulations we know which nodes are missing from A(2)

(given by the set nodes_to_remove in the code above), in real data, we do not
know which nodes are missing.



392 Applications for two networks

Naive padded graph matching
Through naive padding, we simply add isolate nodes to the smaller network until
the number of nodes in A(2)[N ] are equal to the number of nodes in A(1). From
Section 3.6, we know that isolate nodes do not have any edges in the network.
The naive padded version of A(2)[N ] can be obtained like this:

A2_N_padded = np.pad(

A2_N,

pad_width=[(0,nremove*n_blocks), (0, nremove*n_blocks)]

)

The padded network is shown in Figure 7.3.10(B), and we will refer to it
notationally as A(2)[N ]+, where the superscript “+” denotes that it is padded.
Naive graph matching proceeds rather simply by matching A(1) with A(2)[N ]+.

This padding procedure occurs under-the-hood when we call graph_match from
graspologic with two adjacency matrices that have an unequal number of in-
put nodes with the argument padding="naive". As-before, we can leverage seeds
to improve our matches, being careful to choose seeds from nodes that are “re-
tained”; that is, we want to make sure our seeds are actual nodes in the network
(and not isolates). We do this by choosing seed nodes from A(2)[N ], and then us-
ing the inducing setN to determine the nodes of A(1) that these seeds correspond
to:

nseeds_padded = 10

np.random.seed(0)

# obtain which nodes of A2 will be the seeds to use, from the retained nodes in the

network

seeds_A2_N = np.random.choice(n_nodes_A2_N, size=nseeds_padded, replace=False)

# obtain the nodes in A1

seeds_A1 = N[seeds_A2_N]

# run SGM with A1 and the padded network A2

# since we didn’t shuffle A(2),r, we do not need

# to worry about permuting the seeds

sgm_naive = graph_match(A1, A2_N, partial_match=(seeds_A1, seeds_A2_N),

padding="naive", rng=0, n_init=5)

# unshuffle A2_N using indices_B

P_unshuffle = make_unshuffler(sgm_naive.indices_B)

A2_N_unshuffle_seeds_naive = P_unshuffle.T @ A2_N @ P_unshuffle

A2_naive_full = np.zeros(A1.shape)

A2_naive_full[np.ix_(sgm_naive.indices_A, sgm_naive.indices_A)] =

A2_N_unshuffle_seeds_naive

As-discussed, under the hood, naive padded graph matching adds nodes to
construct A(2)[N ]+, and then aligns A(2)[N ]+ to the nodes of A(1) using the
isolated padding nodes. To illustrate the limitations of this process, we can apply
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Figure 7.3.10 (A) the original network A(1) that we wish to align to, (B)the network
A(2) is ρ-correlated with A, has 25 nodes per community removed to form A(2)[N ],
and then has 75 isolates added (naively) to create the padded network A(2)[N ]+, (C)
the padded network A(2)[N ]+ after graph matching with naive padding.

the unshuffling (from above) to the network A(2)[N ]+ with isolated padding
nodes. Note that indices_A[i] indicates the node from A(1) that is matched to
indices_B[i] in A(2)[N ]. Therefore, the nodes matched to the nodes N are given
by indices_A. We can use this to construct the original network, adding back
the isolated padding nodes, using a numpy indexing grid:

A2_naive_full = np.zeros(A1.shape)

A2_naive_full[np.ix_(sgm_naive.indices_A, sgm_naive.indices_A)] =

A2_N_unshuffle_seeds_naive

The network A(2)[N ]+ after unshuffling is shown in Figure 7.3.10(C). Unfor-
tunately, The naive matching of A(2)[N ]+ after padding looks nothing like A(1).
Particularly, notice that all of the “padding nodes” (with no edges) were simply
“matched” with the second community of nodes. There is a large “hole” in the
matched network in the middle, with very few edges. Consequently, the number
of edge disagreements is high. To compute the edge disagreements, we look at the
subnetwork A(1)[N ] induced by the nodes retained in A(1), and compare these
to the unshuffled A(2)[N ] (without padding nodes):

A1_induced = remove_vertices(A1, nodes_to_remove)

disagreements_naive = np.linalg.norm(A1_induced - A2_N_unshuffle_seeds_naive)**2

print(f"Disagreements, naive padding: {int(disagreements_naive):d}")

# Disagreements, adopted padding: 9285

which produces a high number of edge disagreements.
This happened because we effectively treated the new isolated nodes ofA(2)[N ]+

after padding as “equal” to the original nodes of A(2)[N ] (which are actual nodes
in the underlying network A(2)). This allowed nodes that didn’t really exist to
play a substantial role in the matching. Note that in A(1), the second community
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of nodes (nodes 75 through 150) appear to have lower degrees than the other
nodes of the network (there are fewer edges from nodes in community 2 to other
nodes). The padded isolate nodes of A(2)[N ]+ ended up being aligned to these
low-degree nodes of A(1).

Looking in 7.3.10(C), the average degree for nodes aligned with community
two nodes (of A(1)) are lower than the average degree for nodes aligned with
those in communities one and three. This can be discerned by noting that there
are far fewer edges with nodes in the second community. Formally, the subnet-
work induced by the isolates of A(2)[N ]+ (the extra nodes that we added) were
aligned with the subnetwork induced by the nodes with lowest degree in A(1).
These nodes with the lowest degree in A(1) are typically called the lowest density
subnetwork of A(1), in that their edge density is lowest. It is often the case that
when using naive padded matching, isolated padding nodes of the network with
smaller size will be aligned to low density subnetworks of the larger network.

Adopted Padded Graph Matching
Instead of having our match driven by the padding nodes in A(2)[N ]+ to the
lowest density subnetwork of A(1) as is done by naive padding, we want to match
A(2)[N ] (the unpadded network) to the best fitting induced subnetwork of A(1).
The key difference is that, in the ideal case, the subnetwork induced on A(1) is
the set of nodes which are actually present in A(2)[N ]. Stated another way, we
want to align A(2)[N ]+ to A(1), but with the padding nodes minimally impactful
on the resulting matching quality.

To do this, we use a strategy called adopted padding, which is performed using
padding="adopted" for the GraphMatch module. Adopted padding renormalizes
both adjacency matrices so that the matching places greater weight on the sub-
network induced by non-padding nodes, and very little weight on the padding
nodes. Through adopted padding, we first normalize A(1) and A(2)[N ], to form
Ã(1) and Ã(2)[N ], by multiplying the networks by 2, and then subtracting a
matrix of 1s. We pad Ã(2)[N ] like we did before, adding isolated padding nodes
until the two networks have the same number of nodes.

A1tilde = 2 * A1 - np.ones(A1.shape[0])

A2tilde_N = 2*A2_N - np.ones(A2_N.shape[0])

A2tilde_N_padded = np.pad(A2tilde_N, [(0,nremove*n_blocks), (0, nremove*n_blocks)])

These normalized networks are illustrated in Figure 7.3.11(A, B). The intuition
of how the adopted padding procedure downweights padding isolated nodes is
discussed in Remark 7.3.6.

# run SGM with A1 and A2[N] with nodes removed

sgm_adopted = graph_match(A1, A2_N, partial_match=(seeds_A1, seeds_A2_N),

padding="adopted", rng=0, n_init=5)

# unshuffle A2[N] using the permutation identified

P_unshuffle_ad = make_unshuffler(sgm_adopted.indices_B)

A2_N_unshuffle_seeds_adopted = P_unshuffle_ad.T @ A2_N @ P_unshuffle_ad



Applications for two networks 395

Remark 7.3.6 Adopted padding and the value of normalization

Adopted padding downweights padded isolate nodes in the cost function
through a specific normalization scheme, such that they will matter less in the
cost function. Through this normalization, edges ã(m)

ij will have a weight of
1, non-edges ã(m)

ij will have a weight of −1, and padding nodes ã(m)
ij will have

edges with a weight of 0. To understand the impact of this normalization,
consider the objective function, the squared Frobenius distance, before any
permutation has been applied to either of the networks:

‖Ã(1) − Ã(2)[N ]+‖2F =

n∑
i=1

n∑
j=1

(
ã
(1)
ij − ã

(2)[N ]+ij

)2
When node i or node j are padding nodes for the second network, ã(2)[N ]+ij =

0, and the squared difference is at-most 1 (since ã(1)ij is 1 if there is an edge
or −1 if there is no edge). However, when node i and j are both not padding
nodes for the second network, the difference has a value of 2 and a squared
difference of 4 (if the edges disagree) or 0 (if the edges do not disagree). There-
fore, in the objective function, disagreements arising from padding nodes are
“downweighted” relative to differences arising from non-padding nodes, as
disagreements have a higher cost when they occur due to non-padded nodes.
Consider how, in contrast, naive padded graph matching weights disagree-
ments equally, regardless of whether they are due to padding isolated nodes
or non-padding nodes.

A2_adopted_full = np.zeros(A1.shape)

A2_adopted_full[np.ix_(sgm_adopted.indices_A, sgm_adopted.indices_A)] =

A2_N_unshuffle_seeds_adopted

The unshuffled network (with padded isolate nodes) is illustrated in Figure
7.3.11(C). Note that the isolated nodes tend to be dispersed to the last few
nodes of each community, which is consistent with the nodes that were originally
removed from the network. They are not restricted to the nodes in the lowest
density induced subnetwork, as in Figure 7.3.10(C). The networks appear to be
much better aligned.

To evaluate this padding scheme, we evaluate the matching ratio on the sub-
network induced by the non-padding nodes. In the ideal case, since we did not
apply any permutations to A(2)[N ] (and only removed nodes), the permutation
matrix should be the identity matrix, in that no nodes were sorted. Further, to
compute the number of disagreements, we compare A(2)[N ] after unshuffling to
A(1)[N ], using the remove_vertices utility from graspologic:

match_ratio_adopted = match_ratio(np.eye(A1_induced.shape[0]), P_unshuffle_ad)
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Figure 7.3.11 (A) The normalized network Ã(1), (B) the normalized network
Ã(2)[N ]+, (C) the network Ã(2)[N ]+ after alignment to A(1), which is aligned using
Ã(1) and Ã(2)[N ]+ with adopted padding.

print(f"Match Ratio, adopted padding: {match_ratio_adopted:.3f}")

# Match Ratio, adopted padding: 0.887

disagreements_adopted = np.linalg.norm(A1_induced - A2_N_unshuffle_seeds_adopted)**2

print(f"Disagreements, adopted padding: {int(disagreements_adopted):d}")

# Disagreements, adopted padding: 4186

Using adopted matching has yielded a nearly perfect match ratio, and the
number of disagreements has been dramatically reduced. Compare this to naive
padded matching from Figure 7.3.10, where the naive approach resulted in only
isolates being matched to nodes in community two.

Remark 7.3.7 Vertex Nomination via Seeded Graph Matching

It is often the case that we have two networks A(1) and A(2), and we might
want to ask which node or set of nodes in a second network are “maximally
similar” to a given node (or set of nodes) of interest in the first network. Let’s
call this node i(1). This can be thought of as a form of the vertex nomination
problem from Section 6.5, where we have a node of interest (or set of nodes
of interest) and want to produce a nomination list of possible nodes in the
network A(2) that our node(s) of interest in the network A(1) are most similar
to.
Because we use stochastic gradient descent, the solution to the graph matching
problem is non-deterministic, in that running it twice might produce a slightly
different matching. We estimate a nomination list by computing the number
of times each node j(2) in network 2 are matched to node i(1). Then, we can
order the nomination list by the nodes that are most frequently matched to
node i(1). This procedure is known as VNviaSGM [14].
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8 Applications for multiple networks

This chapter covers applications of network machine learning when working with
numerous networks, extending beyond the single and paired network scenarios
covered in Chapters 6 and 7. This chapter presents several key techniques and
use cases.

Many of the approaches in previous chapters can be adapted for multiple net-
work settings. For instance, the community detection methods in Section 6.1 can
be extended by examining embeddings or properties of the shared latent posi-
tion matrices obtained through the multiple adjacency spectral embedding (MASE)
technique introduced in Section 5.5.3, or of the Omnibus technique introduced
in Section 5.5.4.

This chapter covers the following topics:

1 Section 8.1 introduces anomaly detection in time series of networks, exploring
how to identify significant changes in network structure over time.

2 Section 8.2 discusses incoherent signal subnetwork estimation, a technique for
identifying important edges that differentiate between classes of networks.

3 Section 8.3 builds on the previous section by introducing coherent signal sub-
network estimation, which leverages additional network structural information
to improve edge selection.

These techniques are most useful when we can collect many networks repre-
senting individual observations. Taking a large network and breaking it apart
into subnetworks can also lead to use cases for this line of research.



Applications for multiple networks 399

8.1 Anomaly detection in timeseries of networks

In Part III, we have explored methods for analyzing static networks and
comparing pairs of networks. However, many real-world systems generate
longitudinal networks that evolve over time, which are expressed as a se-
quence. This section aims to detect anomalous networks in longitudinal
network data.

Anomaly detection focuses on identifying significant changes in network
structure over time, either globally or within specific node subgroups. We
will:

1 Define anomaly detection in the context of time-varying networks,
2 Develop methods for quantifying network changes between time points,
3 Explore techniques for identifying anomalous subgroups of nodes, and
4 Discuss challenges in distinguishing meaningful changes from noise.

Across a longitudinal sequence of networks, the nodes remain the same,
but the edges vary depending on the time point. We consider a network
in a timeseries sequence “anomalous” if a subset of nodes exhibits concur-
rent behavior changes compared to recent time points, while the remaining
network structure remains relatively stable. We build from the two-sample
testing foundation introduced in Section 7.1.

An exploration of longitudinal network analysis provides a foundation for
studying dynamic systems, detecting critical transition points, and identi-
fying localized changes in complex networks.

We will explore longitudinal network data in the context of sea slug nervous
systems, discussed in Case Study 8.1.1.

Collecting brain networks is a noisy process (Section 1.3). Random noise might
lead to spurious changes in edges at different timepoints. We want to figure out if
there are timepoints where there are changes in the network that exceed that of
normal measurement variation; changes in the underlying process (the random
network) that is generating our network observations.

The sea slug brain is measured at T = 12 points in time where the gill re-
sponse occurs. Each network has 90 nodes representing neurons, in one of three
communities of nodes. Although the actual Aplysia nervous system circuit con-
trolling gill withdrawal is more complex, we will pretend that these communities
represent peripheral motor neurons (responsible for movement and reflexes), the
abdominal ganglion (responsible for determining whether the slug should reflex),
and ocular neurons (responsible for sight). A pair of nodes are connected if the
neurons they represent are both firing at that timepoint.

For the first six timepoints, the slug contracts its gills to protect them from
damage. The network has a strong affinity structure: within-community connec-
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Case Study 8.1.1 Brain networks of sea slugs

There is a particular type of sea slug with sensitive gills on the outside of its
body. When the gills sense any stimulus, they reflexively withdraw into the
body. When the gill response is repeatedly triggered without a negative effect
on the slug, the response diminishes [1; 2]. However, when an electrical shock
is administered, such as by a predator, the response returns. Foundational
experiments on these slugs, called Aplysia, formed the basis for our physio-
logical understanding of memory in the brain and led to the Nobel Prize in
Physiology or Medicine by Eric Kandel in 2000.
Suppose we study these slugs, and we generate multiple brain networks of
the same slug over a time period. We define each node as a single neuron
and edges as connections between neurons. Each time point is associated
with a gill response stimulation: some timepoints are before the slug learns
not to withdraw its gills, some are after learning, and some are after an
electrical shock is administered. We hypothesize that the networks will differ
after learning and after the administration of an electrical shock. Given the
time-varying networks, how do we figure out which timepoints these are?

tions exist with probability 0.4, and between-community connections exist with
probability 0.05.

After the 6th timepoint, the slug begins to learn that the water squirts are
harmless, its hippocampus begins to block the gill withdrawal reflex, and the
slug retracts its gills less. During this time there is a degree augmentation (see
the DCSBM in Section 4.7) in the nodes of the brain network, via a degree-
correction vector ~θ. By the 7th timepoint, the sea slug stops reflexing its gills all
together, once it has learned that the splashes are harmless.

After the 9th timepoint, an electrical shock is administered to the slug prior to
the water squirt, and the slug “forgets” that the water squirt itself is harmless.
At this time point, the sea slug returns to its original brain patterns. We can
generate the networks like this:

import numpy as np

from graspologic.simulations import sbm

from graphbook_code import dcsbm

# the block matrix for the neurons before learning

B0 = 0.05*np.ones((3, 3))

np.fill_diagonal(B0, 0.4)

nk = 40

ns = np.repeat(nk, 3)

theta = np.tile(np.linspace(np.sqrt(2), np.sqrt(2) - 1, nk), 3)

zs = np.repeat([1,2,3], nk)
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T = 12

np.random.seed(0)

networks = np.array([sbm(ns, B0) if (t < 6 or t >= 9) else dcsbm(zs, theta, B0) for t in

range(T)])

The simulated networks are illustrated in Figure 8.1.1. After learning in Figure
8.1.1(B), the nodes in the lower half of each community appear to have more
edges than the nodes in the upper half of each community. After an electric shock
is administered in Figure 8.1.1(C), this pattern returns to the baseline response
from Figure 8.1.1(A).

Figure 8.1.1 (A) the simulated networks, before learning, (B) the simulated
networks, after learning, and (C) the simulated networks, after an electric shock is
administered.

8.1.1 Detecting anomalies using network models

Our goal is to detect the timepoints at which there are the largest changes in
the network: we would like to determine at exactly which timepoint the shock
occurred. If the network A(t) is a realization of a random network A(t) with prob-
ability matrix P (t), we want to identify the timepoints t where the probability
matrix changes for the current timepoint compared to the preceding timepoint
P (t) 6= P (t−1).

This gives us the hypotheses:

H
(t)
0 : P (t) = P (t−1) against H(t)

A : P (t) 6= P (t−1)

for every timepoint t.
If there were only two timepoints in total and T = 2, this is equivalent to the

hypotheses in Equation (7.1) from Section 7.1.
Because the networks appear to have a homophilic structure, the underly-

ing random networks are likely positive semi-definite using the logic developed
in Section 4.5. Therefore, the networks can be generalized by RDPGs, so it is
sensible to use the latent position test from Section 7.1.2:

H
(t)
0 : X(t) = WX(t−1) for some orthogonal matrix W,

H
(t)
A : X(t) 6= WX(t−1) for any orthogonal matrix W.



402 Applications for multiple networks

In practice, we found in Equation (7.4) that we could estimate the best possible
orthogonal transform of the second estimated latent position matrix onto the first
by solving the Orthogonal Procrustes Problem. We perform these latent position
tests for all timepoints from 2 to T , by sequentially comparing a given timepoint
t to the previous timepoint t− 1.

Each of these T−1 tests gives us an estimated p-value, p̂(t), using the paramet-
ric bootstrap procedure from Section 7.1.2 [3]. We consider a timepoint anoma-
lous if p̂(t) ≤ α, where as usual, we use α = 0.05.

The multiple comparisons problem, revisited
In the case where there is no longitudinal effect, that is, the underlying networks
are identical across time, we run into the multiple comparisons problem from
Section 7.2 where if the null hypothesis is true and there is no effect, we would
expect about α fraction of tests run to have a p-value ≤ α.

If the error rate for an individual test at a given timepoint is α, the Familywise
Error Rate (FWER) for making an error for any of the (T − 1) tests is (T − 1)α.
So if we have T timepoints and there is no longitudinal effect, we would expect
a proportion of about (T − 1)α of the tests to falsely reject the null hypothesis
in favor of the alternative hypothesis.

Section 7.2 addressed this issue with the Bonferroni-Holm adjustment [4],
which we will also use here.

8.1.2 Applying anomaly detection to simulated networks

Let’s see how we can implement the ideas from Section 8.1.1 for anomaly testing.
We obtain estimated p-values by using the latent position test from Section 7.1.2.
This code may take a minute or two to run, so we include tqdm in the loop:

from graspologic.inference import latent_position_test

import warnings

from tqdm import tqdm

warnings.filterwarnings(’ignore’)

pvalues = [latent_position_test(networks[t + 1], networks[t], n_components=3,

n_bootstraps=1000, workers=-1)[1] for t in tqdm(range(T-1))]

Next, we adjust for multiple comparisons, using the multipletests() function
from statsmodels:

from statsmodels.stats.multitest import multipletests

alpha = 0.05
_, adj_pvals, _, _ = multipletests(pvalues, alpha=alpha, method="holm")

The resulting adjusted p-values are shown in Figure 8.1.2. Recall that in time-
points 7 through 9, the slug “learned” that the water squirts are harmless. There-
fore, for all pairs of timepoints from 1 to 6, 7 to 9, and 10 to 12, we should not
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Figure 8.1.2 The p-values from the latent position test for each pair of adjacent
timepoints in the longitudinal sequence of networks.

be able to identify any difference. However, from 6 to 7 (when the slug learned)
and from 9 to 10 (when the slug was shocked, and un-learned) we should be able
to detect a difference. For these comparisons, the p-values (after adjustment) are
below our detection threshold of α = 0.05, indicating that we have evidence to
reject the null hypothesis, and we find that the networks are different. We have
found that the networks have detectable anomalies at these timepoints.
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8.2 Testing for significant edges in incoherent signal
subnetworks

In Section 4.10, we introduced the concept of signal subnetworks (SSNs)
using an example of earthling and astronaut brain networks. This section
builds on that foundation to develop methods for identifying signal edges
within these networks.

We will revisit the SSN model, building on Sections 3.5 and 4.10, where
edge probabilities depend on both network class (earthling or astronaut)
and membership in the signal network. We will:

1 Formalize the concept of incoherent signal subnetworks,
2 Develop statistical tests to identify significant edges across the network,
3 Explore methods to estimate incoherent signal subnetworks from data,
4 Develop strategies to use estimated signal subnetworks to classify network

data, and
5 Discuss the challenges and limitations of incoherent SSN analysis.

These techniques analyze networks where only a subset of edges carry
meaningful signal. This exploration extends our earlier work in Section 5.6
on network models with covariates, applying it to the practical problem of
detecting evolved differences in brain connectivity.

An incoherent subnetwork estimator focuses exclusively on the impor-
tance of individual edges, often quantified by statistical measures such as
Fisher’s exact test p-values. In Section 8.3, we will explore coherent signal
subnetworks, which incorporate network structure to improve classification
accuracy and reduce sample-specific noise.

This section builds upon the Bayes plugin classifier (also called the Naive
Bayes classifier). For a brief refresher, we recommend reviewing Appendix
C.2.

We will consider how to statistically identify changes in a hypothetical sight-
related node (SI) in the astronaut brain example from Section 4.10.

We begin by simulating data. We will have M = 200 people, and each person
will be an earthling (class 1) with probability 0.55 or an astronaut (class 2) with
probability 0.45:

import numpy as np

pi_astronaut = 0.45

pi_earthling = 0.55

M = 200

# roll a 2-sided die 200 times, with probability 0.55 of landing on side 1 (earthling)p

# and robability 0.45 of landing on side 2 (astronaut)
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classnames = ["Earthling", "Earthling"]

np.random.seed(0)

ys = np.random.choice([1, 2], p=[pi_earthling, pi_astronaut], size=M)

print(f"Number of individuals who are earthlings: {(ys == 1).sum():d}")

print(f"Number of individuals who are astronauts: {(ys == 2).sum():d}")

Next, we construct probability matrices for each class. The probabilities for
edges in which a node is in the sight area are higher for the astronauts than for
the earthlings:

n = 5

P_earthling = np.full(shape=(n, n), fill_value=0.3)

nodenames = [

"SI", "L", "H/E",

"T/M", "BS"

]

signal_subnetwork = np.full(shape=(n, n), fill_value=False)

signal_subnetwork[1:n, 0] = True

signal_subnetwork[0, 1:n] = True

P_astronaut = np.copy(P_earthling)

# probabilities for signal edges are higher in astronauts than earthlings

P_astronaut[signal_subnetwork] = np.tile(np.linspace(0.4, 0.9, num=4), reps=2)

In Figure 4.10.2 and 4.10.3, we saw that the probability matrices differed
between the astronauts and the earthlings for all edges that included a node
from the sight area (SI). These edges comprised the “signal subnetwork” (SSN).

Algorithm 14 gave us a procedure that we could use to generate samples of
SSN networks:

from graspologic.simulations import sample_edges

# the probability matrices for each class

Ps = [P_earthling, P_astronaut]

# sample networks with the indicated probability matrix

np.random.seed(0)

As = np.stack([sample_edges(P=Ps[y-1]) for y in ys], axis=2)

Given a collection of networks from multiple classes, we will find the set of
edges which differ most between the classes. We will then use this information
to classify brain networks as earthling or astronaut.

We need to do the following:

1 We only look at signal edges which are in the signal subnetwork, and ignore
edges which are not in the signal subnetwork. Edges which are not in the signal
subnetwork are simply noise, since they have the same connection probability
between the classes, and therefore are not useful for differentiating between
the classes.
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Number of networks where
edge (i, j) exists

Number of networks where
edge (i, j) does not exist

Earthlings a b
Astronauts c d

Table 8.1 A contingency table for edge existences/non-existences between each of the
two classes.

2 We incorporate these signal and non-signal edges into a structured classifier,
which predicts whether a network is from an earthling or astronaut.

3 We incorporate information about the network structure into our classifier.

8.2.1 Using edge importances to estimate the signal subnetwork

We start by detecting which edges carry signal given a collection of networks
with class labels.

To do this, we will return to the Fisher’s exact test from Section 6.3.1 and
Table 7.1.

For a single edge, we test whether the probabilities for that edge differ be-
tween earthling and astronaut brain networks: HA : p

(0)
ij 6= p

(1)
ij , against the null

hypothesis that H0 : p
(0)
ij = p

(1)
ij . The desirable property of Fisher’s exact test is

that, when there is more evidence that the data do not support H0, the p-value
will tend to be smaller and we would tend to reject the null hypothesis. When
there is more evidence to support H0, the p-value will tend to be larger and we
often would not have evidence to reject the null hypothesis. We will exploit this
feature in our design of a classifier for earthlings versus astronauts. For each edge
(i, j), we construct the table shown in Table 8.1 in Python as follows, for the
edge from the sight area to the basic survival area:

def generate_table(As, ys, i, j):

"""

A function to generate a contingency table for a given edge.

"""

# count the number of earthlings with edge i,j

a = As[i,j,ys == 1].sum()

# count the number of astronauts with edge i,j

b = As[i,j,ys == 2].sum()

c = len(As[i,j,ys == 1]) - a

d = len(As[i,j,ys == 2]) - b

edge_tab = np.array([[a, b], [c, d]])

return edge_tab

# edge (0, 4) corresponds to SI to BS

edge_tab = generate_table(As, ys, 0, 4)

print(edge_tab)

Next, we compute the Fisher’s exact test p-value, using scipy:
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from scipy.stats import fisher_exact

_, pval = fisher_exact(edge_tab)

print(f"p-value: {pval:.4f}")

# p-value: 0.0000

The p-value for this edge is small, which tells us that we have evidence to
reject the null hypothesis in favor of the alternative hypothesis that the edge
from SI to BS shows a disparity between earthlings and astronauts.

Let’s see what happens when we repeat this process for a non-signal edge. We
arbitrarily choose the edge between H/E and L areas, corresponding to i = 2

(H/E) and j = 1 (L):

_, pval = fisher_exact(generate_table(As, ys, 2, 1))

print(f"p-value: {pval:.4f}")

# p-value: 0.7600

Here we do not have evidence to reject the null hypothesis that the edge from
L to H/E areas has the same probability in earthlings and astronauts.

By construction, the p-value for signal edges will usually be smaller than the
p-value for non-signal edges. We could still certainly get samples of data where
this is not the case, analogous to flipping a fair coin 10 times and obtaining 10

heads, even if the coin has a probability of 0.5 of landing on heads.

We can use the Fisher’s exact test to quantify how “important” an edge is for
differentiating the two classes, also known as an edge importance statistic. In this
case, an edge importance statistic with a higher value indicates that the edge is
more important for the class differentiation task. We will do this by ranking the
p-values from largest (lower ranks) to smallest (higher ranks), where the edges
with the higher ranks are more important for differentiating the classes.

Since the networks are loopless, we can ignore the diagonal, and since the
networks are undirected, we can compute the p-values for a single triangle and
then symmetrize the resulting Fisher p-value matrix. Then, we rank the edges,
from largest to smallest, in terms of the p-values using scipy. The scipy function
rankdata() natively ranks values from smallest to largest, so to rank positive data
from largest to smallest, we first negate the matrix of Fisher test p-values:

from graspologic.utils import symmetrize

from scipy.stats import rankdata

fisher_mtx = np.empty((n, n))

fisher_mtx[:] = np.nan

for i in range(0, n):

for j in range(i+1, n):

fisher_mtx[i, j] = fisher_exact(generate_table(As, ys, i, j))[1]

fisher_mtx = symmetrize(fisher_mtx, method="triu")

# use rankdata on -fisher_mtx, to rank from largest p-value to smallest p-value
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edge_imp = rankdata(-fisher_mtx, method="dense",

nan_policy="omit").reshape(fisher_mtx.shape)

np.fill_diagonal(edge_imp, 0)

Figure 8.2.1(B) shows the resulting edge importance matrix, along with the
signal subnetwork in Figure 8.2.1(A). Notice that edges which are in the signal
subnetwork tend to have higher edge importances.

Figure 8.2.1 (A) the signal subnetwork for the earthling and astronauts, (B) the edge
importances for differentiating earthlings from astronauts, (C) the estimated signal
subnetwork.

We can use this to estimate what is known as an incoherent signal subnetwork
by finding the edges corresponding to the K highest edge importances.

We can implement this process using graspologic to estimate the signal sub-
network. Here we estimate a signal subnetwork with 8 edges:

from graspologic.subgraph import SignalSubgraph

K = 8 # the number of edges in the subgraph

ssn_mod = SignalSubgraph()

# graspologic signal subgraph module assumes labels are 0, ..., K-1

# so use ys - 1 to rescale from (1, 2) to (0, 1)

ssn_mod.fit_transform(As, labels=ys - 1, constraints=K);

sn_est = np.zeros((n,n)) # initialize empty matrix

sn_est[ssn_mod.sigsub_] = 1

The estimated signal subnetwork Ŝ with K = 8 edges is shown in Figure
8.2.1(C). Notice that when we ran the simulation, our results were imperfect:
while 6 of 8 of the estimated signal edges are in the true signal subnetwork, we
got 2 edges incorrect. In the event that the difference in probabilities between
the classes is large, as was the case for the 6 edges we got correct, this procedure
will tend to reach reasonably stable conclusions, in that our estimates will faith-
fully reflect the underlying signal subnetwork. However, when the difference in
probabilities between the classes is smaller (such as for the SI and L edge, which
we got wrong) we might estimate the signal subnetwork incorrectly for a given
number of networks M .
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8.2.2 Building a classifier using the estimated signal subnetwork

We can use our estimated signal subnetwork Ŝ to devise a network classifier,
which will take new networks and assign them to their most probable class.

We will use a binary Naive Bayes classifier. For details on the Naive Bayes
classifier, see Appendix C.2 and the original paper on signal subnetworks [5].

Network classification
The Bayes plugin classifier from sklearn, BernoulliNB, is designed for binary data
features such as the adjacency matrix of an unweighted network. Appendix C.2
contains derivations and intuition behind the Bayes plugin classifier. We start
by putting our data into a matrix BernoulliNB can work with. Our estimated
signal subnetwork Ŝ is returned in graspologic as a [2 x K] matrix, where K is
the number of edges in the signal subnetwork. The first row is the row index of
the entry of the signal subnetwork, and the second row is the column index of
the entry in the signal subnetwork. We need to turn this into an [M x K] matrix
which we will call the data matrix D, where M is the total number of networks
and K is the number of edges in the signal subnetwork. Each entry of this matrix
dmk will represent the adjacency matrix value of the mth individual for the kth

element of the signal subnetwork. We can do this as follows:

D = As[ssn_mod.sigsub_[0], ssn_mod.sigsub_[1],:].T

Next, we create a Bayes plugin classifier, and fit it using the classes ~y for all
of our samples:

from sklearn.naive_bayes import BernoulliNB

classifier = BernoulliNB()

# fit the classifier using the vector of classes for each sample

classifier.fit(D, ys)

To evaluate our classifier’s performance, we will create 200 new “hold-out”
networks that were not used for training and find the classification accuracy. If
hθ̂
(
A(m)

)
is the predicted class (either earthling, 0, or astronaut, 1) for a new

held-out sample A(m) for the Naive Bayes classifier after training with parameters
θ̂ = (Ŝ,K), the classification accuracy for M ′ held-out samples is the average
number of correct answers produced by the classifier:

1

M ′

M ′∑
m=1

1
{
hθ

(
A(m)

)
= ym

}
,

We generate our held-out samples:

# number of holdout samples

Mp = 200

# new random seed so heldout samples differ

np.random.seed(123)
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y_heldout = np.random.choice([1, 2], p=[pi_earthling, pi_astronaut], size=Mp)

# sample networks with the appropriate probability matrix

A_heldout = np.stack([sample_edges(Ps[y-1]) for y in y_heldout], axis=2)

# compute testing data on the estimated signal subnetwork

D_heldout = A_heldout[ssn_mod.sigsub_[0], ssn_mod.sigsub_[1],:].T

yhat_heldout = classifier.predict(D_heldout)

# classifier accuracy is the fraction of predictions that are correct

heldout_acc = np.mean(yhat_heldout == y_heldout)

print(f"Classifier Testing Accuracy: {heldout_acc:.3f}")

# Classifier Testing Accuracy: 0.810

This results in a classifier with accuracies between 70% and 85%.
Let’s put this all together with a single function, which will use the training

data to estimate a signal subnetwork and train a Bayes plugin classifier, and will
produce accuracies using a separate set of “testing” networks:

def train_and_eval_ssn(Atrain, ytrain, Atest, ytest, K):

"""

A function which trains and tests an incoherent signal subnetwork

classifier with K signal edges.

"""

ssn_mod = SignalSubgraph()

ssn_mod.fit_transform(Atrain, labels=ytrain - 1, constraints=int(K));

Dtrain = Atrain[ssn_mod.sigsub_[0], ssn_mod.sigsub_[1],:].T

classifier = BernoulliNB()

# fit the classifier using the vector of classes for each sample

classifier.fit(Dtrain, ytrain)

# compute testing data on the estimated signal subnetwork

Dtest = Atest[ssn_mod.sigsub_[0], ssn_mod.sigsub_[1],:].T

yhat_test = classifier.predict(Dtest)

# classifier accuracy is the fraction of predictions that are correct

return (np.mean(yhat_test == ytest), ssn_mod, classifier)

Parameter selection for signal subnetworks
We need a way to determine an appropriate number of signal edges to include
in our estimated signal subnetwork.

Similar to other machine learning techniques, we will use cross validation, a
commonly used procedure in which we split the dataset into some number of
approximately equally sized splits (called folds), and then we train a machine
learning model using a subset of the folds (the training folds). We then test the
trained model on the excluded subset of the folds (the testing folds). We use a
trained machine learning model which maximizes accuracy on the testing folds,
and break ties using other heuristics (for instance, selecting the simplest trained
model that achieves maximal accuracy).
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Algorithm 23 describes the procedure for estimating the optimal number of
signal edges for network classification using signal subnetworks.

Algorithm 23: Estimating the number of signal edges using cross vali-
dation
Data: A set of networks and class labels

(
A(m), ym

)
, for m = 1, . . . ,M .

K ′ the maximum number of possible signal edges.
L the number of folds to use for cross validation.

Result: K∗ the optimal number of signal edges.
1 Split the indexing set {1, . . . ,M} into L folds of approximately equal size

at random.
2 for k = 1, . . . ,K ′ do
3 for l = 1, . . . , L do
4 Let nl denote the number of samples in fold l.
5 Let Ŝ be the estimated signal subnetwork with k signal edges,

which is estimated using the networks from the training folds
l′ 6= l.

6 Train a Naive Bayes classifier using the training folds to produce a
network classifier hθ̂, which takes networks and produces class
predictions.

7 Let ak,l be the testing accuracy using the testing fold l.
8 end
9 Let ak = 1

n

∑L
l=1 nlak,l be the testing accuracy over all L folds for k

signal edges.
10 end
11 Let K∗ = argmaxkak be the number of signal edges which maximizes the

testing accuracy. If there are multiple numbers of signal edges that
maximize the testing accuracy, break ties by choosing the smallest such
number of signal edges.

12 return K∗.

We implement this strategy using L = 20 folds, and consider signal subnet-
works with sizes ranging from 2 to 20 signal edges. We proceed with increments
of 2 because our networks are undirected, which means that edge (i, j) and edge
(j, i) will contain identical information. We consider a maximum of 20 signal
edges because the networks are loopless, so there are a maximum of 20 possible
signal edges in the network.

We can implement 20-fold cross validation using sklearn. This procedure
might take several minutes, even on the small networks that we have been work-
ing with so far:

from sklearn.model_selection import KFold

import pandas as pd
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Number of signal edges Average testing accuracy
2 0.795
4 0.795
6 0.830
8 0.830
10 0.820
12 0.825
14 0.825
16 0.820
18 0.820

Table 8.2 The average testing accuracy as a function of the number of signal edges. With
6 or 8 signal edges, the optimal average testing accuracy is achieved, indicated by the
light gray rows.

kf = KFold(n_splits=20, shuffle=True, random_state=0)

xv_res = []

for l, (train_index, test_index) in enumerate(kf.split(range(0, M))):

A_train, A_test = As[:,:,train_index], As[:,:,test_index]

y_train, y_test = ys[train_index], ys[test_index]

nl = len(test_index)

for k in np.arange(2, 20, step=2):

acc_kl, _, _ = train_and_eval_ssn(A_train, y_train, A_test, y_test, k)

xv_res.append({"Fold": l, "k": k, "nl": nl, "Accuracy": acc_kl})

xv_data = pd.DataFrame(xv_res)

def weighted_avg(group):

acc = group[’Accuracy’]

nl = group[’nl’]

return (acc * nl).sum() / nl.sum()

xv_acc = xv_data.groupby(["k"]).apply(weighted_avg)

print(xv_acc)

With our data, this produces Table 8.2. Because the simulation data used
for this section was produced randomly, our results might be slightly different
from run to run. In the simulation shown here, we reach optimal average testing
accuracy with 6 or 8 signal edges.

Once we have identified the optimal number of signal edges using cross valida-
tion, we would estimate a signal subnetwork and train a classifier using the full
training data with the optimal number of signal edges, and evaluate our signal
subnetwork and the resulting classifier using any remaining held-out data. Since
in this case we have a tie in testing accuracy between 6 and 8 signal edges, by
convention, we would typically choose the optimal model based on whichever is
simpler. In this case, since 6 signal edges is a simpler (but equally performant)
model than 8 signal edges, we would use 6 signal edges. We can train a signal
subnetwork classifier with 6 signal edges and evaluate it on the held-out data as
follows:
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acc, ssn_est, classifier_est = train_and_eval_ssn(As, ys, A_heldout,

y_heldout, 6)

To summarize, we estimated a signal subnetwork from a set of networks that
are in one of K classes. We then covered how to use this estimated signal sub-
network to train a classifier which uses the signal edges to make predictions of
the class for new networks. We learned how to use cross validation to tune the
number of edges in the estimated signal subnetwork, so that we could identify
the number of edges in the signal subnetwork which maximized the downstream
classification accuracy for new networks.
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8.3 Building coherent signal subnetworks

In Section 8.2, we explored incoherent signal subnetwork estimators. How-
ever, the signal subnetwork estimator used in Section 8.2 was incoherent: it
did not consider network structure when selecting edges, and focused only
on edges with the highest importance. Incoherent subnetwork estimators
often miss important edges, such as the connection between the sight (SI)
and language (L) areas (Figure 8.2.1(C)). This signal edge carries subtle
but crucial signals (Figure 4.10.2(C)).

This section introduces coherent signal subnetwork estimators to address
these limitations, which leverage the structure of the network by using ele-
ments of its structure: nodes, edges, or other network attributes.

We will focus on:

1 Defining coherent signal subnetwork estimators and their advantages,
2 Developing methods that leverage multiple network elements (nodes,

edges, attributes),
3 Comparing coherent and incoherent estimators in terms of Bayes accu-

racy, and
4 Discussing the implications for optimal classifier performance.

Classifiers that leverage all signal edges in their predictions achieve a
higher Bayes accuracy [5; 6], which is the highest possible classification
accuracy achievable by a classifier that knows the true data generating
distribution. Optimal performance requires leveraging information from all
signal edges.

We again use the earthling and astronaut setting from Section 4.10. This time,
we obtain 200 training and testing samples explicitly:

import numpy as np

from graspologic.simulations import sample_edges

nodenames = [

"SI", "L", "H/E",

"T/M", "BS"

]

# generate probability matrices

n = 5 # the number of nodes

P_earthling = 0.3*np.ones((n, n))

signal_subnetwork = np.zeros((n, n), dtype=bool)

signal_subnetwork[1:n, 0] = True

signal_subnetwork[0, 1:n] = True

P_astronaut = np.copy(P_earthling)

P_astronaut[signal_subnetwork] = np.tile(np.linspace(0.4, 0.9, num=4), 2)



Applications for multiple networks 415

# sample the classes of each sample

M = 200 # the number of training and testing samples

pi_astronaut = 0.45

pi_earthling = 0.55

np.random.seed(0)

ytrain = np.random.choice([1,2], p=[pi_earthling, pi_astronaut], size=M)

ytest = np.random.choice([1,2], p=[pi_earthling, pi_astronaut], size=M)

# sample network realizations given the class of each sample

Ps = [P_earthling, P_astronaut]

np.random.seed(0)

Atrain = np.stack([sample_edges(Ps[y-1]) for y in ytrain], axis=2)

Atest = np.stack([sample_edges(Ps[y-1]) for y in ytest], axis=2)

Let’s consider what is happening using coin flips. The edge (SI, L) could be
represented by a coin that lands on heads with probability 0.35 for astronauts,
but 0.3 for earthlings. Given a set of networks of earthlings and astronauts,
we could think about the existence or not existence of this particular edge in
our heads or tails framework. There is a chance that the rate we see heads for
astronauts is the same, or even less, than the rate we see heads for earthlings.

Imagine another experiment for a non-signal edge, such as (BS,H/E), between
the basic survival node and the hearing/emotion node. This non-signal edge
could be represented by a coin which lands on heads with probability 0.3 for both
astronauts and earthlings. In a given set of networks of earthlings and astronauts,
Figure 8.2.1(C) shows that it is still possible that we see more heads in one group
or the other, leading to the non-signal edge mistakenly being identified as a signal
edge by our procedure for estimating signal subnetworks.

When we have many non-signal edges, and only a small subset of signal edges,
the chances of us running into this problem increases. This is closely related to the
multiple comparisons problem from Section 6.3.1, where we might see spuriously
small p-values (and consequently, high edge importances) in non-signal edges due
to random chance a fraction of the time.

8.3.1 Building a coherent signal subnetwork estimator

To reduce this type of sample-specific noise, we can build a coherent signal
subnetwork estimator by using more information about our networks: the nodes
that the edges are between. We start by computing the ranked significance matrix
as we did before. However, when we pick the edges to include or exclude, we first
choose the V nodes (the signal nodes) with the highest ranked significances. We
then identify the K signal edges using only edges which are incident a signal
node.

The procedure to build a coherent signal subnetwork estimator is described in
Algorithm 24.

This procedure sets an initial threshold c at the maximum ranked edge impor-
tance. It then counts how many edges connected to each node meet or exceed
this threshold. The top V signal nodes are those with the most edges at or above
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Algorithm 24: Building a coherent signal subnetwork estimator
Data: A set of networks and class labels

(
A(m), ym

)
, for m = 1, . . . ,M .

V the number of signal nodes.
K the number of signal edges.

Result: (S,V) a set of signal edges and signal nodes in the network.
1 Compute the ranked significance matrix R, which is an n× n matrix

whose entries rij are the ranked significance for edge i and j.
2 Initialize c = maxi,j rij , and let wc = 0.
3 while wc < K do
4 For each node i, let wi,c =

∑n
j=1 1 {rij ≥ c} be the number of edges

for node i where the ranked significance is at least c.
5 Rank the nodes according to which node has the number of signal

edges exceeding the threshold c. Denote the ith largest node by w(i),c.
6 Let wc =

∑V
i=1 w(i),c be the sum of the number of edges each of the

top V -ranked nodes have at least at the threshold c.
7 Let c = c− 1.
8 end
9 Let V be the node set of the top V nodes identified in the final iteration

of the preceding while loop.
10 Let S be the top K signal edges where at least one node for each edge is

in the signal node set V.
11 return (S,V).

the threshold. The algorithm lowers the threshold iteratively until it finds V
nodes that each have at least K edges above the importance threshold. The final
coherent signal subnetwork estimate consists of these V nodes and their top K
edges.

We can do this using graspologic using multiple constraints, as follows, where
we compute both incoherent and coherent signal subnetwork estimates:

from graspologic.subgraph import SignalSubgraph

K = 8 # the number of signal edges

V = 1 # the number of signal nodes

# the incoherent signal subnetwork estimator

ssn_est_inco = SignalSubgraph()

ssn_est_inco.fit_transform(Atrain, labels=ytrain-1, constraints=K)

# the coherent signal subnetwork estimator

ssn_est_coherent = SignalSubgraph()

ssn_est_coherent.fit_transform(Atrain, labels=ytrain-1, constraints=[K, V])

We can build the signal subnetwork estimates as follows:

ssn_coherent = np.zeros((n, n))
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Figure 8.3.1 (A) the true signal subnetwork, (B) the incoherent signal subnetwork
estimate, (C) the coherent signal subnetwork estimate.

ssn_incoherent = np.zeros((n, n))

ssn_incoherent[ssn_est_inco.sigsub_] = 1

ssn_coherent[ssn_est_coherent.sigsub_] = 1

A visualization of the true signal subnetwork, the incoherent signal subnet-
work, and the coherent signal subnetwork is shown in Figure 8.3.1. The incoher-
ent signal subnetwork estimate will sometimes have spurious, non-signal, edges
included. The coherent signal subnetwork overcomes this potential hurdle by
leveraging other topological properties of network data, such as the nodes them-
selves.

Now, we can put this together for training and evaluating coherent signal
subnetworks:

from sklearn.naive_bayes import BernoulliNB

def train_and_eval_coherent_ssn(Atrain, ytrain, Atest, ytest, K, V):

"""

A function which trains and tests an incoherent signal subnetwork

classifier with K signal edges and V signal nodes.

"""

ssn_mod = SignalSubgraph()

ssn_mod.fit_transform(Atrain, labels=ytrain-1, constraints=[int(K), int(V)]);

Dtrain = Atrain[ssn_mod.sigsub_[0], ssn_mod.sigsub_[1],:].T

classifier = BernoulliNB()

# fit the classifier using the vector of classes for each sample

classifier.fit(Dtrain, ytrain)

# compute testing data on the estimated signal subnetwork

Dtest = Atest[ssn_mod.sigsub_[0], ssn_mod.sigsub_[1],:].T

yhat_test = classifier.predict(Dtest)

# classifier accuracy is the fraction of predictions that are correct

return (np.mean(yhat_test == ytest), ssn_mod, classifier)
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Parameter selection for coherent signal subnetworks
We again turn to cross validation for parameter selection for coherent signal
subnetworks. In Algorithm 23, we addressed parameter selection for incoherent
signal subnetworks. We can use the same intuition to develop a method to pa-
rameter select for coherent signal subnetworks. In this case, we can simply add
an additional loop to our computation, where we also tune over the number of
signal nodes to include in the estimate.

from sklearn.model_selection import KFold

import pandas as pd

from tqdm import tqdm

kf = KFold(n_splits=20, shuffle=True, random_state=0)

xv_res = []

for l, (train_index, test_index) in tqdm(enumerate(kf.split(range(0, M)))):

A_train, A_test = Atrain[:,:,train_index], Atrain[:,:,test_index]

y_train, y_test = ytrain[train_index], ytrain[test_index]

nl = len(test_index)

for k in np.arange(2, n*(n-1), step=2):

for v in range(1, n+1):

try:

acc_kl, _, _ = train_and_eval_coherent_ssn(A_train, y_train, A_test, y_test,

k, v)

xv_res.append({"Fold": l, "k": k, "nl": nl, "v": v, "Accuracy": acc_kl})

except:

xv_res.append({"Fold": l, "k": k, "nl": nl, "v": v, "Accuracy": np.nan})

xv_data = pd.DataFrame(xv_res)

def weighted_avg(group):

acc = group[’Accuracy’]

nl = group[’nl’]

return (acc * nl).sum() / nl.sum()

xv_acc = xv_data.groupby(["k", "v"]).apply(weighted_avg).reset_index(name=’Accuracy’)

# convert the pandas dataframe (long format) to a data matrix (wide format)

df_hm = xv_acc.pivot(index="k", columns="v", values="Accuracy")

We made a slight augmentation to the code, including a try/except block.
The reason for this is that 20 signal edges is only possible with 5 signal nodes,
so for any number of signal nodes less than 5, we will not be able to find a
signal subnetwork with 20 signal edges. Figure 8.3.2(A) plots the accuracies as
a heatmap.

While many combinations produce the highest cross-validated accuracy, we
again opt for the simplest model in terms of the number of free parameters with
this accuracy to avoid overfitting. In this case, the simplest model which attains
the highest cross-validated accuracy has 1 signal node and 6 signal edges. When
we refit this model on the full training data, we get:

# the coherent signal subnetwork estimator, using the parameters from xv

ssn_est_coherent_xv = SignalSubgraph()
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Figure 8.3.2 (A) the cross-validated accuracy as a heatmap for a coherent SSN , as a
function of the number of signal nodes and edges, (B) the estimated signal
subnetwork from the training data with the “optimal” number of signal nodes and
signal edges.

ssn_est_coherent_xv.fit_transform(Atrain, labels=ytrain-1, constraints=[6, 1])

ssn_coherent_xv = np.zeros((n, n))

ssn_coherent_xv[ssn_est_coherent_xv.sigsub_] = 1

which is the signal subnetwork shown in Figure 8.3.2(B). The testing accuracy
on the held-out testing data can be computed as previously. Note that in this
example the incoherent signal subnetwork and the coherent signal subnetwork
perform similarly with cross-validation. We use a simpler example because esti-
mating signal subnetworks can be extremely time consuming when the number
of nodes is large. For networks that are larger in size with comparatively few sig-
nal nodes carrying most of the signal subnetwork, the difference in performance
can be greater, with coherent estimates having far better performance and gen-
erally far fewer parameters. This yields more generalizable models less subject
to overfitting to non-signal edges.
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9 Deep Learning Methods

Previous chapters of this book have focused on understanding and leveraging
network representations with well-developed theory, often focusing on linear rep-
resentations. In the case of the spectral embedding (Section 5.3), for instance,
we constructed a tabular array from a network and used traditional techniques
like K-means for community detection (Section 6.1). We learned how this rep-
resentation was derived from a RDPGn(X) random networks from Section 4.4,
and how it could be used as a conceptual basis to make explicit assumptions
about the network. Section 7.1, for instance, used the RDPGn(X) assumption
to compare two networks.

We now investigate newer techniques for creating representations that use
deep learning methods. These techniques become powerful in domains with vast
amounts of training data. For instance, Deepmind’s AlphaFold famously used a
graph neural network as part of its architecture by modeling the protein struc-
ture prediction problem as a spatial graph, where the amino acids in the protein
sequence are represented as nodes and their possible interactions as edges [1].
This was made possible by the Protein Data Bank, which contains hundreds of
thousands of carefully curated protein structural data generated using biochem-
ical methods over many years [2].

In this chapter:

1 Section 9.1 introduces Graph Neural Networks, or GNNs, a broad class of
techniques which use deep learning to investigate graph-valued data.

2 Section 9.2 explores diffusion-based methods, which use random walks on net-
works to develop representations.

In contrast to previous chapters, deep learning methods are often developed
through experimentation rather than by explicit theoretical deduction. However,
many of the conceptual steps we have taken for preceding models can be used to
understand the internal representations generated by GNNs, and random walks
are often explicitly used to create useful representations.

We begin our discussion by introducing the concept of a GNN through the case
study of a drug discovery problem, in which we learn molecule representations.
We then explore random walks using the familiar New York Bridge example from
Section 3.1.
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9.1 Graph neural networks

Co-authored with Jason Yim
We now move beyond spectral techniques to explore neural network ap-
proaches to creating and using network representations. This section ex-
plores graph neural networks (GNNs). GNNs extend traditional neural
network architectures to operate directly on graph-structured data. GNNs
exploit network topology to iteratively update node representations along
neural network layers. The final representations can be used to predict node
labels, network labels, edge existence, and more.

We cover:

1 Introducing the basic concepts and architecture of graph neural networks,
2 Examining how GNNs process and leverage network structure,
3 Exploring applications of GNNs in tasks such as node classification and

link prediction,
4 Comparing GNN performance to traditional network analysis methods,

and
5 Discussing the advantages and limitations of GNN approaches.

Neural networks are fundamentally representation learners. The middle
layers of a network can be thought of as simply preparing the data for
whatever the neural network is trying to do in its loss function. They are
particularly powerful for large-scale networks and when node or edge fea-
tures are available alongside topology.

We begin our discussion of graph neural networks through a drug discovery
example. We can think of molecules as networks: An atom can be thought of
as a node, and an atomic bond as an edge. Molecules in chemistry are also
often described through alphabetic formulas: the letters represent atoms, and
the subscripts represent the number of atoms in the molecule. For instance, the
formula for water, H2O, means that there are two hydrogen atoms and a single
oxygen.

A fundamental problem for many pharmaceutical and chemistry investigations
involves the analysis of molecules that might be useful for clinical purposes.
A clinically useful molecule is a molecule which has properties which, for one
reason or another, might make it beneficial for humans. For instance, people who
have had headaches have probably become familiar with the the pain-relieving
molecule C13H18O2, or Ibuprofen (Advil).

Many of the drugs that we are familiar with on an everyday basis have been
discovered totally by accident: for instance, the drug of penicillin [3], which is a
family of molecules having a core structure of C9H11N2O4S that are crucial for
their antibacterial properties.
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Figure 9.1.1 A SMILES string for the molecule C7H6N2, or Pyrrolo[1,2-c]pyrimidine.
In the 2d graph, angle locations represent carbon atoms; two parallel lines represent
double-bonded carbon atoms; and the two Ns represent nitrogens. Hydrogen atoms
are implicit in the structure.

Unfortunately, finding these “happy accident” molecules has become increas-
ingly infrequent. When a condition needing treatment is identified, pharmacol-
ogists face enormous hurdles for finding candidate treatment molecules. The
molecules must be:

1 non-toxic to humans,
2 an appropriate size,
3 be readily absorbed by humans, and
4 able to address the condition of interest.

Achieving all of these aims is difficult in terms of time, labor, and risk to
human participants in drug trials. Determining definitive, or at least suggestive,
evidence that the molecule will achieve any or all of these conditions before
running live human tests can save the company billions of dollars and can save
participants in drug trials unnecessary exposure to harm.

Running laboratory tests to screen these molecules is an expensive, time-
consuming, and skilled labor-intensive process: what are the companies left to
do?

Many drug companies utilize virtual screening methods in which computa-
tional methods are used to quickly search large libraries of molecules to filter
ones with the desirable properties. Success in virtual screening methods are de-
termined by the accuracy and speed of the computational approach. For instance,
molecular dynamics simulates the physical movement of each atom and particle,
but requires an intractable number of numerical calculations that makes it in-
feasible to use in practice. Instead, methods have been built around succinct 2D
representations of molecules, by compressing them into 1D Simplified Molecular
Input Line-Entry System (SMILES) [4; 5; 6] strings. These strings summarize
the structural relationships between different atoms through the chemical bonds
connecting them without any loss-of-information. SMILES strings are known as
fingerprints for the molecules, and are illustrated in Figure 9.1.1.

Using SMILES, practioners have built statistical models to estimate correla-
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Figure 9.1.2 (A) a molecular structure for water (H2O), (B) a network
representation of a water molecule, (C) the network as an adjacency matrix.

tions between SMILES and different molecular properties. Traditional methods
have relied on building hand-crafted features derived from SMILES and optimiz-
ing simplistic statistical models to predict molecular properties from fingerprints
of the molecules.

This too, however, is extremely labor intensive and requires direct human in-
tervention to decipher the features used for statistical learning. With some clever
manipulation, scientists have identified an ingenius approach to turn molecular
screening into a network learning problem.

Obtaining a network from a molecule
We described molecule as a group of atoms which are bonded together. We also
said that we could think of molecules as networks, where atoms are nodes and
bonds are edges.

Let’s see how this would work with the molecular formula of water, H2O. In
water, the oxygen atom sits in the middle, and there are hydrogens on each side.
The process of turning a molecule into a network is illustrated in Figure 9.1.2. The
structure of a molecule is identified through experimentation by chemists (Figure
9.1.2(A)). Figure 9.1.2(B) shows how the atoms (oxygen and two hydrogens)
become the nodes of the network, and the bonds between the oxygen atom and
the hydrogens become the edges. Figure 9.1.2(C) illustrates the network as an
adjacency matrix.

The SMILES string for water is just O. Given this string, the molecular struc-
ture, and consequently the network and the adjacency matrix, are fully deter-
mined. The inverse is also true: given a network and the other attributes of
the atomic structure, the fingerprint can be determined. This means that im-
plicitly, computational strategies which produce desirable representations of the
fingerprints produce a desirable representation for the network itself.

We will focus our attention on the first hurdle faced by pharmacologists. Pro-
vided a SMILES fingerprint for a molecule, we will use network machine learning
to determine whether the molecule is toxic or non-toxic.
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9.1.1 Preprocessing SMILES fingerprints

We will be using one of the datasets packaged in MoleculeNet [7]. PyTorch Ge-
ometric (PyG) [8; 9] provides a convenient module to access it. We first import
the module MoleculeNet then extract the ClinTox dataset [10]. The dataset may
take a minute to download. It has a total of 1478 molecules labeled with their
presence or absence of toxicity – determined from clinical trials. Since this is a
binary classification task, we observe there are two classes.

from torch_geometric.datasets import MoleculeNet

dataset = MoleculeNet(root=’data/clintox’, name=’ClinTox’)

print(f’Dataset: {dataset}\nNumber of molecules/graphs: {len(dataset)}\nNumber of

classes: {dataset.num_classes}’)

Let’s look at a few molecules to understand their network structure. Each
molecule has a known 3D structure and an associated SMILES string. We pick
out two arbitrary molecules from the dataset, and take a look first at their
SMILES string:

mols = dataset[26], dataset[83]

for m in mols:

print(m.smiles)

Next, we can draw the molecular structures for the two molecules:

from rdkit import Chem

from rdkit.Chem.Draw import rdMolDraw2D

from IPython.display import SVG

smiles = [Chem.MolFromSmiles(m.smiles) for m in mols]

d2d = rdMolDraw2D.MolDraw2DSVG(600,280,300,280)

d2d.drawOptions().addAtomIndices = True

d2d.DrawMolecules(smiles)

d2d.FinishDrawing()

SVG(d2d.GetDrawingText())

The molecules illustrated with the atom indices are plotted in Figure 9.1.3(A).
The networks each have a different number of nodes (atoms). Further, each
node has a number which uniquely identifies that node in the molecule. These
molecules have been analyzed with cheminformatics software, RDKit [11], and
also come with a set of node attributes for descriptive characteristics of that
node in the particular molecule. While these node attributes are not relevant for
our example, they have substantial real-world applications to optimize predictive
accuracy. Let’s take a look at the number of atoms and the number of atomic
features now:

for i,m in enumerate(mols):

print(f’Molecule {i+1}: Number of atoms={m.x.shape[0]}, Features per

atom={m.x.shape[1]}’)
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The edges of the network are the bonds between different pairs of atoms.
Using the SMILE fingerprint, we can also obtain information of the bonds of the
network. Let’s take a look at the indices of the bonds.

d2d = rdMolDraw2D.MolDraw2DSVG(600,280,300,280)

d2d.drawOptions().addBondIndices = True

d2d.DrawMolecules(smiles)

d2d.FinishDrawing()

SVG(d2d.GetDrawingText())

Especially for larger molecules, the adjacency matrices for molecular networks
tend to be extremely sparse (see Section 6.2). For a simple network, the adjacency
matrix has

(
n
2

)
= 1

2n(n − 1) possible edges. So, if we store the entire adjacency
matrix, we need to keep track of 1

2n(n− 1) entries.
In a sparse adjacency matrix, the total number of edges might be considerably

less than this. Since an edge is indexed by two nodes, if two times the number
of edges is less than

(
n
2

)
, we can save a lot of space by storing and operating on

the adjacency matrix using edgelists as in Section 6.2.2.
In Section 6.2.2, we discussed how to use scipy for for sparse matrices without

having to construct the adjacency matrix in its entirety. An equivalent construct
for graph neural networks are pytorch sparse arrays such as those we leverage
here. Sparse arrays in pytorch operate faster and more efficiently on sparse ma-
trices than non-sparse approaches.

To build an adjacency matrix that we can visualize using the traditional
heatmap, we need to first construct the adjacency matrix from the edgelist:

import numpy as np

_process = lambda x: [e[0] for e in np.split(x, 2)]

def adj_from_edgelist(molecule):

"""

A function that takes a molecule edgelist and produces an adjacency matrix.

"""

# the number of nodes is the number of atoms (rows of .x attribute)

n = molecule.x.shape[0]

# the adjacency matrix is n x n

A = np.zeros((n, n))

edgelist = m.edge_index.numpy()

# loop over the edges e_k, and for each edge, unpack the

# nodes that are incident it. for this pair of nodes,

# change the adjacency matrix entry to 1

for e_k, (i, j) in enumerate(zip(*_process(edgelist))):

A[i, j] = 1

return A

Now that we can produce adjacency matrices from sparse edgelists, we can
convert the molecules to adjacency matrices, and then plot them using heatmaps:

from graphbook_code import heatmap
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Figure 9.1.3 Example of two molecule adjacency matrices. Hydrogen atoms are not
considered nodes. Carbon atoms are denoted by angles in the structure. (A.I) the
first molecule. (A.II) the first molecule as an adjacency matrix. (B.I) the second
molecule. (B.II) the second molecule as an adjacency matrix.

for m_i, m in enumerate(mols):

A = adj_from_edgelist(m)

heatmap(A)

The molecules are shown with their adjacency matrices in Figure 9.1.3. Notice
that in the molecule shown in Figure 9.1.3(A.I), that an Oxygen atom (index 7)
is bonded to two Carbon atoms (the “points” of the hexagon are Carbon atoms),
which have indices 5 and 8 respectively. When we look at the adjacency matrix
in Figure 9.1.3(A.II), the row corresponding to atom index 7 shows that it is
connected to atom indices 5 and 8, as desired.
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Empirically, the first molecule is nontoxic, whereas the second is extremely
toxic. We turn to graph neural networks to learn this property.

9.1.2 Graph neural networks (GNNs)

As it turns out, using only the adjacency matrix, we can do a pretty good job
of determining whether a molecule is toxic or non-toxic. We will use a neural
network approach for this task. See [12] or [13] for a comprehensive reference.
Because the terminology can be confusing here, we will always use “network” to
refer to our adjacency matrix and “neural network” or an abbreviation thereof
(e.g., GNN) to refer to the algorithmic technique.

This task requires approaches different from we have covered in earlier chap-
ters. Previously, we assumed some knowledge of the structure of the data ahead
of time. This assumption allowed us to assume a sensible statistical model from
Section 4. We could then use this model for downstream statistical inference
tasks.

When dealing with large molecular networks, problems arise with this ap-
proach. It is often unclear which statistical models are appropriate, and identi-
fying the core features we want to capture for unseen molecules can be arduous,
time consuming, and require substantial domain expertise. Graph Neural Net-
works (GNNs) can often offer practical solutions in such a situation. A graph
neural network is just a neural network, but modified for use with graph (or
network)-valued data.

GNNs have desirable properties that can help us to overcome some of these
hurdles: they are universal approximators and they are efficient to optimize. They
also require comparatively few statistical assumptions. However, they can be slow
and difficult to train and are data-hungry compared to traditional approaches.

GNNs are universal approximators
In some cases, the features that determine a network’s classification label can be
straightforward and easily identifiable. For instance, a social network’s sparsity
might determine whether it represents a small, tight-knit community or a large
city.

However, in many cases, the features are not nearly so simple. In the case of
molecule classification, the features are not completely understood even by the
most pre-eminent experts in organic chemistry. This is true in many more fields
than pharmacology.

GNNs provide a framework for constructing universal approximators for network-
valued data. the idea behind a univeral approximator is that, whatever the re-
lationship between the data (the network) and the outcome of interest (in our
example, toxic or non-toxic) happens to be, a properly chosen GNN is always
capable of approximating the relationship [14], contingent on the amount and
quality of training data. This is extremely appealing in fields for which domain
expertise is less helpful and we have large quantities of training data.
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In our example, there are hundreds of thousands of molecules that have been
studied by pharmacologists for toxicity, so we have a substantial backlog of data
where we know ahead of time whether the molecule is toxic or not.

GNNs are easy and efficient to optimize
A plethora of software libraries have been built for neural network training and
optimization once we have a large volume of training data. Neural networks also
require access to Graphical Processing Units (GPUs), which are custom-built
for accelerating large matrix multiplications. GNNs are widely used in practice
because they can scale to very large and high-dimensional datasets due to the
tight coupling of engineering progress/technical advances in GPU performance
and mathematical theory.

Graph Convolutional Networks for drug discovery
For drug discovery, a pre-eminent technique for the construction of neural net-
works is to construct a graph convolutional network (GCN). This approach
searches for a latent (unknown) embedding for each node in a given molecule
network, and then we use the resulting node embeddings to identify a latent
embedding for the entire molecule. In this investigation, we will assume that
we have M total training networks and M ′ testing (validation) networks, where
each network m (a single molecule) has nm nodes in the network. Recall that
in this case, network refers to the data (here, individual molecules, consisting of
atoms and bonds), and GCN or GNN refers to the algorithm.

Unlike many of the multi-network examples we have studied so far, the num-
ber of nodes, nm, may not be constant across the networks: each molecule is
likely to be comprised of differing numbers of atoms. The graph convolutional
network procedure [15] overcomes this hurdle. The idea is to, for each node, ag-
gregate information from neighboring nodes. GCNs can therefore save memory
cost and focus on local features by analyzing the properties of nodes within a
neighborhood, rather than looking at all of the nodes in the network simultane-
ously. They then trickle this relational information from neighbors outwards in
the network. As the information flows deeper through the neural network across
sequential layers, each node is able to obtain and aggregate relational informa-
tion from nodes which are not neighbors. This process is repeated for each node
in the network in each pass. We begin with node features ~x(0)i , which in our case,
describe properties of the atoms that comprise our molecule.

We can write the aggregation step for layers k ≥ 1 for a node i as:

~a
(k)
i =

⊕
j∈N (i)

φ(k)
(
~x
(k−1)
j

)
,

where:

• ~x(k−1)j denotes node features for node j in layer (k − 1). The number of node
features (for a given node in the actual network) in a given layer corresponds
to the number of hidden channels in the GCN.
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Figure 9.1.4 The aggregation and propogation steps of a GCN, for a network with six
nodes.

•
⊕

denotes an aggregation function such as sum, mean, or max.
• φ(k) denotes a transformation of the features of the embedding from the pre-

ceding layer k − 1 of neighbor j to i.
• ~a(k)i denotes the relational information for a node i that it receives from its

neighbors N (i).

The aggregation step summarizes information from the node features at layer
k−1 of neighbors of the node i. These are then combined via a propagation step
to produce the hidden embedding x(k)i for a node i in layer k:

~x
(k)
i = θ(k)

(
~x
(k−1)
i ,~a

(k)
i

)
= σ

(
β
(k)
0 + β

(k)
1 ~x

(k−1)
i + β

(k)
2 ~a

(k)
i

)
,

where:

• β(k)
0 is an offset term.

• β(k)
1 and β(k)

2 are terms which indicate the extent to which the new embedding
for layer k of node i should reflect the previous embedding ~x(k−1)i versus the
relational information from neighbors of node i summarized in ~a(k)i .

• σ is a non-linear activation function.

In this case, the non-linear activation function is applied to a weighted sum of
the hidden embedding ~x(k−1)i for the node i at the previous layer k− 1 with the
aggregation of information from its neighbors at the previous layer k−1 via ~a(k)i .

Figure 9.1.4 illustrates the aggregation and the propogation steps of a GCN.
The network itself is illustrated with solid nodes and solid edges; the aggregation
and propogation steps (of the GCN) are illustrated with dashed nodes and dashed
edges. Directionality of information flow in the GCN is illustrated with arrows.
Note that the transformations φ(k) that denote aggregations from the neighbors
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j of a node i, and the manner in which the aggregations are combined with
preceding embeddings θ(k), are agnostic the specific node/neighbors i and j.
The dashed arrows are implicit operations that occur in the GCN.

We denote the parameter set for the GCN with the short-hand (θ, φ), which is
used to represent the set of possible weights and settings for the various functions
and transformations used across layers of the GCN. θ and φ are parametrized
functions for each layer; this short-hand should not suggest that these are specific
scalar parameters θ and φ for the GCN. Rather, we leave the notation as θ and φ
to denote that the parameters for these functions may vary depending on what
the user chooses.

9.1.3 Training GNNs

Training deep learning and optimization-focused algorithms is somewhat differ-
ent from other domains of machine learning. We first partition our dataset into
training and testing data. For our use-case, each data point is one of our M net-
works. Training occurs over many iterations through the shuffled training data,
called epochs. In each of the R epochs, the training data is partitioned into B
batches. Each batch is run through the neural network in a forward pass, which
produces a prediction. The prediction and the ground truth labels are then put
into a loss function, which is to be minimized. To adjust the neural network for
the next forward pass, the gradient of its parameters with respect to the loss is
calculated. The parameters are then adjusted according to that gradient using
an optimizer such that the loss is lower on the next forward pass.

The workflow for graph neural network training for molecule classification is
illustrated in Figure 9.1.5.

We split a dataset into training and testing sets below. We use pytorch’s
dataset and DataLoader objects, which make the process of loading, transform-
ing, shuffling, and splitting a dataset into batches easy.

import torch

# for notebook reproducibility

torch.manual_seed(12345)

dataset = dataset.shuffle()

train_dataset = dataset[:-150]

test_dataset = dataset[-150:]

print(f’Number of training networks: {len(train_dataset)}’)

print(f’Number of test networks: {len(test_dataset)}’)

Once we have the dataset parsed into training and testing sets, we define a
DataLoader which subsets into 64 molecule-sized batches. The testing DataLoader

remains unshuffled for reproducibility.

from torch_geometric.loader import DataLoader
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Figure 9.1.5 GNN training across epochs. Each epoch consists of all M training
molecules randomly reordered. The epoch is split into B batches, each of which have
size Mb.

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

A pytorch DataLoader can iterate through batches sequentially until it has
gone through all the data, at which point a new epoch begins. When the next
epoch begins, the train_loader data will be shuffled.

for step, data in enumerate(iter(train_loader)):

print(f’Step {step + 1}:’)

print(f’Number of networks in the current batch: {data.num_graphs}’)

print(data)

The forward pass
The forward pass begins on a single batch b, of which there are B total. We
assume that there are Mb molecules in total in batch b.

For a given network m, we begin by passing the network through the graph
convolutional layer, denoted by GCN (Network m), shown in Figure 9.1.6(A).
The GCN has parameters θb and φb, the specific choice of weights and transfor-
mations for the GCN that will be used for batch b. The graph convolutional layer
produces embedding vectors for each of the nm nodes. In this way, we end up with
an embedding matrix X(m), which has nm nodes and d latent dimensions. This



Deep Learning Methods 433

Figure 9.1.6 A molecule m has a predicted label computed, using a graph
convolutional layer, a readout layer, and a prediction layer.

is conceptually similar to the omnibus embedding in Section 5.5.4, but allows
greater flexibility in the characteristics of the embeddings. The caveat is that,
when the number of training samples are smaller, the regularization inherent to
the omnibus embedding can be advantageous to avoid overfitting.

Given the node embedding matrix X(m), we pass to a readout layer denoted
by Readout(X), Figure 9.1.6(B). This layer has parameters ρb, which indicate
how the nm separate node embeddings should be aggregated by the readout
algorithm. The readout layer produces a single embedding for the entire network,
an f -dimensional vector denoted ~r(m). In our case, the readout layer simply
averages the node embeddings.

Given the network embedding ~r(m), we are ready to make a prediction for our
network Predict

(
~r(m)

)
, Figure 9.1.6(C). The prediction function has parameters

βb, and in our simple binary example is a linear layer. This layer produces a
weighted sum of all f dimensions (with weights denoted by the parameter set
βb). If the weighted sum exceeds a particular value (the offset β0), the layer
predicts that the network is in class 1. Otherwise, it predicts that the network
is in class 0. It looks like this:

Predict
(
~r(m)

)
= 1


f∑
j=1

βjr
(m)
j > β0

 =

{
1, class 1

0, class 0

We can define this using torch as follows:

from torch import nn

from torch.nn import Linear

import torch.nn.functional as F

from torch_geometric.nn import GCNConv

from torch_geometric.nn import global_mean_pool

torch.manual_seed(12345)

class GCN(nn.Module):

def __init__(self, hidden_channels):

super(GCN, self).__init__()

self.conv1 = GCNConv(dataset.num_node_features, hidden_channels)

self.conv2 = GCNConv(hidden_channels, hidden_channels)

self.conv3 = GCNConv(hidden_channels, hidden_channels)
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Figure 9.1.7 A single pass through the graph neural network for the Mb molecules in
batch b.

self.lin = Linear(hidden_channels, dataset.num_classes, bias=False)

def forward(self, x, edge_index, batch):

# 1. Obtain node embeddings via convolutional layers

x = self.conv1(x, edge_index)

x = x.relu()

x = self.conv2(x, edge_index)

x = x.relu()

x = self.conv3(x, edge_index)

# 2. Readout layer to produce network embedding

x = global_mean_pool(x, batch) # [batch_size, hidden_channels]

# 3. Apply a prediction classifier to the network embedding

x = self.lin(x)

return x

model = GCN(hidden_channels=64)

print(model)

The forward pass is applied to all of the molecules in a single batch, as shown
in Figure 9.1.7(A). The pass is applied to all networks with the same parameters
(θb, φb, ρb, βb) for a given batch, as indicated by Figure 9.1.7(B). Once predictions
are made for all Mb molecules, the prediction loss is computed, which is a scalar
quantity that we seek to minimize. The prediction loss is denoted by Loss

(
~̂yb

)
,

where ~̂yb are the class predictions (toxic or non-toxic) for molecules in batch b.
Inherently, since the predictions used to compute the loss are all produced by the
particular parameters used for the forward pass (θb, φb, ρb, βb), the loss is also a
function of the parameters.
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The backward pass
The predictions (and consequently, the loss) produced for a given batch b are
inherently a function of the parameters we used in the forward pass W =

(θ, φ, ρ, β). In this context, we use the set W as a short-hand for all of the
parameters to the neural network (the convolutional layer, the readout layer,
and the prediction layer).

When the convolutional layer, the readout layer, and the prediction layers are
chosen using differentiable functions (meaning, we can compute the derivative
with respect to the parameters), we can use this differentiability in conjunction
with the particular loss function we employed (in this case, the cross-entropy
loss) to determine how the loss function behaves when we change the parameters
slightly. This is done by taking the derivative of the loss with respect to each
of the parameters. These are partial derivatives of the form ∂Loss

∂wi
, where wi

denotes a particular parameter from the parameter setW. The vector of all such
partial derivatives is the loss gradient with respect to the parameters, ∇WLoss.
In practice, neural network layer parameters are often organized as matrices.
In this case, the collection of partial derivatives is represented by the Jacobian
matrix, which contains the partial derivatives of the loss with respect to each
element of the parameter set W.

We use the loss gradient to make small updates to the parameter values via
gradient descent (similar to Figure 7.3.4), using an optimizer. When we combine
the use of random batches with gradient descent, the trained parameters behave
similarly to the parameters which would be obtained from looking at the entire
epoch.

Our new set of updated parameters is given by (θb+1, φb+1, ρb+1, βb+1).

Repeat for the entire epoch
After we complete a forward and backward pass, we repeat this process for each
batch until we get to the end of an epoch. This is illustrated in Figure 9.1.8(A).
When we get to the end of an epoch, we use the held out testing data to estimate
the testing accuracy with the parameters we obtain from the final backwards
pass. The testing data is fed through the neural network forwards, and then we
compute the testing accuracy, as illustrated in Figure 9.1.8(B).

Putting it all together
Now that we understand each piece individually, we are ready to look at what
the whole process looks like. The dataset is randomly reordered into R epochs,
and then each epoch is split into B batches. The parameters from the preceding
epoch (or, if this is the first epoch, just initialization parameters) begin the first
forward pass, and then forwards and backwards passes are alternated with the
parameters updated accordingly after each batch is passed through. At the end
of the epoch, the resulting parameters Figure 9.1.9(C) are analyzed with the
held-out testing data are used for validation. The parameters from the epoch
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Figure 9.1.8 (A) We repeat forward and backwards passes over each batch within the
epoch, starting with parameters (θi, φi, ρi, βi), and ultimately ending up with
parameters (θi+B , φi+B , ρi+B , βi+B). (B) The parameters from the final batch are
assessed on the held-out testing set.

with the best performance on the testing data are ultimately returned as the
trained model parameters.

model = GCN(hidden_channels=64)

optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

criterion = torch.nn.CrossEntropyLoss()

def train():

model.train()

for data in train_loader: # Iterate in batches over the training dataset.

out = model(data.x.float(), data.edge_index, data.batch) # Perform a single forward

pass.

# Handle a pyg bug where last element in batch may be all zeros and excluded in the

model output.

# https://github.com/pyg-team/pytorch_geometric/issues/1813

num_batch = out.shape[0]

loss = criterion(out, data.y[:num_batch, 0].long()) # Compute the loss.

loss.backward() # Derive gradients.

optimizer.step() # Update parameters based on gradients.

optimizer.zero_grad() # Clear gradients.
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Figure 9.1.9 The training and evaluation procedure for a GNN. (A) The training data
is shuffled into R epochs. (B) Each epoch is split into B batches, and then we iterate
over the batches. (C) At the end of an epoch, we use the parameters and the GNN
with the held-out testing data to assess performance.

def test(loader):

model.eval()

correct = 0

for data in loader: # Iterate in batches over the training/test dataset.

out = model(data.x.float(), data.edge_index, data.batch)

pred = out.argmax(dim=1) # Use the class with highest probability.

num_batch = pred.shape[0]

correct += int((pred == data.y[:num_batch, 0]).sum()) # Check against

ground-truth labels.

return correct / len(loader.dataset) # Derive ratio of correct predictions.

R = 10 # number of epochs

for epoch in range(0, R):

train()

train_acc = test(train_loader)

test_acc = test(test_loader)

print(f’Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}’)

To learn more about GNNs, we recommend a dedicated textbook on the topic,
such as [16; 17].
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9.2 Random walks and diffusion-based methods

This section introduces an alternative approach to directly learn network
representations: analyzing random walks on networks. A random walk is
a stochastic process, where we start at a node and taking random steps
to neighboring nodes. The behavior of these walks is determined by the
network’s topology, including nodes, edges, and potentially edge weights
if the network is weighted. Random walk techniques build on the basic
network properties and descriptive statistics introduced in Sections 3.2 and
3.1 to provide a dynamic view of network structure.

In this section, we will:

1 Introduce the concept of random walks on networks,
2 Explore how random walks can generate training data for graph neural

networks models,
3 Demonstrate how neural networks can analyze random walks to uncover

network properties, and
4 Discuss techniques for tuning random walks to capture specific network

characteristics.

Random walk methods offer a complementary approach to spectral tech-
niques. They are particularly useful for capturing local network structure
and can be effective in tasks such as node classification and link prediction.
Random walk methods also naturally allow the model to learn nonlinear
relationships between nodes in the graph. However, random walk methods
are inherently stochastic, require hyperparameter tuning, and are built on
less solid theoretical foundations.

9.2.1 A simplified first-order random walk on a network

Consider a simplified approach for a first-order random walk on the New York
Bridge network example from Section 3.1. We will define the nodes and edges of
the network so that the nodes are the five boroughs (Staten Island SI, Brooklyn
BK, Queens Q, the Bronx BX, and Manhattan MH). The edges (i, j) exist if one
can travel from borough i to borough j along a bridge.

Our example data is:

import numpy as np

# define the node names

node_names = np.array(["SI", "MH", "BK", "Q", "BX"])

# define the adjacency matrix

A = np.array([[0,0,1,0,0], # Staten Island neighbors Brooklyn

[0,0,1,1,1], # Manhattan Neighbors all but Staten Island
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[1,1,0,1,0], # Brooklyn neighbors all but Bronx

[0,1,1,0,1], # Queens neighbors all but Staten Island

[0,1,0,1,0]]) # Bronx neighbors Manhattan and Queens

Figure 3.1.2 shows the network.
Suppose we are in a Manhattan conference, and we decide to randomly explore

the city. When we are in some borough i, we will determine the next borough
to explore with random chance. To define a first-order random walk, we first
introduce the Markov chain and the Markov property.

Markov chains and the Markov property
A finite-space markov chain is a model of a random system in which we have a
finite sequence of possible states which can occur (for example, the boroughs we
will visit on a day t) and the probability of the next state depends only on our
current state. We only need to think about finite-space Markov chains, because
networks have a finite collection of possible states (the nodes being visited). We
represent our Markov chain by the sequence s0, s1, s2, ..., where each st takes the
value of one of the n total nodes in the network.

In our definition of the finite-space markov chain, we require that the proba-
bility of each event depends only on the previous state. This is called the markov
property. For example, if we were in Manhattan at time t− 1 (st−1 = vMH) and
in Brooklyn at time t (st = vBK), the next step in the Markov chain st+1 would
not depend on the fact that we already saw Manhattan.

First-order random walks on a network as a markov chain
To explore markov chains, we define a first-order random walk on our New York
Boroughs. The current borough, i, has di possible neighboring boroughs, where
di is the degree of node i. We visit one of the other nodes in the network as
follows. If an edge exists from borough i to borough j, we will visit borough
j with probability 1

di
. We will visit the neighbors of each borough at random,

depending only on whether we can get to the next borough along an edge of the
network. This is called a first-order random walk because we ignore everything
about the path we have taken to get to our current borough to date, except for
the fact that we are at that borough now. If the node is not a neighbor of our
current borough, we will visit it with probability 0.

Formally, if we are in node i at time t (that is, st = i), the probability of going
to another node j is defined as:

pij =

{
1
di
, edge (i, j) exists

0, edge (i, j) does not exist
(9.1)

These probabilities, called the transition probability from node i to node j, are
always the same and have nothing to do with which nodes we have visited yet.
To avoid confusion, we use the notation pij instead of p(t+1)

ij .
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Figure 9.2.1 (A) the New York bridge network, and (B) the transition probability
matrix for the network.

Since the transition probabilities are unchanging in time, they are often or-
ganized into an n × n matrix called the transition probability matrix P with
entries pij defined as above. In this case, the transition probability matrix can
be arranged like this:

# compute the degree of each node

di = A.sum(axis=0)

# the probability matrix is the adjacency divided by

# degree of the starting node

P = (A / di).T

Figure 9.2.1(B) shows a heatmap of the transition probability matrix, with
the corresponding layout plot for the network in Figure 9.2.1(A). Notice that if
we are in Staten Island, there is only one borough we can go from here, so with
probability 1, we will visit its only neighbor: Brooklyn. If we are in Manhattan,
we could go to any of its three neighbors (Brooklyn, Queens, or Bronx), with
equal probability 1

3 . This continues for each node in the network until we have
successfully generated the transition probability matrix P . Since the transition
probability entries pij are normalized only by the degree di of the node i, the
transition probability matrix is not necessarily symmetric, even if the network is
undirected (and has a symmetric adjacency matrix). See [18] for more informa-
tion on the properties of transition probability matrices and Markov chains.

We use the transition probability matrix to generate a random walk on the
New York City boroughs. We start our random walk through the city in Manhat-
tan, such that s0 = vMH(Figure 9.2.2(A)). Next, we visit either Brooklyn, the
Bronx, or Queens with probability 1

3 , and Staten Island with probability 0. The
nodes with nonzero transition probabilities are illustrated in dark gray, and are
connected to MH via edges, shown in dark black. Staten Island is inaccessible
directly from MH, and is in white. The corresponding transition probabilities for
each of the nodes in the network are highlighted in Figure 9.2.2(B).

We then choose the next node using the probability vector of the next step in
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Figure 9.2.2 (A) The possible next nodes that can be accessed from MH, (B) their
corresponding probabilities, (C) the bias vectors for a biased second-order random
walk.

the random walk given the current step in the transition probability matrix P .
We denote this probability vector with ~pi.

Notice that this is just the entries of the ith row of the transition probability
matrix, which can be calculated using the relationship:

~pi = P>~x(i)

where ~x(i) is the vector which has a value of 0 for all entries except for entry
i, where it has a value of 1. This pulls out the ith row of P , because every
multiplication except for those against the ith column of P> will be 0.

We can pick the next node easily by just using numpy:

x0 = np.array([0,1,0,0,0]) # x vector indicating we start at MH

ps0 = P.T @ x0 # p vector for timestep 1 starting at node MH at time 0

# choose the next node using the probability vector we calculated

next_node = np.random.choice(range(0, len(node_names)), p=ps0)

print(f"Next node: {node_names[next_node]:s}")

This gives us a realization of the new node s1, conditional on the starting node
being s0 = vMH . We can generate a T -step first-order random walk along the
network G by repeating this approach, as explained in Algorithm 25.

9.2.2 Markov chains, random walks, and embedding networks

In the opening of Section 9.2, we said we were going to cover how to use a random
walk to embed our network. To this end, we introduce a slight variation of the
random walk called the second-order biased random walk.

Second-order biased random walk
In our first-order random walk, it is possible to walk in circles. For example, we
could explore from Manhattan to Brooklyn, and then to Staten Island, back to
Brooklyn, back to Staten Island, and so forth. This is possible because of the
Markov property: we ignored the previous places we had been when making the
decision for where to go from our current borough.
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Algorithm 25: First order random walk on a network
Data: A the adjacency matrix for an n-node network.

s0 the index of the node from which the random walk will begin.
T the number of steps to take in the random walk.

Result: ~s = (s0, s1, . . . , sT ) is a length T + 1 vector, defining the nodes of
the random walk on the network.

1 Construct the degree matrix for the network, D, and let P be defined as
described in Equation (9.1).

2 Initialize ~x(s0) to be the length n vector where x(s0)s0 = 1, and 0 otherwise.
3 for t in 1 : T do
4 Construct a vector ~pst−1

= P>~x(st−1).
5 Obtain a n-sided die, where the probability of landing on side j is

pst−1j .
6 Roll the die, and let st be the side that the die lands on.
7 Let ~x(st) be the vector where x(st)st = 1, and 0 otherwise.
8 end
9 return ~s.

If we are tourists trying to explore New York, we will want to get a better
sense of all of the city, favoring the boroughs we haven’t visited recently. In the
second-order biased random walk, we introduce the idea of the return and in-out
parameters, p and q, respectively.

The in-out and return parameters
The steps in our random walk, {s0, s1, ..., st−1, st, ...}, were sequences of random
variables which took on values of nodes in the network. Assume that we have
a random walk such that we know our previous state, st−1 = st−1, and we are
currently at node i, st = i.

The in-out parameter q indicates a bias of 1
q that we will go to some node j

that is disconnected from the previous node st−1.
If q > 1, then 1

q will be very small, and we will be biased against visiting nodes
that are not connected to the previous node we visited (we “stay in” with nodes
connected to those we just visited). If q < 1, then 1

q will be big, and we will be
biased towards visiting nodes which are not connected to the previous node we
visited (we “move out”). This can be understood in terms of breadth-first and
depth-first searches, as explained in Concept 9.2.1.

The return parameter p indicates a bias of 1
p that we will go back to the

previous node st−1. If p is large, 1
p will be small, and we will be biased against

visiting the previous node. If p is small, then 1
p will be big, and we will be biased

towards visiting the previous node. In Concept 9.2.2, we explain how the return
parameter can yield different exploratory strategies about particular nodes in
the network.
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Concept 9.2.1 The in-out parameter and network searches

A random walk gives us an approach to “search” through the network, iterating
over the nodes. We can understand this trade off in terms of a homophilic net-
work, with higher densities of within-community connections than between-
community connections, shown in Figure 9.2.3, where we have a small network
with three communities. For each of the two walks, we start at location s0.
The steps of the walk are annotated in sequential order.
A breadth-first search (BFS) tends to favor walks that explore local nodes
with high interconnectedness, and prioritizes visiting all of the nodes in a
community before moving on to new communities. When q > 1, the search
is more BFS-like; we will tend to prioritize walking over nodes which are
inter-connected with nodes we have recently visited, and our random walks
will tend to more fully explore a single community before moving to new
communities. In Figure 9.2.3(A), we illustrate a walk over the nodes where
q > 1. For instance, after s3, we would be biased to take a step towards the
top black node, which is also connected to the node from s2 because q < 1.
A depth-first search (DFS) is a search strategy that tends to favor exploring
novel regions of the network, and in so doing, prioritizing exploring all of
the communities at a shallow depth over visiting all of the nodes within a
community. In Figure 9.2.3(B), we illustrate a walk over the nodes where
q < 1. After s3, we are biased against taking a step to the unexplored top
black node, and instead make a step towards the white node at s4. because
it is not connected to the node from s2, as q > 1.

Concept 9.2.2 The return parameter and neighborhood exploration

The return parameter of a second-order biased random walk directly ties into
our ability to explore the local neighborhood about particularly intercon-
nected nodes. A neighborhood of width ε about a node i are the collection of
nodes that i is connected to with a shortest path of length ε. The concept of
the shortest path can be reviewed in Section 3.2.3.
When the return parameter is low (p < 1), we will tend to favor walks where
we return back to nodes that we have just visited at the previous step. This
gives us a greater chance to explore the local neighborhood of width 1 about
particular nodes. For instance, Figure 9.2.3(A) shows an example of a walk
with a high return parameter. Notice that from s1 to s4, we are able to visit
all of the local neighborhood of the left-most node in the black community,
due to the fact that we routinely return back to this node.
When the return parameter is high (p > 1), we will tend to favor walks that
do not regularly return back to nodes, as in Figure 9.2.3(B). Instead, we tend
to favor more exploratory steps towards nodes we have not recently visited.
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Figure 9.2.3 (A) a breadth-first, local neighborhood sampling walk, (B) a depth-first,
moderate exploration walk.

If a node satisfies neither of these conditions, the bias factor is just left at 1.
Together, these relationships are summarized with the second-order bias factors
αij(p, q, st−1) starting at node st = i and proceeding to node j with parameters
p and q for the next step t+ 1 given that we just left state st−1 as:

αij(p, q, st−1) =


1
p , st−1 = j

1, st−1 6= j and the edge (j, st−1) exists
1
q , st−1 6= j and no edge (j, st−1) exists

(9.2)

The corresponding second-order bias vector is ~αi(p, q, st−1), which is a vector of
each of the bias factors for all of the other n nodes in the network. These are
called second-order because they depend on the preceding node, st−1, as well as
the current node i.

Figure 9.2.2(A) shows the bias vectors for a biased second-order random walk.
The current node is Manhattan (st = vMH) and is shown in black, and the
previous node was Brooklyn (st−1 = vBK). We just visited node BK, so the bias
factor will be 1

p . The node for Bronx does not have an edge back to Brooklyn,
so taking it gets us “out”, and the bias factor will be 1

q . The nodes Queens,
Manhattan, and Staten Island all have edges to Brooklyn, so the bias is 1.

We bias against returning with a large return parameter p = 5, and a small
in-out parameter q = 1

2 ) like this:

p = 5 # return parameter

q = 1/2 # in-out parameter

bias_vector = np.ones(len(node_names))

bias_vector[node_names == "BX"] = 1/q

bias_vector[node_names == "BK"] = 1/p

The resulting bias vector is shown in Figure 9.2.4(A).
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Figure 9.2.4 With with p = 5 and q = 1
2
for n = 5 where st =MH and st−1 = BK,

(A) the bias vector, (B) the second order biased transition factors, (C) the first order
transition probabilities, and (D) the second-order biased transition probabilities.

Adjusting the transition probabilities with the bias vector
In our second order random walk, instead of the transition probabilities being a
function only of the current state st, they are also a function of the preceding
state st−1. This means that our transition probability matrix will look different
based on which node we just came from. The transition probabilities will be
defined using the notation pij(p, q, st−1), where st−1 is the preceding node, i is
the current node, j is any other node in the network, and p and q are the return
and in-out parameters.

We first define the second-order biased transition factors:

βij(p, q, st−1) = αij(p, q, st−1)pij (9.3)

where pij are the first-order markov transition probabilities. The biased tran-
sition factor combine the bias factor with the transition probability from the
first-order markov chain.

We up or down-weight (or don’t change it at all, if the bias factor is 1) the
transition probability pij based on the bias factor αij(p, q, st−1). These are no
longer probabilities, because starting at a node i, we might end up with the
bias-adjusted transition factors no longer summing to one because we did not
require anything about how αij(p, q, st−1) behaved across all possible nodes j.

We now use the biased transition factors to compute the second-order biased
transition probabilities. These are normalizations of the bias transition factors
where we normalize to make sure that they all sum up to one (and hence, produce
a valid transition probability from node i outwards):

pij(p, q, st−1) =
βij(p, q, st−1)∑n

j′=1 βij′(p, q, st−1)
(9.4)

In the denominator, we normalize the biased transition factor by the sum of
all the other biased transition factors from node i to any other nodes j′ in the
network.

Next, we show how this computation works to update the transition probabil-
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ity vector from the Manhattan node to node j given a previous node of Brooklyn.
We start with the first-order transition probability vector ~pi:

xt = [0, 1, 0, 0, 0] # starting vector at MH

pst = P.T @ xt # probability vector is Pt*x

illustrated in Figure 9.2.4(A). The next step is to compute the second-order
biased transition factors:

bias_factors = pst*bias_vector

Which is shown in Figure 9.2.4(B). And finally, we normalize the bias-adjusted
transition factors to obtain the second-order biased transition probabilities:

biased_pst = bias_factors/bias_factors.sum()

We compare the first-order transition probabilities to the second-order biased
transition probabilities in Figure 9.2.4(C) and 9.2.4(D), respectively. As we can
see, our tendency to return to Brooklyn (since we were just there in the previous
step, st−1 = vBK) has decreased from the first-order transition probability to
the second-order biased transition probability, due to the fact that the return
parameter is big (p = 5). Further, our tendency to move out to Bronx (since
Bronx has no edges to Brooklyn) has increased from the first-order transition
probability to the second-order biased transition probability, due to the fact
that the in-out parameter is small (q = 0.2). The transition probability for the
remaining node with a bias of 1, Queens, is less affected from the first-order to
the second-order biased transition probability.

We use the second-order biased transition probabilities to decide where to go
next, as we did before:

# choose the next node using the second-order biased transition probability

next_node = np.random.choice(range(0, len(node_names)), p=biased_pst)

print(f"Next node: {node_names[next_node]:s}")

The procedure for generating a second-order biased random walk is described
in Algorithm 26. We assume T > 1 in the algorithm as if T = 1, the second-order
biased random walk would be a first-order random walk as in Algorithm 25.
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Algorithm 26: Second-order biased random walk
Data: A the adjacency matrix for an n-node network.

s0 the index of the node from which the random walk will begin.
T the number of steps to take in the random walk, where T > 1.
q the in-out parameter.
p the return parameter.

Result: ~s = (s0, s1, . . . , sT ) is a length T + 1 vector, defining the nodes of
the random walk on the network.

1 Construct the degree matrix for the network, D, and let P be defined as
described in Equation (9.1).

2 Perform a first-order random walk from s0 to s1, using the procedure in
Algorithm 25 with T = 1, to obtain the first-order random walk (s0, s1).

3 Initialize ~x(s1) to be the length n vector where x(s1)s1 = 1, and 0 otherwise.
4 for t in 2 : T do
5 Compute the bias vector ~αst−1(p, q, st−2), using the equation

described in Equation (9.2).
6 Compute the first order transition probability vector,

~pst−1
= P>~x(st−1).

7 Compute the second-order bias factor vector ~βst−1
(p, q, st−2), using

Equation (9.3) with the transition probability vector ~pst−1
.

8 Normalize the second-order bias factors βst−1j(p, q, st−2) for each node
j in the network, using Equation (9.4) to obtain the second-order
biased transition probabilities pst−1j(p, q, st−2).

9 Obtain a n-sided die, where the probability of landing on side j is
pst−1j(p, q, st−2).

10 Roll the die, and let st be the side that the die lands on.
11 Let ~x(st) be the length n vector where x(st)st = 1, and 0 otherwise.
12 end
13 return ~s.

9.2.3 Embedding with the node2vec algorithm

Now that we know about second-order biased random walks, we can leverage
random walks to produce structured embeddings.

word2vec is a technique developed in 2013 by a team of researchers at Google
led by Tomas Mikolov [19] [20]. It takes text along with a desired number of
embedding dimensions d, and embeds every possible word in the text into d

dimensions such that words which tend to be used in similar contexts or have
similar meaning are closer together. Thus word2vec can be thought of as a pre-
processing step to turn the collection of words into d-dimensional representations.
This embedding can then be used for many problems using different downstream
algorithms. node2vec [21] takes word2vec and applies it to nodes instead of words.
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For each node in our network, we generate a second-order biased random walk
with parameters (p, q) of length T starting at that node. This gives us a collection
of random walks with disparate starting nodes. We repeat this procedure r times
for each starting node to give us a set of rn random walks of length T .

Next, we “pretend” that node indices are words, and we feed the collections
of random walks into the word2vec algorithm as our text along with the desired
number of embedding dimensions d. We now explore how word2vec works.

One-hot encoding the nodes
The first step is to convert each of the n nodes in the network into vectors. We
can do this with one-hot encoding: For a given node i, we can one-hot encode
the node with the vector ~x(i), where x(i)i = 1, and 0 otherwise.

The Skip-Gram Algorithm
We next input our one-hot encodings to the skip-gram algorithm, which word2vec

uses to implicitly obtain node embeddings. Skip-grams use neural networks,
which adds a level of ambiguity for our nomenclature. To avoid confusion, when
referring to the neural network itself, we will explicitly call it a “neural network”
or “NN”. When referring to the network that we want to embed, we will refer to
it as just the “network”.

The skip-gram algorithm seeks to achieve a solution for the following problem:
given a one-hot encoding of a node i in the network, identify the probability that
at a “nearby” position in the corpus of random walks is another node j, for each
of the n nodes in the network.

Sliding windows to generate training/testing samples
To estimate the probability that at a “nearby” position in the set of random
walks is another node j, for each of the n nodes in the network, we generate
training and testing data using a sliding window with a fixed width ω.

In Figure 9.2.5(A), we look at the process of sliding a window over a random
walk t of width ω = 2. The sliding window is constructed about a center node,
illustrated in white. The context nodes, illustrated in gray, are what we want the
model to predict when given the center node.

Figure 9.2.5(B) shows the center and context nodes that will form the training
set for our NN. In this case, the center node’s one-hot encoding ~x(i) will be
the input to the NN, and the context node’s one-hot encoding ~x(j) will be the
expected output for the NN. Together, these form a sample

(
~x(i), ~x(j)

)
.

As in Section 9.1, we split all of these samples into a training and a testing set,
and we randomly reorder the training set into R epochs, each of which contain
every training sample in a random order (See Figure 9.1.5).

Defining the learning problem
For our learning problem, we want to learn the context given the center node.
For each training sample, we use the center of the sliding window ~x(i) to produce
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Figure 9.2.5 (A) sliding windows moving over a generated random walk, (B) training
sample pairs which are generated from the window.

estimated probability vectors ~̂p(i) that are n-dimensional, with a single entry for
each possible node in the network.

If our procedure is successful, the probabilities of context nodes from our
training samples about a given center node will be higher than the probabilities
of non-context nodes about a given center node. For our cost function, we’ll
minimize the cross-entropy loss between the context nodes from the training
samples and the predictions produced by the NN. We denote this by L(θ), for
the parameters θ for our NN.

L(θ) = −
N∑
i=1

〈~y(i), log(~̂p(i))〉

In the equation above, N is the number of training samples, ~y(i) is the context
for the ith sample (usually this is a one-hot vector representing the actual context
node), and ~̂p(i) is the estimated probability vector output by the neural network
for the center node of the ith sample. The log function applies element-wise to
the vector ~̂p(i). The summand can be written:

−〈~y(i), log(~̂p(i))〉 = −
N∑
j′=1

y
(i)
j′ log(p̂

(i)
j′ ).

For non-context nodes j′, y(i)j′ = 0, so only the predicted probability of the con-

text node contributes to this sum. For the context node j, y(i)j = 1. A higher
probability p̂(i)j for the context node results in log(p̂

(i)
j ) closer to zero, yielding a
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Figure 9.2.6 (A) the input to the network, (B) the hidden layer with d hidden NN
nodes, (C) the output layer.

smaller positive value for −〈~y(i), log(~̂p(i))〉 (less loss). Conversely, a lower prob-
ability p̂(i)j for the context node results in a more negative log(p̂

(i)
j ), yielding a

larger positive value for −〈~y(i), log(~̂p(i))〉 (more loss).
The cost function L(θ) sums the cross-entropy loss over all training samples,

and the goal of learning is to adjust the parameters θ to minimize this sum.

Architecture of the network
The network architecture for the skip-gram model is shown in Figure 9.2.6. Figure
9.2.6(A) is the input, which is the one-hot encoding for a center node of a given
window in a random walk, which we will denote by i. In the Figure, we illustrate
the one-hot encoding for node 1 in the network. For each possible center node i in
the network, a set of weights w(i)

u connects the node i to hidden layer u, for each
of the d hidden layers in the network. The number of hidden nodes is the number
of “embedding dimensions” for word2vec. This is illustrated in Figure 9.2.6(B).
For each node, this gives us an associated d-dimensional vector of weights:

~w(i) =
[
w

(i)
1 . . . w

(i)
d

]>
Where d is the number of nodes in the hidden layer.

These weights are captured in the weight matrix W , which has a single row
for each possible node in the network:

W =

` ~w(1)> a
...

` ~w(n)> a


Pre-multiplying the one-hot encoding vector ~x(i) by the transpose of this

weight matrix W , notice that:

W>~x(i) =

n∑
j=1

x
(i)
j ~w(j),

= ~w(i),
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because x(i)j is 0 for any j 6= i and 1 exactly where j = i.
The idea here is that the weights connecting the input and hidden layers define

a latent representation of the node i, which is the vector ~w(i).
Finally, the output layer has n nodes, one for each node in the network, il-

lustrated in Figure 9.2.6(C). The set of output weights v(j)u connect the hidden
node u to the output node j. With the hidden layers as the rows and the outputs
as the columns, this produces a d×n matrix V for us, with columns ~v(j) for each
node in the network. The probability that a node i has a node j at least ω close
(the window width) is:

p
(i)
j = σ

(
V > ~w(i)

)
j

=
exp

(
~v(j)> ~w(i)

)∑n
j′=1 exp

(
~v(j′)> ~w(i)

) . (9.5)

Notice that the exponential function exp(·) can only have positive values for
finite inputs, regardless of the product between ~v(j) and ~w(i).Therefore, the nu-
merator of the above equation indicates that the weights ~w(i) and ~v(j) convey a
level of similarity between nodes i and j, in that when the value is high, they
tend to be within an ω-width window of one another.

Finally, we normalize this quantity by looking at the other nodes which node i
could have been close to in the random walk. This function σ(·) is known as the
softmax activation function [22], commonly used in the output layer for neural
networks which predict probabilities of sets of different outcomes. Here, we have
n possible outcomes that we are predicting (whether a given node j is a context
node for center node i, where nodes j range from 1 to n).

The quantity σ
(
~w(i)>V

)
j
can be thought of as an estimate of the probability

of the context being node j given that node i is the center node, and is denoted by
p
(i)
j . The vector ~p(i) is a length n vector, whose entries p(i)j denote the probability

of node j being contexts for center node i:

~p(i) =
[
p
(i)
1 . . . p

(i)
n

]>
.

In total, the parameters θ for our NN are the two weight matrices, denoted by
the set {W,V }.

Training the network
As in Section 9.1, we split the samples produced by Figure 9.2.5(B) into training
and testing sets, reorder the elements of the training set into epochs and then
split the epochs into B batches.

For a given parameter set θ = {W,V }, we feed a batch of training samples
through the network one at a time, as indicated in Figure 9.2.7. The procedure
is below:

1 Compute the one-hot encoding of center node i, as ~x(i).
2 Obtain the ith row of the weight matrix W , by taking ~w(i) = W>~x(i).



452 Deep Learning Methods

Figure 9.2.7 A forwards pass through a skip-gram network for a single training
example, with a center node i and a context node j

.

3 Predict probabilities for each possible output node j being a context node for
i, with p(i)j = σ

(
V > ~w(i)

)
j
, according to Equation (9.5).

This procedure gives us a probability vector ~p(i). We repeat this process across
an entire batch.

Now, we need the gradients of the loss function L(θ) with respect to the weight
matrices W and V . This quantity can be written as ∇W,V L(W,V ), which has
entries of the form ∂L(W,V )

∂wik
or ∂L(W,V )

∂vkj
for each node i and j, and each embedding

dimension k. As we saw in Figure 7.3.4, these gradients indicate how the loss
L(W,V ) changes when we alter the matrix parameters W and V of our NN for
each entry. We make a backwards pass using gradient descent to update our
weight matrices to form W ′ and V ′, as in Figure 9.1.8. We repeat this procedure
for all batches in our epoch.

When we finish off the epoch, we compute the cross-entropy loss on the held-
out testing samples. We repeat this process over and over again for each epoch,
until we reach our stopping criterion (which is typically convergence of the cross-
entropy loss on the held-out testing samples).

Obtaining an embedding from the skip-gram model
After training, we take the weight matrix W , which has n rows and d columns,
and use each row ~w(i) as the embedding for node i. Nodes which tend to be along
random walks together tend to end up closer in the embedding space, and nodes
which do not tend to be along random walks together tend to end up further in
the embedding space.

Conceptually, if two nodes tend to fall along similar positions in random walks,
it would be desirable if they have similar predicted context nodes, which were
computed from ~p(i) = σ

(
V ~w(i)

)
for a given node i. This is because if, say, node

2 tends to fall in a similar context to node 1, and node 3 tends to occur in a
similar context to node 2, it is quite likely that node 3 and node 1 also fall into
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Concept 9.2.3 using NNs and GNNs to obtain latent embeddings

This section illustrates a use-case for neural networks. As we discussed in
Section 9.1, neural networks and GNNs applied to network data that are
structured typically perform an “embedding” step of some form, whether it is
explicitly or implicitly incorporated into the architecture.
To obtain a latent embedding, we can simply “remove” sets of layers of the
NN, and learn about the network using the latent representation learned in
the preceding layers. In this section, we illustrate that by just ignoring the
output softmax layer, we can obtain the node2vec embedding of the network.
In some sense, these successive layers existed solely so that the preceding
layers (the weight matrix W ) would be part of a sensible learning task.

similar contexts. This is due to the fact that context, in this case, was enforced
using a window of fixed width ω, which means that nodes within a window of
one another will necessarily have a subset of nodes falling between the two that
are in each of their contexts. Since V is fixed for any given center node i, the
only way that this can be the case is if the word embeddings ~w(i) are similar,
which satisfies our original aim.

Using node2vec with network data
To illustrate the utility of node2vec, we will construct an example that is a little
bit different from what we are used to. We will use a 4-community SBM , where
the block matrix has both affinity and core-periphery structure, as described in
Section 4.5. The idea here is that there are two “communities” of nodes which
have higher within-community probabilities than between-community probabili-
ties, and within each community there are “sub-communities” which have higher
average node degrees (the core) and lower average node degrees (the periphery):

from graphbook_code import dcsbm

nk = 100 # 100 nodes per community

zs = np.repeat([1, 2], nk)

B = np.array([[0.6, 0.3], [0.3, 0.6]])

theta = b = np.repeat([1, .2, 1, .2], nk // 2)

deg_map = {1: "Core", 0.2: "Per."}

zs_deg = [f"{deg_map[theta[i]]:s}" for i in range(len(theta))]

zs_aug = [f"{z:d}, {deg:s}" for z, deg in zip(zs, zs_deg)]

A, P = dcsbm(zs, theta, B, return_prob=True)

We show the probability matrix and a realization in Figure 9.2.8(A) and Figure
9.2.8(B), respectively.

Let’s try embedding this example using node2vec. We’re going to set p = 1, q =

10 for now. We will generate 500 random walks starting at each node (r = 500),
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Figure 9.2.8 (A) the probability matrix for our network, (B) a realization of our
network.

each walk will have a length of 200 steps (T = 200). We will begin by prioritizing
walking in breadth-first way, with q = 10 > 1:

from graspologic.embed import node2vec_embed

import networkx as nx

p=1; q=10; T=200; r=500

d = 4

np.random.seed(0)

Xhat1, _ = node2vec_embed(nx.from_numpy_array(A),

return_hyperparameter=float(p), inout_hyperparameter=float(q),

dimensions=d, num_walks=r, walk_length=T)

Which is illustrated as a pairs plot of the first two dimensions in Figure
9.2.9(A) along with the true (unknown) community labels in Figure 9.2.9(A.I).
The highest levels of node similarity are shared between the nodes in community
1 and 2, highlighted in Figure 9.2.9(A.II). Looking at the probability matrix for
our network in Figure 9.2.8, sub-communities 1 and 2 tend to have comparatively
high within sub-community edge probabilities, but low between sub-community
edge probabilities. Therefore, local windows around a given node (the walks that
we train the skipgram network with) will tend to be in the same sub-community
1 or 2, and our embedding will consequently favor differentiating the 1 and 2

sub-communities.

What utility is added by a second-order biased random walk?
The reason we leverage second-order biased random walks is that they give us
flexibility. Since the node2vec procedure relies on the “corpus” of random walks,
the behavior of these random walks will have a substantial influence on the
resulting embedding. Let’s see what happens to our embeddings as we tend to
favor walking in a more depth-first type of manner, where q = 1

10 < 1:

p=1; q=1/10; T=200; r=500
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Figure 9.2.9 (A) A pairs plot of the node2vec embedding with p = 1, q = 1
10
, (B) A

pairs plot of the node2vec embedding with p = 1, q = 10. (I) all of the communities
annotated, (II) the specific communities annotated upon which the particular
settings highlight.

d = 4

np.random.seed(0)

Xhat2, _ = node2vec_embed(nx.from_numpy_array(A), return_hyperparameter=float(p),

inout_hyperparameter=float(q),

dimensions=d, num_walks=r, walk_length=T)

Which is illustrated as a pairs plot in Figure 9.2.9(B.I) along with the true
(unknown) community labels. This time, there are high similarities between the
core nodes, but the periphery nodes tend to fall on the exterior, highlighted in
Figure 9.2.9(B.II). Altering the hyper-parameters for our random walks yield
very different ways to represent the same network in Euclidean space.
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Remark 9.2.4 Why are these methods called “diffusion methods”?

Numerical analyses that use large sets of random walks are often referred to
as diffusion methods. Diffusion is a process where particles spread out from
an area of higher concentration to an area of lower concentration; consider,
for instance, if you were to place a few drops of food coloring in cup water,
the food coloring will diffuse throughout the water, rather than stay put.
In many ways, the movement of a random walk throughout a network can be
modelled as a diffusion process; in fact, many of the mathematical equations
to describe particle diffusion can be adapted to networks. For this reason,
random walks are often considered a subset of diffusion methods.

9.2.4 Extending to weighted or directed networks

It is easy to adapt the strategies we have developed so far to weighted or directed
networks. If the network takes non-negative weights, and the weights wij can be
interpreted to indicate the “strength” of a connection between a node i and j,
we can just let the transition probabilities pij be the weights normalized by the
out-degree from node i; that is:

pij =
wij
di

where the out-degree is the quantity di =
∑n
j=1 wij . The remainder of the strate-

gies developed in this section can be directly applied with the transition proba-
bility matrix defined in this manner.
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Appendix A Network Model Theory

In this section, we dive into network modelling theory. Many strategies, such as
the latent position testing and latent distribution testing in Section 7.1, become
more digestible when we understand them as tests that assume slightly differ-
ent statistical models than in the main text. In this section, we will learn the
following:

1 Section A.1 introduces important mathematical and probability concepts for
the remainder of the section.

2 Section A.2 gives the probabilistic foundations and motivations for graph mod-
els.

3 Section A.3 introduces the Erdös-Rényi network model,
4 Section A.4 introduces the stochastic block model,
5 Section A.5 introduces the degree-corrected stochastic block model,
6 Section A.6 introduces the Random Dot Product Graph, and
7 Section A.7 introduces the Generalized Random Dot Product Graph.

Throughout this section, we make use of results from a variety of papers, which
are largely captured by [1], [2], and [3].
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A.1 Background

This section requires familiarity with all of the mathematical operations and
concepts from probability and statistics explained in the Terminology. In this
section, we standardize common notation that often differs across various prob-
ability and statistics texts.

A.1.1 Notation

1 Extrapolatory ellipses: We often summarize a sequence of natural numbers with
ellipses; e.g., {1, . . . , n}. These ellipses indicate continuation of the indexing
pattern up to the last index in the sequence. For instance, in the sequence
above, the ellipses represent 4, 5, 6, ... up to n− 1. This interpretation applies
to both vectors and matrices, where the numbering pattern continues upward.

2 Shorthand for sequences of natural numbers: The notation [n] denotes a se-
quence of natural numbers from 1 to n. In set notation, [n] = {1, . . . , n}.

3 Useful numerical spaces: Common numerical spaces are denoted by double
faced print. They are the natural numbers N, the integers Z, the non-negative
integers Z≥0, and the real numbers R.

4 Shorthand for arbitrary values from numerical spaces: The notation x ∈ S
indicates that x (a scalar, a vector, or a matrix) has values from the numerical
space S. For example:
• x ∈ R means that x is an arbitrary real number.
• ~x ∈ Rd means that ~x is an arbitrary vector with d elements, where each

element xi ∈ R is an arbitrary real number.
• ~x ∈ [K]d or ~x ∈ {1, ...,K}d indicates a vector where each element xi is a

natural number that is at most K.
• X ∈ Rr×c represents an arbitrary matrix with r rows, c columns, and real-

valued elements.
5 Vector in-line notation: We sometimes describe a vector ~x using in-line no-

tation to capture its dimensionality. The notation ~x = (xi)
d
i=1, for instance,

represents:

~x =


x1
x2
...
xd


This notation applies for both scalar and random vectors.

6 Matrix in-line notation: We describe a matrix X using in-line notation to
capture its dimensions: X = (xij)i∈[r],j∈[c] or

(
(xij)

c
j=1

)r
i=1

. This notation
”unrolls” X first across j from 1 to c, and then down i from 1 to r, representing
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a matrix with r rows and c columns:

X =

x11 ... x1c
...

. . .
...

xr1 ... xrc



A.1.2 Probability distributions and distribution functions

1 Distribution functions for random variables: x ∼ F indicates that the ran-
dom variable x has the distribution F . For instance, x ∼ Bern(p) denotes a
Bernoulli random variable with probability p:

Pr(x = x) =

{
p x = 1

1− p x = 0
.

In this case, realizations of x, denoted by x (no bold-face), resemble a coin
flip: heads (x = 1) occurs with probability p and tails (x = 0) with probability
1− p.

This simplifies to:

Pr(x = x) = px(1− p)1−x

Familiarity with these common probability distributions enhances under-
standing of the material:
• Bernoulli distribution: Bern(p), with probability parameter p,
• Categorical (Multinoulli) distribution: Categorical(~p), with probability vec-

tor ~p,
• Normal distribution: N (µ, σ2) with mean µ and variance σ2, and
• Uniform distribution: Unif(a, b), with minimum a and maximum b.
We provide in-line descriptions of these distributions as needed throughout
the text.

2 Distribution functions for random vectors: The notation ~x ∼ F indicates that
the random vector ~x has a distribution F . In general, we assume statistical
independence (potentially conditional on other random variables), allowing us
to describe the distribution of each element xi individually rather than by con-
ditioning on the entire vector ~x. This approach simplifies random vector dis-
tributions to more manageable random variable distributions. We sometimes
use the term “dimensions” to describe vector elements. For a scalar vector ~x,
the ith dimension is simply the ith element, xi. Similarly, for a random vector
~x, the ith dimension xi is a random variable.

3 Distribution functions for random matrices: The notation X ∼ F indicates
that the random matrix X has distribution F . In general, we assume statistical
independence (potentially conditional on other random variables) for elements
of random matrices, allowing us to describe the distribution of each element
xij individually rather than for the entire matrix X. , we can just look at the
individual elements of X, denoted xij , as having distributions.
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• There is one important exception to this, which will arise for the a posteriori
Random Dot Product Graph, which will use an distribution on an inner
product space. In this case, instead of describing X itself or individual entries
~xi, we will describe a family of distributions for random vectors, which are
the rows of X. We will try our best to explain these in an intuitive way
without going outside of the scope of a graduate understanding of statistics.

4 Parametrized functions: A parameter in statistics is a number or set of num-
bers that uniquely define the behavior of a distribution. For parametrized
random variables, such as x ∼ Bern(p), x follows a Bernoulli distribution
with parameter p. While p remains constant for a given x, realizations of x

(0s and 1s) vary. Probability statements about x, like Pr(x = 0, p) = 1 − p,
depend on both p and the value x = 0 that x takes. To distinguish the static
nature of p from the stochastic realizations of x, we use subscript notation:
Prp(x = x) instead of Pr(x = x, p). This notation clarifies that p is a distri-
bution parameter for x, not a variable changing with different realizations of
x. Alternatively, when we wish to emphasize the dependence of a probability
on the parameter (such as for maximum likelihood estimation), we may write
Pr(x = x; p), with the semicolon denoting that everything after the semicolon
is a parameter.

5 Arbitrary sets of parameters: When describing random variables generally, we
often use unrestrictive notation. A generic random variable x might follow a
Bernoulli distribution with parameter p, or a Normal distribution with mean
µ and variance σ2. To accommodate these varying parameter sets, we use θ
to denote an arbitrary set of parameters. For example, θ could represent {p}
for a Bernoulli distribution or {µ, σ2} for a Normal distribution. This notation
allows us to describe x in terms of θ without specifying the exact parameter
set each time. θ can denote parameters for a random variable x, a random
vector ~x, or a random matrix X.

A.1.3 Abuses of notation

Statistical work often employs ”abuses of notation”, where a single notation takes
on multiple meanings. We will use one such abuse regularly.

A random variable, random vector, or random matrix can be uniquely defined
by its cumulative distribution function (CDF). Though CDFs are not distribu-
tions themselves, they uniquely specify distributions. For example, x ∼ N (µ, σ2)

means that x follows a Normal distribution with mean µ and variance σ2. Equiv-
alently, we might write x ∼ Fµ,σ2 , where:

Fµ,σ2(x) =

∫ x

−∞
fµ,σ2(x)dx.

Here, fµ,σ2(x) is the probability density function of the Normal distribution.
While Fµ,σ2 is not itself a distribution, it uniquely defines the Normal distribution
with parameters µ and σ2.
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This notation allows for generality. We can write x ∼ F to indicate x follows
an arbitrary distribution with CDF F , without specifying the distribution family
or parameters. This notation is particularly useful when discussing distributions
on inner product spaces.

A.2 Foundations of random network models

To understand network models, it is crucial to understand the concept of a
network as a random quantity, taking a probability distribution. We observe a
realization A and consider it random: We assume that there existed a network-
valued random variable A that generated our realization. Since A is a random
variable, we can describe it using a probability distribution. This distribution,
denoted by Pr, assigns probabilities to all possible configurations of A. We ex-
press this relationship notationally as A ∼ Pr, meaning “the random network A

is distributed according to Pr.”
Our claim that Pr assigns probabilities to every possible realizations of A

raises a question: How many possibilities exist for a network with n nodes?
We focus on simple networks, where the network is unweighted (A is binary),
undirected (A is symmetric), and loopless (A is hollow). Let An denote the set
of all possible adjacency matrices A corresponding to simple networks with n

nodes. Each A ∈ An is:

1 a binary or unweighted n× n matrix: A ∈ {0, 1}n×n, and aij ∈ {0, 1},
2 a symmetric n× n matrix: A = A>, so aij = aji, and
3 a hollow n× n matrix: diag(A) = 0, or aii = 0 for all i = 1, ..., n)

We define An as:

An = {A : A is an n× n matrix which is binary, symmetric, and hollow} .

We express the concept that Pr assigns probabilities to all possible config-
urations of A as Pr : An → [0, 1]. For any A ∈ An, a possible realization of
random network A, Pr(A = A) represents a probability between 0 and 1. When
the context clearly defines A, we may simplify Pr(A = A) to Pr(A), indicating
the probability that A takes the value A. Now, we turn to the question posed
earlier: How many possible adjacency matrices exist in An?

Consider a single A ∈ An. An n × n matrix A has n2 entries. However, A is
simple and loopless, eliminating n possible self-loops. This leaves n2−n = n(n−1)

potential edges, ignoring diagonal entries aii for all i ∈ [n]. The undirected nature
of simple networks implies aij = aji for every pair i and j: Knowledge of an entry
in the upper triangle of A (aij where j > i) determines the corresponding lower
triangle entry. This symmetry halves the n(n−1) non-diagonal entries, resulting
in 1

2n(n−1) =
(
n
2

)
free entries in A. Each entry of A can be either 0 or 1, yielding

two possible values for each randomly determined edge. To illustrate:
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1 For a 2× 2 matrix A, there is
(
2
2

)
= 1 unique entry, with two possible values.

The two possible forms of A are:[
0 1

1 0

]
or
[
0 0

0 0

]
(A.1)

2 For a 3× 3 matrix A, there are
(
3
2

)
= 3 unique entries, each with two possible

values. The 23 = 8 possible forms of A are:0 1 1

1 0 1

1 1 0

 or

0 1 0

1 0 1

0 1 0

 or

0 0 1

0 0 1

1 1 0

 or (A.2)

0 1 1

1 0 0

1 0 0

 or

0 0 1

0 0 0

1 0 0

 or

0 0 0

0 0 1

0 1 0

 or (A.3)

0 1 0

1 0 0

0 0 0

 or

0 0 0

0 0 0

0 0 0

 (A.4)

To generalize this for any n, we use combinatorics. For each of the
(
n
2

)
entries

in A that can take different values, we multiply the total number of possibilities
by 2. With 2 choices for each of x items, we have 2x possible adjacency matrices.
Given our knowledge of the number of different elements in A, we can express
the total number of unique adjacency matrices in An, called its set cardinality, as
2(n

2). The cardinality of An is denoted by |An|. For n = 15, |A15| = 2(15
2 ) = 2105,

which exceeds 1030 possible networks. As n increases, |An| grows rapidly. The
following code demonstrates how |An| = 2(n

2) changes with n:

import seaborn as sns

import numpy as np

from math import comb

n = np.arange(2, 51)

logAn = np.array([comb(ni, 2) for ni in n])*np.log10(2)

We have established probability distributions on networks and a set An of
all adjacency matrices to which these distributions must assign probabilities. A
network model, then, is a set P of probability distributions on An:

P ⊆ {Pr : Pr is a probability distribution on An}

We simplify P through parametrization. Let Θ be the set of all possible pa-
rameters of the random network model, and θ ∈ Θ a particular parameter choice
governing a specific network-valued random variable A. We can then express P
as:
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P(Θ) = {Prθ : θ ∈ Θ}

For a random network A following a network model, we write A ∼ Prθ, where
θ is an arbitrary set of parameters.

In traditional univariate or multivariate statistical modeling, a categorical
model often serves as a natural choice for discrete sample spaces like An. This
approach would assign a single parameter to each possible configuration of an
n-node network, resulting in |θ| = |An| = 2(n

2). However, this model presents
two significant limitations:

1 Storage requirements: For n = 15, defining θ would require over 1030 bits of
storage, exceeding 108 zetabytes—more than the world’s total storage capacity.

2 Estimation challenges: Obtaining a reasonable estimate of 2(n
2) parameters

becomes infeasible for any non-trivial number of nodes n, even with multiple
observed networks. For a single observed network A, the estimate θ̂ would have
a 1 corresponding to the observed network and 0s elsewhere. This implies a
deterministic network-valued random variable A, even when this is not the
case. With multiple observations, θ̂ would likely consist of point masses on
observed networks and 0s elsewhere, failing to generalize to new observations.

More reasonable descriptions of P focus on the family of independent-edge
random networks, which assume that the edges of the network are generated
independently or independently conditional on particular variables, a property
that simplifies modelling assumptions crucial for proper estimation and rigorous
statistical inference.

A.2.1 Equivalence Classes

The concept of probability equivalence classes is central to the models we will ex-
plore. A probability function describes how effectively a random variable A with
parameters A ∼ Prθ can model an observation A. It expresses the probability
Prθ(A) of observing A given parameters θ.

An equivalence class E ⊆ An has the following properties, given fixed param-
eters θ:

1 For A,A′ ∈ E, Prθ(A) = Prθ(A
′).

2 For A ∈ E, and A′′ ∈ E′, where E and E′ are different equivalence classes,
Prθ(A) 6= Prθ(A

′′).
3 Different equivalence classes are therefore mutually disjoint: E ∩ E′ = ∅.
4 Given An and Prθ, we can partition the sample space into equivalence classes
Ei, where i ∈ I is an arbitrary indexing set. This partition satisfies

⋃
i∈I Ei =

An.
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The role of equivalence classes in network models and parameter estimation
is useful background for network models in Chapter 4 and parameter estimation
in Section 5.1.

In the following sections, different types of network models will provide us
with the probability Prθ. Using this function, we effectively simplify the total
number of possible networks (which as described above, is infeasibly large and
would be impossible to fit given finite data) down to far simpler questions about
the parameters that define these different equivalence classes. These equivalence
classes (and the parameters that differentiate them) will typically be much sim-
pler to analyze than it would be to analyze the 2(n

2) possible networks that we
defined above.

A.2.2 Independent-Edge Random Networks

The following models represent special families of independent-edge random net-
works, which are network-valued random variables in which all edges are inde-
pendent. For every adjacency aij of the random variable A, aij is independent
of ai′j′ whenever (i, j) 6= (i′, j′).

In simple networks, we can assume that each edge (i, j) exists with proba-
bility pij , which may differ for each edge. This model describes aij as having a
Bern(pij) distribution for every j > i, independent of every other edges in A. We
consider only the entries where j > i, because our networks are simple, implying
that aji is a deterministic function of aij . The random network is loopless, so
aii = 0 for all i.

We define the probability matrix P = (pij) for the network-valued random
variable A. A random network with independent edges and edge probabilities
given by P is an Inhomogeneous Erdös-Rényi random network, denoted A ∼
IERn(P ). These are often known as Independent-Edge Random Networks. This
model simplifies probability calculations for network realizations.

For independent random variables x and y, recall that Pr(x = x,y = y) =

Pr(x = x)Pr(y = y). Using this independence property, we can express the
probability of a network realization as:

Pr(A = A) = Pr(a11 = a11,a12 = a12, ...,ann = ann)

= Pr(aij = aij for all j > i)

=
∏
j>i

Pr(aij = aij), Independence Assumption (A.5)

For a Bernoulli distributed aij with probability pij , since Pr(aij = aij) =

p
aij
ij (1− pij)1−aij :

Prθ(A) =
∏
j>i

p
aij
ij (1− pij)1−aij
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While this model is generalizable, estimating each pij individually presents
challenges. Maximum likelihood estimation with a single realization A would
yield pij = aij . Even with multiple realizations, this approach ignores potential
structural insights into A and requires estimating numerous pij values.

Subsequent sections will introduce less restrictive assumptions about pij , al-
lowing for more expressive random networks while maintaining analytical tractabil-
ity.

A.3 Erdös-Rényi random networks

The Erdös-Rényi model simplifies the network generation process with a single
parameter and an independent and identically distributed (iid) assumption:

Parameter Space Description
p [0, 1] Probability of an edge between any pair of nodes

In an ER network, each node pair connects with probability p and remains
unconnected with probability 1−p. For each edge aij where j > i, aij is sampled
independently and identically from a Bernoulli distribution with probability p.

“Independent” means that the occurrence of one edge does not affect the others.
“Identical” means that every edge exists with the same probability p. We assume
that the networks are undirected, meaning an edge aij from node i to j implies
an edge aji from node j to i. We also assume loopless networks, prohibiting
self-connections (all aii = 0).

For an adjacency matrix A of an ER network with probability p, we write
A ∼ ERn(p).

A.3.1 Probability

For Erdös-Rényi networks, the probability of realizations can be derived from
the general form for independent-edge graphs:

Prθ(A) =
∏
j>i

Prθ(aij = aij)

Given the ER model’s assumption that the probability matrix P = (p), or
pij = p for all i, j, we have:

Prθ(A) =
∏
j>i

paij (1− p)1−aij

= p
∑

j>i aij · (1− p)(
n
2)−

∑
j>i aij

= pm · (1− p)(
n
2)−m
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Here, Prθ(A) depends only onm =
∑
j>i aij , the number of edges in the network

represented by adjacency matrix A. The equivalence classes for Erdös-Rényi
networks are the sets:

Ei = {A ∈ An : m = i}

where i ranges from 0 (minimum possible edges) to
(
n
2

)
(maximum possible

edges, for simple networks).

A.3.2 Relaxations for non-simple networks

Our previous discussions focused on simple networks: binary/unweighted, loop-
less, and undirected networks. Simple networks have adjacency matrices con-
taining only 0s and 1s, with a hollow diagonal and symmetry between the lower
and upper triangles. However, real-world networks often deviate from these con-
straints. Let us consider how to adapt our models for such cases:

We maintain the assumption of binary networks. We will examine three possi-
ble “relaxations” of our current assumptions about simple networks. A relaxation
is a loosening of a set of assumptions to more flexible situations. We present
these relaxations separately to clearly demonstrate how each alters the genera-
tive model.

We will show how the generative setup changes by modifying the following
text, which we used to describe a simple ER network (unweighted, undirected,
and loopless):

“In an ER network, each node pair connects with probability p and remains
unconnected with probability 1−p. For each edge aij where j > i, aij is sampled
independently and identically from a Bernoulli distribution with probability p.
We assume that the networks are undirected, meaning an edge aij from node
i to j implies an edge aji from node j to i. We also assume loopless networks,
prohibiting self-connections (all aii = 0).”

We use underlined bold text to indicate additions and strikethrough bold
text for omissions. These generalizations apply to all network models discussed
in the Network Models section, not just the ER model.

Unweighted and undirected network with loops
This relaxation removes the assumption of a loopless network. We now allow
edges aii to exist, extending the Bernoulli distribution to cases where j ≥ i,
rather than just just j > i.

Our revised description of the ER network is:
For each edge aij where j ≥ i, aij is sampled independently and identically

from a Bernoulli distribution with probability p. We assume that the networks are
undirected, meaning an edge aij from node i to j implies an edge aji from node
j to i. We also assume loopless networks, prohibiting self-connections
(all aii = 0).
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Unweighted and loopless network with directionality
This model removes the symmetry assumption of A, allowing for directed net-
works. We make independent distributional assumptions for all adjacencies aij
where j 6= i, rather than just j > i. We maintain aii = 0, preserving the hollow-
ness of A (and the looplessness of the network).

Our revised description of the ER network is:
For each edge aij where j 6= i, aij is sampled independently and identically

from a Bernoulli distribution with probability p.We assume that the networks
are undirected, meaning an edge aij from node i to j implies an edge
aji from node j to i. We assume the networks are loopless, prohibiting self-
connections (all aii = 0).

Unweighted network with loops and directionality
This model allows for both loops and directed edges by removing the constraints
on symmetry and self-connections.

Our revised description of the ER network is:
For each edge aij , for all possible combinations of nodes i and j, aij is

sampled independently and identically from a Bernoulli distribution with proba-
bility p. We assume that the networks are undirected, meaning an edge
aij from node i to j implies an edge aji from node j to i. We assume
the networks are loopless, prohibiting self-connections (all aii = 0).

A.4 Stochastic block models

A.4.1 A Priori Stochastic Block Model

The a priori SBM assumes known community assignments for all nodes. We
denote the number of communities by K. The order of community labels is
arbitrary. The a priori SBM has two parameters:

Parameter Space Description
~z [K]n the community assignment vector, assigning commu-

nities for each node
B [0,1]K×K The block matrix, assigning edge probabilities to

pairs of communities

The community assignment vector ~z designates each node’s community mem-
bership. This n-length vector contains one element for each node, with values
ranging from 1 to K. Formally, ~z ∈ {1, ...,K}n. Each element zi represents the
community assignment for the i(th) node.

For example, in a network with two communities (K = 2), where the first two
nodes belong to community 1 and the last two to community 2:

~z =
[
1 1 2 2

]>
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The block matrix B ∈ [0, 1]K×K is a K×K matrix that defines edge probabil-
ities between communities. For a pair of nodes i and j, we first use ~z to find their
community memberships zi and zj . Then, bzizj gives their edge probability. In
undirected networks, B is symmetric, so bkk′ = bk′k for all pairs of communities
k and k′.

The generative model for the a priori SBM defines edge probabilities based on
community memberships. For nodes i and j in communities k and k′ respectively,
the probability of an edge between them is bkk′ , the (k, k′) entry of the block ma-
trix. Formally, given zi and zj , aij is sampled independently from a Bern(bzizj )

distribution for all j > i. The adjacencies aij are not necessarily identically
distributed, as their probabilites depend on the community of their nodes. We
denote an a priori SBM network with block matrix B and node-assignment vector
~z as A ∼ SBMn(~z,B).

Probability
The probability calculation for the a priori SBM is straightforward, given that ~z
is a parameter. With our independence assumption:

Prθ(A) = Prθ(A = A)

=
∏
j>i

Pr(aij = aij ;B,~z), Independence Assumption

In the a priori SBM, each edge aij depends solely on the community assign-
ments of nodes i and j. Thus:

Prθ(aij = aij ;B,~z) = Pr(aij = aij ;B, zi, zj),

The independence assumption ensures that community assignments of other
nodes do not affect edge (i, j).

For the a priori SBM, the probability matrix P = (pij) reflects the block
structure. Given zi and zj , each adjacency aij is sampled independently and
identically from a Bern(bzizj ) distribution, so pij = bzizj . The probability of
observing adjacency matrix A is therefore:

Prθ(A) =
∏
j>i

baijzizj (1− bzizj )1−aij .

This expression can be simplified heavily. For any node-node pairing (i, j)

where zi = k′ and zj = k, pij is equal to the same value bkk′ . Therefore, we can
instead take the product over all possible community-community pairings, and
take a second product over all (i, j) node-node pairings that have the indicated
community pairing, since each node-node pairing would only fall into a single
community-community pairing. This gives:

Prθ(A) =
∏

k,k′∈[K]

∏
i,j:zi=k′,zj=k

b
aij
k′k(1− bk′k)1−aij
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=
∏

k,k′∈[K]

b
mk′k
k′k (1− bk′k)nk′k−mk′k (A.6)

Here, nk′k represents the number of possible edges between communities k′

and k: nk′k =
∑
j>i 1zi=k′1zj=k.

And mk′k denotes the observed edges between these communities: mk′k =∑
j>i 1zi=k′1zj=kaij .
The probability for a single (k′, k) community pair resembles that of an Erdös-

Rényi random variable.
The a priori SBM, like the ER model, exhibits equivalence classes in the sample

space An based on their probability. For a two-community setting with given ~z
and B, these equivalence classes are:

Ea,b,c(~z,B) = {A ∈ An : m11 = a,m21 = m12 = b,m22 = c}

Networks in the same equivalence class share identical community sizes. The
number of possible equivalence classes increases with the number of communities
and varies with the distribution of nodes across communities.

A.4.2 A Posteriori Stochastic Block Model

The a posteriori SBM treats community assignments as a random variable, un-
like the a priori SBM. Understanding this model requires familiarity with the
concept of a probability simplex.

We first define a vector ~π = (πk)k∈[K], πk ∈ [0, 1] with K elements, where each
πk indicates the probability of a node’s assignment to community k:

πk = Pr(zi = k),

This vector requires two additional constraints to represent a valid probability
distribution:

1 Non-negativity: For all k, πk ≥ 0, as probabilities cannot be negative.
2 Unity sum:

∑K
k=1 πk = 1, the law of total probability.

The K probability simplex encompasses all possible probability vectors ~π for
a categorical random variable with K possible outcomes. Formally:

{
~π : for all k πk ≥ 0,

K∑
k=1

πk = 1

}
For example:

1 For a fair coin, ~π =
(
1
2 ,

1
2

)
and ~π′ =

(
9
10 ,

1
10

)
both belong to the 2-probability

simplex.
2 For a fair die, ~π =

(
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)
belongs to the 6-probability simplex.
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Figure A.1 (A) the 2-probability simplex, and (B) the 3-probability simplex.

In the a posteriori SBM, the K-probability simplex represents the space of
probability vectors that could assign each node to one of the K-communities.

Figure A.1(A) illustrates the 2-probability simplex as a diagonal line from
(0, 1) to (1, 0), representing all possible π1, π2 pairs. Figure A.1(B) shows the
3-probability simplex as a triangular surface with vertices at (1, 0, 0), (0, 1, 0),
and (0, 0, 1), encompassing all possible (π1, π2, π3) tuples. Table A.1 shows the
two parameters of the a posteriori SBM.

Parameter Space Description
~π the K probability

simplex
The probability of a node being assigned
to community K

B [0,1]K×K The block matrix, which assigns edge
probabilities for pairs of communities

Table A.1 Parameters of the a posteriori SBM

The a posteriori SBM extends the a priori SBM by treating the node-assignment
vector as unknown. This introduces ~z as a latent variable: unobserved but crucial
for model description. ~z takes values in {1, ...,K}n, with each realization ~z as-
signing an integer between 1 and K to each of the n nodes, indicating community
membership.

Statistically, each community assignment zi is sampled independently and
identically from Categorical(~π), where ~π specifies the probability πk of assign-
ment to each community k. Samples from Categorical(~π) are categorical values
corresponding to the community assignment of each node i.

The block matrix B functions identically to its role in the a posteriori SBM.
The generative model for the a posteriori SBM closely resembles that of the a
priori SBM:

1 Given zi = k′ and zj = k, aij are independent Bern(bk′k).
2 zi are sampled independently and identically from Categorical(~π)
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For an a posteriori SBM network with adjacency matrix A and parameters ~π
and B, we write A ∼ SBMn(~π,B).

Probability
For the a posteriori SBM, θ = {~π,B} are the model parameters. The probability
of observing a particular adjacency matrix A generated by A is:

Prθ(A) = Prθ(A = A)

By the law of total probability, we can express this as a summation over all
possible realizations of the node assignment variable ~z. Let Z = [K]n be the
space of all possible realizations ~z:

Prθ(A) =
∑
~z∈Z

Prθ(A = A,~z = ~z) (A.7)

Using the definition of conditional probability, we can rewrite this as:

Prθ(A) =
∑
~z∈Z

Prθ(~z = ~z)Prθ(A = A | ~z = ~z)

Each entry zi in ~z is sampled independently and identically from Categorical(~π).
For a Categorical(~π)-valued random variable, the probability mass function is
Pr(zi = zi;~π) = πzi ; i.e., each entry πzi denotes the probability that a given
community assignment zi is in community zi.

When taking the product of n πzi terms, many values can be repeated. For
example, if ~z = [1, 2, 1, 2, 1]>, three zis have a value of 1, and two zis have a value
of 2. Therefore, we will end up with three π1 terms and two π2 terms, regardless
of their order. So, we only need track the count of each π term.

We can express this using the indicator function 1{zi=k} and counter for com-
munity probability assignments πk. Let nk =

∑n
i=1 1{zi=k} denote the number

of nodes in community k. This yields:

Prθ(~z = ~z) =

n∏
i=1

Prθ(zi = zi), Independence Assumption of zis

=

n∏
i=1

πzi , p.m.f. of a Categorical R.V.

For each node i, given a community assignment vector ~z, each node will be
assigned to exactly one (and only one) community. Therefore:

Prθ(~z = ~z) =

K∏
k=1

∏
i:zi=k

πk

=

K∏
k=1

πnk

k .
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Now we consider the conditional probability term Prθ(A = A | ~z = ~z). Given
~z = ~z, all entries are independent. This result matches the one we obtained for
the a priori SBM in Equation (A.6):

Prθ(A = A | ~z = ~z) =
∏
k′,k

b
mk′k
`k (1− bk′k)nk′k−mk′k

Combining these into the integrand gives:

Prθ(A) =
∑
~z∈Z

Prθ(A = A
∣∣~z = ~z)Prθ(~z = ~z)

=
∑
~z∈Z

K∏
k=1

[
πnk

k ·
K∏
k′=1

b
mk′k
k′k (1− bk′k)nk′k−mk′k

]
This approach implies that the a priori SBM is similar to the a posteriori SBM

but with the latent community assignment vector treated as known.

A.5 Degree-Corrected Stochastic Block Model (DCSBM)

The Degree-Corrected Stochastic Block Model (DCSBM) addresses the degree-
homogeneity limitation of SBMs detailed in Section 4.7.1. Like the Stochastic
Block Model, the DCSBM has both a priori and a posteriori variants.

A.5.1 A Priori DCSBM

In the a priori DCSBM, community assignments are known in advance. Let K
denote the number of communities. The a priori DCSBM has three parameters:

Parameter Space Description
~z [K]n the community assignment vector, com-

munities for each node
B [0,1]K×K The block matrix, which assigns edge

probabilities for pairs of communities
~θ Rn

+ The degree correction vector, which ad-
justs the degree for pairs of nodes

The latent community assignment vector ~z and block matrix B are identical
to those in the a priori SBM.

The degree correction vector ~θ consists of positive scalars θi. Each θi modifies
the connectivity of node i, increasing or decreasing its edge probabilities.

In the generative model for the a priori DCSBM, given community assignments
zi and zj , aij is sampled independently from a Bern(θiθjbzizj ) distribution for
all j > i. Here, θi “corrects” the edge probabilities for node i, adjusting them
relative to the block probabilities b`k.
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For an a priori DCSBM network A with parameters ~z, ~θ, and B, we write
A ∼ DCSBMn(~z, ~θ,B).

Probability
The probability derivation for the a priori DCSBM follows that of the a priori
SBM, with pij = θiθjbk′k replacing bk′k when zi = k′ and zj = k. This yields:

Prθ(A) =
∏
j>i

(θiθjbk′k)
aij (1− θiθjbk′k)

1−aij

Further simplification is limited because probabilities depend on specific i and
j pairs through the degree-correction factors. Unlike the SBM, we cannot reduce
this expression in terms of nk′k and mk′k.

A Posteriori DCSBM
The a posteriori DCSBM extends the a posteriori SBM in the same way that
the a priori DCSBM extends the a priori SBM. The modifications are minor and
follow directly from the preceding discussion on the a priori DCSBM.

A.6 Random dot product graphs

A.6.1 A Priori RDPG

The a priori Random Dot Product Graph (RDPG) assumes a known latent
position matrix X ∈ Rn×d. The a priori RDPG has the following parameter:

Parameter Space Description
X Rn×d The matrix of latent positions for each

node n.

Each row ~xi represents the latent position of a node i, a d-dimensional real-
valued vector. The number of dimensions d is the latent dimensionality. X there-
fore looks like:

X =

` ~x>1 a
...

` ~x>n a


The generative model for the a priori RDPG, given latent position matrix X,

is as follows:

1 For all j > i, aij ∼ Bern(~x>i ~xj) independently.
2 The network is undirected, so aji = aij for i < j

3 The network is loopless, so aii = 0

We denote an a priori RDPG with parameter X as A ∼ RDPGn(X).
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Figure A.1 (A) The non-negative orthant, (B) the unit ball, (C) their intersection.

Probability
The probability calculation for an RDPG, given X, is simplified by the indepen-
dence assumption:

Prθ(A) =
∏
j>i

Pr(aij = aij)

Using the probability mass function of a Bernoulli random variable and noting
that the probability matrix P = (~x>i ~xj)i,j , we derive:

Prθ(A) =
∏
j>i

(~x>i ~xj)
aij (1− ~x>i ~xj)1−aij , aij ∼ Bern(~x>i ~xj)

Probability equivalence classes exist for RDPGs, but their intuition is more
complex than for ER and SBM models. We omit their explicit formulation here.

A.6.2 A Posteriori RDPG

The a posteriori RDPG introduces a new concept: the intersection of the unit
ball and the non-negative orthant. An orthant generalizes the concept of a two-
dimensional quadrant to higher dimensions. The non-negative orthant contains
points where all of entries are non-negative.

We define the d-dimensional non-negative orthant as:{
~x ∈ Rd : xi ≥ 0 for all i

}
Figure A.1(A) shows the non-negative orthant in two dimensions, correspond-

ing to the upper-right quadrant of the standard coordinate system.
The Euclidean norm for a point ~x with coordinates xi for i = 1, ..., d is defined
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as:

||~x||2 =

√√√√ d∑
i=1

x2i

The closed Euclidean unit ball is the set of points with Euclidean norm is at
most 1: {

~x ∈ Rd : ||~x||2 ≤ 1
}

Figure A.1(B) shows the 2-dimensional unit ball.
The intersection of two sets A and B contains elements present in both sets:

A ∩B = {x : x ∈ A, x ∈ B}

The intersection of the unit ball and the non-negative orthant, denoted Xd, is:

Xd =
{
~x ∈ Rd : ||~x||2 ≤ 1, xk ≥ 0 for all k

}
Figure A.1(C) illustrates Xd in dark grey. Xd has a crucial property: for any ~x

and ~y in Xd, their inner product 〈~x, ~y〉 = ~x>~y is bounded between 0 and 1. This
property stems from the Cauchy-Schwartz inequality and the characteristics of
Xd.

The Cauchy-Schwartz inequality states that 〈~x, ~y〉 can be at most the product
of ||~x||2 and ||~y||2:

〈~x, ~y〉 ≤ ||~x||2 ||~y||2
Since vectors in Xd have norms at most 1, their inner-product cannot exceed

1. Additionally, as Xd lies in the the non-negative orthant, the inner product of
its vectors can never be negative.

The a posteriori RDPG extends the a priori RDPG analogously to the rela-
tionship between the a posteriori SBM and the a priori SBM. Instead of knowing
the latent position matrix X, we know the distribution characterizing individual
latent positions. The parameter for the a posteriori RDPG is:

Parameter Space Description
F vector distribution Distribution governing each latent posi-

tion on Xd.

The parameter F is an inner-product distribution defined on Xd. F has a key
property: the inner product of any two of its vectors must be a probability.
Formally, for any ~xi, ~xj ∈ Xd, 0 ≤ ~x>i ~xj ≤ 1. This property is crucial as ~x>i ~xj
represents the probability of an edge in the adjacency matrix.

In the a posteriori RDPG, the latent position matrix is a matrix-valued random
variable. We denote the random latent position for node i as ~xi. Each ~xi is
sampled independently and identically from the inner-product distribution F .
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The random latent-position matrix X comprises these latent vectors ~xi for all n
nodes.

The edge model for the a posteriori RDPG is conditioned on this unobserved
latent-position matrix:

1 For j > i, given ~xi = ~x and ~xj = ~y, aij follows a Bern(~x>~y) distribution.
2 The network is undirected: aji = aij for i < j.
3 The network is loopless: aii = 0 for all i.

We denote an a posteriori RDPG with parameter F as A ∼ RDPGn(F ).

Probability
The probability calculation for the a posteriori RDPG is complex due to the
unobservable nature of the latent position matrix X. We must use integration to
derive an expression for the probability.

We consider realizations of X, where each row are ~xi ∼ F independently.
For simplicity, we assume that F is a discrete distribution on Xd. This assump-
tion simplifies notation without loss of generality; for continuous distributions,
sums would be replaced by multivariate integrals, and probability mass functions
would be replaced by probability density functions.

Let p denote the probability mass function F . We first employ the indepen-
dence assumption:

Prθ(A) = Prθ(A = A) =
∏
j>i

Pr(aij = aij)

We then marginalize over the relevant rows of X:

Pr(aij = aij) =
∑
~x∈Xd

∑
~y∈Xd

Pr(aij = aij , ~xi = ~x, ~xj = ~y)

We can further simplify this expression using conditional probability and the
independence of latent positions:

Pr(aij = aij , ~xi = ~x, ~xj = ~y) = Pr(aij = aij |~xi = ~x, ~xj = ~y)Pr(~xi = ~x, ~xj = ~y)

Given the independence of ~xi and ~xj :

Pr(~xi = ~x, ~xj = ~y) = Pr(~xi = ~x)Pr(~xj = ~y)

Therefore:

Pr(aij = aij , ~xi = ~x, ~xj = ~y) = Pr(aij = aij |~xi = ~x, ~xj = ~y)Pr(~xi = ~x)Pr(~xj = ~y)
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Conditional on ~xi = ~xi and ~xj = ~xj , aij follows a Bern(~x>i ~xj) distribution.
Therefore:

Pr(aij = aij |~xi = ~x, ~xj = ~y) = (~x>~y)aij (1− ~x>~y)1−aij

Combining these results:

Pr(aij = aij , ~xi = ~x, ~xj = ~y) = (~x>~y)aij (1− ~x>~y)1−aijPr(~xi = ~x)Pr(~xj = ~y)

So our complete expression for the probability is:

Prθ(A) =
∏
j>i

∑
~x∈Xd

∑
~y∈Xd

(~x>~y)aij (1− ~x>~y)1−aijPr(~xi = ~x)Pr(~xj = ~y)

A.7 Generalized Random Dot Product Graph (GRDPG)

The Generalized Random Dot Product Graph (GRDPG) represents the most
general random network model in this book. It addresses a key limitation of the
RDPG model.

In the RDPG, the probability matrix P = XX>. As discussed in Section
4.5, this constrains P to be positive semi-definite, limiting the types of network
structure that can be modeled. The GRDPG overcomes this restriction.

A.7.1 A Priori GRDPG

The a priori GRDPG assumes known latent position matrix X and signature
(p, q). Its parameters are:

Parameter Space Description
X Rn×d The matrix of latent positions for each

node n.
p, q [d] the signature of the GRDPG.

X is similar to that in the RDPG, with each row ~xi representing the d-
dimensional latent position of node i.

The signature (p, q) defines the matrix Ip,q, where p+ q = d:

Ip,q =

[
Ip 0p×q

0q×p −Iq

]
where In denotes the n-dimensional identity matrix. The generative model for

the a priori GRDPG is:

1 for all j 6= i, aij ∼ Bern(~x>i Ip,q~xj) independently.
2 For loopless networks, aij = 0 for all i.
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We denote an a priori GRDPG with latent positions X and signature (p, q)

asA ∼ GRDPGn(X) with signature p and q.

A.7.2 A Posteriori GRDPG

The A Posteriori GRDPG closely resembles the a posteriori RDPG, with two
parameters:

Parameter Space Description
F vector distribution A distribution which governs each latent

position defined on Xd.
p, q [d] the signature of the GRDPG.

In this model, the latent position matrices are treated as latent variable ma-
trices. The latent positions are sampled independently and identically from F .

The edge model for the a posteriori GRDPG is conditioned on the unobserved
latent-position matrices:

1 For j 6= i, given ~xi = ~x and ~xj = ~y, aij follows a Bern(~x>Ip,q~y) distribution
independently.

2 Assuming a loopless network, aii = 0 for all i.

We denote an a posteriori GRDPG with parameter F and signature (p, q) as
A ∼ GRDPGn(F ) with signature p and q.

A.8 Inhomogeneous Erdős-Rényi (IER)

Previous models characterized edge-existence probabilities using fewer than
(
n
2

)
parameters. This simplification stems from the practical challenge of estimating(
n
2

)
different probabilities, especially for large networks. With a single network

observation, estimating unique probabilities for each edge is infeasible. Further-
more, assuming edges share no common properties limits our ability to charac-
terize underlying structures, such as the latent positions in RDPGs.

The Inhomogeneous Erdős-Rényi (IER) represents the most general form of
independent-edge random networks. An IER Random Network is defined by a
single parameter:

Parameter Space Description
P [0, 1]n×n The edge probability matrix.

The probability matrix P is an n × n matrix with entries pij between 0 and
1. For simple networks, P is symmetric. The generative model for IER networks
resembles previous models:

1 For j > i, edges aij are independent Bern(pij) random variables
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2 aii = 0 for all i (loopless network)
3 aji = aij (undirected network)

We denote an IER network A with probability matrix P as A ∼ IERn(P ).
All previously discussed models are special cases of the IER model. For in-

stance, ER models use probability matrices with identical entries, while a priori
RDPGs use probability matrices of the form P = XX> for some n × d real
matrix.

The IER Random Network represents the limit of Stochastic Block Models as
the number K of communities approaches the number of nodes n. an SBM where
each node forms its own community is equivalent to an IER Random Network.
In this case, the SBM block matrix B would have n×n unique entries. An SBM
where each node forms its own community is exactly an IER, showing that the
IER is a limiting case of SBMs.

Probability
The probability for an IER random network uses the independence assumption
and the p.m.f. of a Bernoulli-distributed random-variable aij :

Prθ(A) = Pr(A = A)

=
∏
j>i

p
aij
ij (1− pij)1−aij .
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Appendix B Learning representations
theory

The network representation techniques introduced in the main text have sub-
stantial mathematical foundations. This appendix explores the theoretical un-
derpinnings of these approaches. We cover:

1 Section B.1 Maximum likelihood estimation for ER and SBM models, and the
limitations that necessitate spectral approaches for RDPGs.

2 Consistent estimators of latent position matrices and joint matrices. (B.2).
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B.1 The basics of maximum likelihood estimation

This section introduces maximum likelihood estimation (MLE), a fundamental
technique for estimating probability distributions given data. We explain why
MLE provides desirable estimators for learning about random networks from
network-valued datasets. For a thorough overview of statistical inference, see [1].

Random networks, A, are distinct from their observations A. This limitation
poses a challenge for network scientists: how can we make useful claims about an
underlying property (characterized by A) when we only observe one (or a few)
samples of it (in the form of A)?

MLE addresses this challenge by estimating properties of random variables
using only the available data. In network statistics, this often means working with
a single sample assumed to be a realization of the random variable of interest.
The properties we aim to learn are called estimands.

The most useful property from Chapter 4 is the independent-edge assumption.
For independent-edge random network models, we assume edges are independent,
so from Equation (A.5):

Prθ(A = A) =
∏
j>i

Prθ(aij = aij).

To illustrate the concept of MLE, consider a simple example. Suppose we
flipped a coin 10 times and observed 6 heads, and we did not know whether the
coin had an equal probability of heads or tails, 0.5, ahead of time. Our best guess
of the heads probability would be 6

10 . Maximum Likelihood Estimation provides
a formal basis for this optimal guess.

B.1.1 The Method of Maximum Likelihood Estimation (MLE)

Consider the coin flip example. We define the outcome of the ith coin flip as the
random variable xi, which takes one of two possible values: heads (1) or tails
(0). We observe 10 total coin flips, with realizations denoted by xi, with possible
i ranging from 1 to 10. Our question of interest is: How do we estimate the
probability of the coin landing on heads, without knowing the true probability
value p?

Since xi takes the value 1 or 0 with probability 0.5, we describe it as a
Bern(0.5) random variable. Sets of random variables are identically distributed
if their underlying distributions are the same. As all 10 of our xi are identically
distributed, they share the same Bernoulli(0.5) distribution.

We also assume the outcomes of the coin flips are mutually independent. This
means the probability of observing all n outcomes simultaneously is the product
of observing each outcome individually:

Prθ(x1 = x1, ...,xn = xn) =

n∏
i=1

Prθ(xi = xi)
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For a single coin flip, the probability of observing outcome i is, by definition
of the Bernoulli distribution:

Prθ(xi = xi) = pxi(1− p)1−xi .

Because xi is either 0 or 1, Prθ(xi = xi) is either p or (1− p). The notation Prθ
indicates that the probability is a function of the parameter set θ for the random
variable xi. In this case, θ = p, as p is the only parameter for each xi.

For n total outcomes, the probability is:

Prθ(x1 = x1, ...,xn = xn) =

n∏
i=1

Pr(xi = xi),

=

n∏
i=1

pxi(1− p)1−xi ,

= p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi . (B.1)

Consider the case of 10 coin flips and 6 heads. Maximum Likelihood Estimation
(MLE) provides a way to formalize that our guess of p, denoted p̂, is 0.5. We
define the likelihood function of our sequence L(p;x1, . . . , xn) for a given value
of the parameter p:

L(p;x1, . . . , xn) = Pr(x1 = x1, . . . ,xn = xn; p).

The term “; p” emphasizes that the probability of observing the data depends
on the parameter p. The likelihood function reframes p as a variable, and our goal
as how “likely” that variable is, given the observed data (which is fixed within
the confines of our experiment). MLE finds the value of p that maximizes the
likelihood. We can visualize the likelihood function for different values of p:

import numpy as np

p = np.linspace(.02, .98, num=49)

nflips = 10; nheads = 6

likelihood = p**(nheads)*(1 - p)**(nflips - nheads)

Figure B.1(A) illustrates the likelihood function for the coin flip example,
with p = 0.6 highlighted in gray, and Figure B.1(B) shows its log likelihood.
Our intuitive guess of p = 0.6 indeed corresponds to the Maximum Likelihood
Estimate for the Bernoulli probability parameter p.

Maximizing the log-likelihood often simplifies the problem. The log function
is monotone, meaning if x < y, then log x < log y. Consequently, if p∗ maximizes
the likelihood, it also maximizes the log-likelihood, as the monotonicity of the
log function preserves critical points.

The log likelihood of Equation (B.1) (often abbreviated with ` instead of logL)
is:

`(p;x1, ..., xn) = logL(p;x1, ..., xn) = log
[
p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi

]
,
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Figure B.1 (A) the likelihood for the coin flip example, with p = 0.6 in gray, and (B)
the log likelihood for the coin flip example.

=

n∑
i=1

xi log(p) +

(
n−

n∑
i=1

xi

)
log(1− p).

We can compute the log likelihood in python:

loglikelihood = nheads*np.log(p) + (nflips - nheads)*np.log(1 - p)

Figure B.1(B) illustrates the log-likelihood. The maximizing probability (gray)
is the same for both the likelihood and log-likelihood, despite the dissimilar
appearance of the two plots. At the maximum, the slope of the tangent line is 0,
a critical point of the function.

To find the maximal point of the log-likelihood function with respect to vari-
able p:

1 Take the derivative of the log-likelihood with respect to p.
2 Set it equal to 0 and solve for the critical point p∗.
3 Verify that the critical point p∗ is indeed an estimate of a maximum, p̂.

Using the result derived above, and the facts that d
du log(u) = 1

u and d
du log(1−

u) = − 1
1−u :

d

dp
`(p;x1, ..., xn) =

∑n
i=1 xi
p

−
n−

∑n
i=1 xi

1− p
= 0,

⇒
∑n
i=1 xi
p

=
n−

∑n
i=1 xi

1− p
,

⇒ (1− p)
n∑
i=1

xi = p

(
n−

n∑
i=1

xi

)
,

n∑
i=1

xi − p
n∑
i=1

xi = pn− p
n∑
i=1

xi,
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⇒ p∗ =
1

n

n∑
i=1

xi.

To confirm p∗ as an estimate of a maximum, we would take the second deriva-
tive and verify that it is negative at p∗. We omit this step here. For bounded
parameters, we would also check the extreme values (0 and 1) to ensure they
are not potential maximums. As p∗ satisfies these conditions, it serves as our
maximum likelihood estimate. By convention, we denote estimates with a hat,
so this value becomes p̂.

With 6 heads in 10 outcomes, the MLE is therefore:

p∗ = p̂ =
6

10
= 0.6.

This result aligns with our intuition.
This simple example illustrates parameter estimation via MLE in its most basic

form. As scenarios become more complex, particularly with network-valued data,
effective parameter estimation becomes increasingly challenging.

B.1.2 MLE for ER

Section A.3 derived the probability (and likelihood) for network realizations A
where A ∼ ERn(p):

Prθ(A) = pm · (1− p)(
n
2)−m.

Here, m =
∑
i<j aij represents the total edge count in network A. Following

our approach for the coin example and noting that L(θ;A) = Prθ(A):

`(θ;A) = log
[
pm · (1− p)(

n
2)−m

]
,

= m log p+

((
n

2

)
−m

)
log(1− p). (B.2)

Taking the derivative with respect to p and setting it to zero yields:

d

dp
`(θ;A) =

m

p
−
(
n
2

)
−m

1− p
= 0,

⇒ p∗ =
m(
n
2

) .
The second derivative at p∗ is negative, confirming that p∗ maximizes the

likelihood. We denote this maximum likelihood estimate as p̂:

p̂ =
m(
n
2

) .
This formula for computing an estimate from the data is called an estimator.

The resulting quantity, when computed from actual data, is an estimate. An
estimator may be a random quantity if the data is unknown, while an estimate
is a specific realization of the estimator for a given network.
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Studying sampling distributions of estimators
To study an estimator such as the ones we obtain via MLE, we must make a
significant assumption: the observed network A is a realization of a random net-
work A with quantifiable properties. This leads to a typical statistical inference
process:

1 Develop a plausible statistical model for the data. This is embodied as a model
for A (e.g., A ∼ ERn(p)).

2 Create an estimator for a relevant quantity (the estimand) within that model.
The estimand will typically be a parameter (e.g., p for an ER network).

3 Analyze the estimator’s properties within the assumed model’s context for A.

After understanding the estimator’s behavior, we can apply it to the observed
data to draw conclusions about our network.

When assessing estimator performance, we often use the notation θ̂θθn, where
n denotes the sample size (in this case, the number of network nodes). For
example, p̂ might be written as p̂n to highlight its dependence on node count.
We are analyzing the estimator’s properties within the context of the model for
A, a random variable. So, the estimator itself is also a random variable, since it
is a function of a random variable (and therefore also bold-faced).

The difference between an estimator and a true underlying parameter is char-
acterized by the estimator’s sampling distribution. The sampling distribution of
an estimator θ̂θθn describes how estimates θ̂n vary across different realizations of
the random network A. The sampling distribution is fundamental to understand-
ing estimator behavior.

Unbiasedness of the estimator of the probability parameter for
the ER network
In an ideal scenario, repeating our experiment many times with new networks
would yield probability estimates that, on average, equal the actual probability.
In statistical theory, this concept is called estimator unbiasedness. An unbiased
estimator for a parameter is expected to yield that parameter on average when
estimating it using sample data. For an estimator θ̂θθn and an underlying popula-
tion parameter θ (the estimand), we express this as:

E
[
θ̂θθn

]
= θ.

To clarify, unbiasedness does not imply that the estimate p̂n equals the prob-
ability p. Generally, we do not expect our estimate to exactly match the true
parameter. An unbiased estimator means that if we examined many realizations
of A, the average of the estimates would equal its true parameters.

When A is an ERn(p) random network, our estimate for its p parameter is:

p̂n =
m(
n
2

)
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and the underlying estimator (which is a function of the random network A)
is:

p̂n =
m(
n
2

)
The number of edges in the random network, m, is a function of the random

variable A.
To compute the expected value:

E[p̂n] = E

[
m(
n
2

)] .
Since A has n nodes, 1

(n
2)

is a constant, so we can factor it out:

E[p̂n] =
1(
n
2

)E[m].

We defined m to be
∑
i<j aij , which also depends on our realization of A, so

it is random in the context of our estimator. Therefore:

E[m] = E

∑
i<j

aij

 .
Next, we use the linearity of expected value:

E

∑
i<j

aij

 =
∑
i<j

E[aij ] =
∑
i<j

pij ,

using the result from Section 4.6.2. Since we know that pij = p for ERn(p)

random networks:

E[m] =

(
n

2

)
p,

Putting this back together:

E[p̂n] =
1(
n
2

)(n
2

)
p = p,

Since E[p̂n] = p, our underlying estimand, p̂n is unbiased for the underlying
probability p.
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Figure B.2 (A) a comparison of the density from a parametric bootstrap (black) and
the chi-squared distribution (gray), (B) the distribution of p̂n computed via a
parametric bootstrap (black) with the mean of the estimates (gray).

Showing Unbiasedness with simulations
We can demonstrate this property numerically using a parametric bootstrap,
which allows us to examine the behavior of a function of a random variable
when its distribution becomes complex. For example, consider two independent
random variables x and y, each following a standard normal distribution (mean
0, variance 1). While it may not be immediately apparent that x2 + y2 follows
a chi-squared distribution with 2 degrees of freedom, we can use a parametric
bootstrap to estimate properties of x2 + y2 through simulation. Let’s simulate
1000 realizations of x and y, then examine the behavior of their squares:

import scipy as sp

# simulation of 1000 values from the N(0,1) distn

n = 1000

xs = np.random.normal(loc=0, scale=1, size=n)

ys = np.random.normal(loc=0, scale=1, size=n)

# compute the square

xssq = xs**2

yssq = ys**2

sum_xsq_ysq = xssq + yssq

# compute the centers for bin histograms from 0 to maxval in

# 30 even bins

nbins = 30

bincenters = np.linspace(start=0, stop=np.max(sum_xsq_ysq), num=nbins)

# compute the pdf of the chi-squared distribution for X^2 + Y^2, which when

# X, Y are N(0, 1), is Chi2(2), the chi-squared distn with 2 degrees of freedom

dof = 2

true_pdf = sp.stats.chi2.pdf(bincenters, dof)

Figure B.2(A) plots a normalized histogram of sum_xsq_ysq (black bars) against
the true distribution of x2 + y2 (gray line). The histogram represents the ap-
proximate density of x2 + y2 estimated using the parametric bootstrap, while
the gray line shows the exact density. These align almost perfectly.

To compute the mean of x2+y2, we can use the parametric bootstrap samples:
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print("Approximate mean: {:2f}".format(np.mean(sum_xsq_ysq)))

# mean of chi-squared is just its degrees of freedom; here, 2

print("True mean: {:2f}".format(2))

This approach approximates the mean without requiring the complex deriva-
tion to prove that x2 + y2 follows a χ2 distribution with 2 degrees of freedom.

Computing exact distributions for estimators becomes significantly more chal-
lenging when dealing with networks and functions of networks. Parametric boot-
straps offer a straightforward visualization technique to verify intuition without
extensive numerical derivation.

For a given n, we aim to obtain a distribution for the probability parameter,
p̂n. We simulate 100 network realizations of A following ER20(0.4) (20 nodes
with edge probability 0.4). For each network j, we estimate the probability pa-
rameter p̂(j). A histogram of these p̂(j) values approximates the distribution of
p̂20:

import graspologic as gp

n = 10 # number of nodes

nsims = 200 # number of networks to simulate

p = 0.4

# realizations

As = [gp.simulations.er_np(n, p, directed=False, loops=False) for i in range(0, nsims)]

# fit ER models

fit_models = [gp.models.EREstimator(directed=False, loops=False).fit(A) for A in As]

hatps = [model.p_ for model in fit_models] # the probability parameters

Figure B.2(B) displays the distribution of p̂20 as a histogram of hatps, along
with the true probability parameter and the mean of hatps.

The mean of the estimates closely approximates the underlying probability for
the random networks, p = 0.4. With more simulations, we expect this mean to
converge even closer to p = 0.4. This empirical result demonstrates the unbi-
asedness property of p̂n that we proved rigorously in Appendix B.1.2.

Consistency of the estimator of the probability parameter in an
ER random network
While unbiasedness is valuable, its statement is limited: it only guarantees that
the average of repeated estimates over infinite experiments would equal the true
probability. In practice, we often observe only one network. A more desirable
property would be that our estimator p̂n of the underlying parameter p is reliable
when we collect sufficient data.

This property is called asymptotic consistency, or simply consistency. An es-
timator is asymptotically consistent if it converges in probability to the true
underlying parameter as the number of network nodes increases.

Mathematically, asymptotic consistency means that for any ε > 0, Pr(|p̂n −
p| > ε) → 0 as the number of nodes approaches infinity. In other words, given
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a sufficiently large network, probability estimates will be arbitrarily close to the
network’s true probability p.

To prove this statement, we begin by computing the variance of p̂n. Using the
definition of p̂n:

var(p̂n) = var

(
m(
n
2

))
Since the variance of a constant times a random quantity is that constant

squared times the variance of the random quantity:

var(p̂n) =
1(
n
2

)2 var (m)

We need the variance of m, where m =
∑
i<j aij . For independent-edge ran-

dom networks, the aij are independent, so the variance of their sum is the sum
of their variances:

var(p̂n) =
1(
n
2

)2 ∑
i<j

var(aij)

All edges have the same probability p and thus the same distribution, so their
variances are identical. There are

(
n
2

)
possible edges where i < j, so:

var(p̂n) =
1(
n
2

)2 · (n2
)
var(aij)

=
1(
n
2

)var(aij). (B.3)

Now we compute the variance of aij . Recall that var(x) = E[(x− E[x])2]:

var(aij) = E[(aij − E[aij ])
2].

We know E[aij ] = p, so:

var(aij) = E[(aij − p)2] = E[a2
ij − 2paij + p2].

Using linearity of expectation and that p2 and 2p are constant:

var(aij) = E[a2
ij ]− 2pE[aij ] + p2 = E[a2

ij ]− 2p2 + p2, E[aij ] = p

= E[a2
ij ]− p2.

We need the second moment of aij . Using the law of total expectation:
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E[a2
ij ] =

∑
a∈0,1

a2 · Pr(aij = a)

Since aij is 0 with probability (1− p) and 1 with probability p:

E[a2
ij ] = 12 · p+ 02 · (1− p) = p

Therefore:

var(aij) = p− p2 = p · (1− p).

Combining this with Equation (B.3):

var(p̂n) =
1(
n
2

) · p(1− p) =
p(1− p)(

n
2

) . (B.4)

We complete this proof using Chebyshev’s inequality. For a random variable
x with finite mean E[x] = µ and finite variance σ2, Chebyshev’s inequality states
that for any k > 0:

Pr(|x− µ| ≥ kσ) ≤ 1

k2
.

Chebyshev’s inequality upper-bounds the probability that the difference be-
tween a random quantity and its mean µ exceeds kσ. For continuous random
variables, the distinction between ≥ (from Chebyshev’s inequality) and > (from
our original goal) is often negligible.

Noting that σ is a constant parameter of p̂n, and setting k = ε
σ with the mean

of p̂n being p, we get:

Pr
(
|p̂n − p| ≥

ε

σ
σ
)
≤ 1(

ε
σ

)2 ,
≤ σ2

ε2

Where σ2 is the variance of p̂n. Using the result from Equation (B.4) for σ2:

Pr (|p̂n − p| ≥ ε) ≤
p(1− p)(

n
2

)
ε2

,

≤ 1(
n
2

) p(1− p)
ε2

,

where p and ε are constants. Recalling that
(
n
2

)
= 1

2n(n− 1):
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Remark B.1.1 Finer points of ≥ and > when illustrating asymptotic
consistency

The original statement for asymptotic consistency used > ε, whereas our proof
used ≥ ε. The distinction is negligible here due to the arbitrariness of ε and
the continuity of p̂n. For a detailed discussion, consult a probability theory
textbook such as [2].

Pr (|p̂n − p| ≥ ε) ≤
1

n(n− 1)

2p(1− p)
ε2

As n grows, this upper-bound approaches zero. Because probabilities are non-
negative and the probability is upper-bounded by something converging to zero,
the probability itself must also approach zero. This is known as the “sandwich
theorem”, because the probability is “sandwiched” between an upper-bound and
its natural lower bound of zero.

Therefore, Pr(|p̂n − p| ≥ ε)→ 0 as n approaches infinity, demonstrating that
p̂n is asymptotically consistent.

Showing Consistency with Simulations
Asymptotic consistency describes the limiting behavior of p̂n as n grows. We
must consider multiple choices of n to demonstrate that the difference |p̂n − p|
diminishes with high probability as n increases.

We select n as powers of 2 from 23 = 8 to 27 = 128. For each n, we perform
100 simulations, each yielding an estimate of the probability. This simulation
may take several minutes:

from pandas import DataFrame

ns = [8, 16, 32, 64, 128]

nsims = 200

p = 0.4

results = []

for n in ns:

for i in range(0, nsims):

A = gp.simulations.er_np(n, p, directed=False, loops=False)

phatni = gp.models.EREstimator(directed=False, loops=False).fit(A).p_

results.append({"n": n, "i": i, "phat": phatni})

res_df = DataFrame(results)

res_df["diff"] = np.abs(res_df["phat"] - p)

Figure B.3 displays the results. The solid line represents the sample empirical
average difference |p̂n− p|, estimating E[|p̂n− p|]. The gray ribbon encompasses
the middle 95% of the empirical differences. As the number of nodes increases,
the difference between p̂n and p decreases, evident in both the decreasing average
difference and the narrowing gray ribbon. This trend towards zero demonstrates
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Figure B.3 A plot of the average difference |p̂n − p| (solid black line), and the range in
which 95% of the empirical samples fall (gray ribbon).

that for any ε, we can find a sufficiently large n such that |p̂n−p| exceeds ε with
very low probability, empirically supporting asymptotic consistency.

B.1.3 MLE for SBM

For a realization A of a random network A ∼ SBMn(~z,B) (an a priori SBM),
we derived the probability:

Prθ(A) =
∏

k,k′∈[K]

b
mk′k
k′k · (1− bk′k)

nk′k−m
k′k ,

where nk′k =
∑
i<j 1zi=k1zj=k′ represents the number of possible edges be-

tween nodes in community k and k′, and mk′k =
∑
i<j 1zi=k1zj=k′aij represents

the number of edges in the realization A between nodes within communities k
and k′.

The log-likelihood of Prθ(A), equal to the log of the probability above, is:

`(θ;A) =
∑

k,k′∈[K]

[mk′k log bk′k + (nk′k −mk′k) log(1− bk′k)] .

Each block (between communities k and k′) behaves similarly to an ER net-
work; note the similarities between this expression and Equation (B.2). The a
priori SBM resembles a collection of communities of ER networks. Taking the
partial derivative of logPrθ(A) with respect to any probability term bl′l reveals:

∂

∂bl′l
`(θ;A) =

∂

∂bl′l

∑
k,k′∈[K]

mk′k log bk′k + (nk′k −mk′k) log(1− bk′k),

=
∑

k,k′∈[K]

∂

∂bl′l
[mk′k log bk′k + (nk′k −mk′k) log(1− bk′k)] .
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For summands where k 6= l and k′ 6= l′, the partial derivative with respect to
bl′l is 0:

∂

∂bl′l
[mk′k log bk′k + (nk′k −mk′k) log(1− bk′k)] = 0,

as the quantity to the right of the partial derivative is not a function of bl′l.
Therefore:

∂

∂bl′l
`(θ;A) = 0 +

∂

∂bl′l
[ml′l log bl′l + (nl′l −ml′l) log(1− bl′l)]

=
ml′l

bl′l
− nl′l −ml′l

1− bl′l
= 0,

⇒ b∗l′l =
ml′l

nl′l
.

Omitting the second derivative test and a test of the extremes of b̂l′l (0 or 1),
we conclude that the MLE of the block matrix B for an a priori SBM random
network A is the matrix B̂ with entries:

b̂l′l =
ml′l

nl′l
.

Consistency and unbiasedness of the estimate for the
probability parameter in an a priori SBM network
The estimator of the probability parameter b̂l, l′ is unbiased and consistent for
the probability bl, l′, similar to the argument made for the probability parameter
p̂ in an ER network. The key difference lies in the need for these statements to
apply to each community in the SBM. The unbiasedness result for the a priori
SBM closely resembles that of the ER random network.

B.1.4 MLEs for other flavors of random networks

The standard a priori SBM has several variations, such as the a priori degree-
corrected SBM (DCSBM). The approaches described here apply to these SBM
variants as well. While we do not provide explicit proofs to minimize mathe-
matical complexity, readers are encouraged to consider how to obtain reasonable
(unbiased and consistent) estimates for the parameters of these models. As a
starting point, the MLE of the degree correction for a node i is:

θ̂i =
di
m

where di represents the node degree of node i, and m represents the total
number of nodes in the network. This estimator would then be incorporated
into the likelihood function for the DCSBM, facilitating the determination of
the maximum likelihood estimate for each block probability.
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B.1.5 Limitations of MLE for a posteriori models and Random Dot Product Graphs

The a posteriori Stochastic Block Model introduces additional complexity with
its pair of parameters: the block matrix, B, and the community probability
vector, ~π. The log-likelihood for an a posteriori SBM is:

L(θ;A) =
∑
~τ∈T

K∏
k=1

[
πnk

k ·
K∏
k′=1

b
mk′k
k′k (1− bk′k)nk′k−mk′k

]
Taking the logarithm yields:

`(θ;A) = log

(∑
~τ∈T

K∏
k=1

[
πnk

k ·
K∏
k′=1

b
mk′k
k′k (1− bk′k)nk′k−mk′k

])
While the logarithm of a product simplifies to a sum of logarithms, no such

simplification exists for the logarithm of a sum. Consequently, finding a closed-
form expression for an MLE becomes extremely complex. Similar challenges arise
when applying MLE to the RDPG or other sophisticated network models.

Approximation techniques, such as expectation maximization (EM), offer po-
tential strategies for estimating the maximum likelihood. However, we opt in-
stead for spectral methods, introduced in Chapter 5, which provide comparable
performance with less computational complexity.
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B.2 Theoretical considerations for spectral embeddings

B.3 Spectral Method Theory

This section requires a firm understanding of linear algebra, matrix analysis, and
multivariate probability theory. While we have introduced some concentration
inequalities in Appendix B.1, readers should understand how these concepts
extend to random vectors and matrices. We recommend reviewing the primer by
[3] on concentration inequalities before proceeding. For more detailed derivations,
see [4].

Disclaimer about classical statistical asymptotic theory
Network analysis presents unique challenges for deriving large sample proper-
ties of estimators. The concept of sample size becomes ambiguous in network
settings. In classical statistics, sample size typically refers to the number of in-
dependent observations, such as poll participants. Networks, however, consist of
interdependent edges formed by interactions between nodes.

Nodes are often the sampled units in network analysis. Yet each additional
node introduces a new set of interactions with existing nodes, often necessitating
more parameters in the model. Recent literature has addressed some of these
challenges for the models and estimators introduced in Chapter 5.

B.3.1 Adjacency spectral embedding

This section summarizes important results on spectral embeddings, focusing on
the theoretical properties of the adjacency spectral embedding (ASE) introduced
in Section 5.3. The utility of ase is clarified in the context of the random dot
product graph (RDPG) model from Section 4.4. For a more formal treatment of
RDPGs, refer to Appendix A.6. For a comprehensive review of these results, see
[4] and [5].

Our analysis examines how effectively spectral embedding methods estimate
the latent positions of a random network generated from the RDPG model.
Ideally, these embeddings should closely approximate the true latent positions.
The results presented here demonstrate that these estimates converge to the true
positions as the network size increases. Furthermore, we characterize the limiting
distribution of these estimates, analogous to classical central limit theorems in
statistics.

Consider a random adjacency matrix A ∼ RDPGn(F ), where the latent posi-
tions ~xi

iid∼ F for all nodes i. Recall from Appendix A.6 that F is a distribution
supported on the intersection of the unit ball and the non-negative orthant.

We express the latent position matrix as X = [~x1, . . . , ~xn]>, where row i

contains the vector ~xi ∈ Rd representing the latent position of node i. The
upper-triangular entries of A are independent with probability:
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Pr(aij = 1) = ~x>i ~xj , for all i < j.

We denote the d-dimensional adjacency spectral embedding of A as X̂ =

ase(A, d) ∈ Rn×d.

Statistical error of the adjacency spectral embedding
Consistency
The latent position matrix X of network A encodes crucial node properties,
such as community assignments and the latent geometry characterizing edge
probabilities (as noted in Section 5.3). The proximity between true and estimated
latent positions (obtained from ase)depends on several factors.

Comparing estimated and true latent positions presents an unavoidable chal-
lenge: the non-identifiability problem of random dot product graphs (see Concept
5.5.5). Given a matrix X, we can find another matrix Y ∈ Rn×d producing the
same edge probability matrix:

P = XX> = YY>.

Generally, if the columns of X are linearly independent, all matrices Y sat-
isfying this relation are equal up to a linear transformation by an orthogonal
matrix. Specifically, there exists a matrix W of size d × d such that Y = XW,
where W satisfies W>W = I. These transformations include rotations in Rd, re-
flections, or combinations thereof, all preserving inner products and maintaining
relative distances between latent positions. For example, changing the signs of
X’s columns (reflection) does not alter the inner products of their rows, leaving
matrix P unaffected.

To ensure the columns of X are linearly independent with high probability, we
make a technical assumption: the second moment matrix ∆ = E[~xi~x

>
i ] ∈ Rd×d

has non-zero eigenvalues. This condition simplifies the types of non-identifiabilities
we may encounter, as the probability of having correlated columns in X becomes
negligible for sufficiently large n.

The first result we examine concerns the error of the adjacency spectral embed-
ding (ase) method, which is the difference between X and the estimated latent
position matrix X̂. This estimator consistently estimates the latent positions:
as the sample size (number of nodes) increases, the estimated latent positions
converge to the true latent positions. We can quantify the typical distance be-
tween these matrices explicitly in terms of the sample size n, the dimension of
the latent positions d, and a constant c that depends only on the distribution of
the latent positions F .

Specifically, with probability approaching one as n approaches infinity, the
largest distance between the true and estimated latent positions satisfies:
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max
i∈[n]
|~̂xi −W~xi| ≤

c
√
d log2 n√
n

.

Here, W ∈ Rd×d is an orthogonal matrix (dependent on X̂ and X) that
accounts for the non-identifiability of the latent positions. This equation demon-
strates that the true and estimated latent positions (after an appropriate or-
thogonal transformation) are uniformly close to each other and converge as n
increases. We use the term "uniformly close" because the constant c applies to
all n nodes. Note that the error rate also depends on the model dimension d; as
d increases, the parameter space expands, leading to increased estimation error.

Asymptotic normality
A further result on the asymptotic properties of ase concerns the distribution
of the estimation error—the difference between the estimated latent position ~̂xi
(for a given node i) and the true parameter ~xi. While consistency ensures this
difference shrinks with n (after proper orthogonal transformation), more precise
quantification of this difference is necessary for certain statistical tasks, such as
hypothesis testing or confidence interval estimation, which require knowledge of
the estimation error’s distributional properties.

Distributional results for the rows of the adjacency spectral embedding demon-
strate that the error in estimating true latent positions converges to a mixture of
multivariate normal distributions as the network size grows. Specifically, the dif-
ference between X̂ and X, after a proper orthogonal transformation Wn ∈ Rd×d
converges to this mixture distribution.

We can express the multivariate cumulative distribution function for a given
vector ~z ∈ Rd as:

Pr
(√

n
(
~̂xi −Wn~xi

)
≤ ~z
)
−−−−→
n→∞

∫
RdΦd (~z,Σ(~x)) dF (~x),

where Φd(·,Σ(~x)) is the cumulative distribution function of a d-dimensional
multivariate normal distribution with zero mean and covariance matrix Σ(~x) ∈
Rd×d. The integral on the right-hand side operates over all possible values of
~x ∈ Rd, integrated with respect to the distribution of the latent positions, which
are sampled independently from F . The covariance matrix Σ(~x) depends on a
specific latent position value ~x ∈ Rd, and is given by:

Σ(~x) = ∆−1E
[
~xi~x
>
i (~x>~xi −

(
~x>~xi)

2
)]

∆−1.

For certain distribution classes, this expression can be further simplified to
yield a more specific form of the asymptotic distribution of ~̂xi. For instance, in
an a priori stochastic block model, ~̂xi can only take a finite number of different
values, and the distribution F has mass points on these values, allowing for an
explicit formula for the covariance matrix and asymptotic distribution.



500 Learning representations theory

The two results presented in this section establish the fundamental properties
of adjacency spectral embedding under the RDPG model. However, these find-
ings extend beyond this particular method and model. Researchers have devel-
oped extensions of these results to encompass a broader class of network models,
including the GRDPG [6].

Similar results exist for other embedding methodologies. For example, the
Laplacian spectral embedding (LSE, introduced in Section 5.4) exhibits proper-
ties analogous to ase, namely consistent estimates with known asymptotic dis-
tributions. However, the precise formulation of these theorems for LSE is more
complex.

B.3.2 Example: Erdös-Rényi networks and the adjacency spectral embedding

The Erdös-Rényi (ER) model, introduced in Section 4.2 and Appendix A.3,
represents the simplest example of a Random Dot Product Graph, where all
edge probabilities are identical. Consider A ∼ ERn(p), for some probability p.

We can express the distribution of this network using a one-dimensional latent
position matrix ~x = (x1, . . . , xn)> (non-random in this case), with all entries
equal to √p, yielding:

Pr(aij) = xixj = p.

Thus, we can think of ERn(p) as an RDPG with latent position distribution
F = δ√p, where δ√p is the Dirac delta distribution assigning positive probability
only to the mass point √p. This representation reveals a non-identifiability in
the model, as both ~x and −~x result in the same edge probabilities. For practical
purposes, the choice between these two representations is inconsequential.

The adjacency spectral embedding of A is given by ~̂x = ase(A, 1) =
√
λ̂λλ~̂v.

The error in estimating ~x from ~̂x should decrease as the network size increases:

max
i∈[n]
|x̂i −

√
pwn| ≤

c log2 n√
n

.

Here, wn functions as a one-dimensional orthogonal matrix accounting for the
model’s non-identifiability. In other words, wn equals either 1 or -1, reflecting
the sign ambiguity of the singular vectors.

Let us examine how this works in practice. We begin by simulating 50 networks,
with increasing numbers of nodes ranging from approximately 30 to 3000. We
embed each network into a single dimension with ase, and then align the signs
of the estimated latent positions with the true latent positions to address the
non-identifiability issue using Orthogonal Procrustes (Section 7.3). The following
code block requires approximately 3 minutes to execute on a laptop:

import numpy as np

from graspologic.simulations import er_np
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Figure B.1 A plot illustrating the uniform closeness between the estimates of ~xi and
~x =
√
p.

from graspologic.embed import AdjacencySpectralEmbed

def orthogonal_align(Xhat, p=0.5):

return -Xhat if ((Xhat*np.sqrt(p)).sum() < 0) else Xhat

p = 0.5

ns = np.round(10**np.linspace(1.5, 3.5, 5)).astype(int)

ase = AdjacencySpectralEmbed(n_components=1)

nrep = 50

As = [[er_np(n, p) for _ in range(nrep)] for n in ns]

Xhats_aligned = [[orthogonal_align(ase.fit_transform(A)) for A in An] for An in As]

Next, we compute the maximum difference between the estimated latent po-
sitions (after alignment) and √p for each network. We divide this difference by
log2(n) and multiply by

√
n:

import pandas as pd

data = []

for n_idx, n in enumerate(ns):

for j in range(50):

data.extend([(Xhats_aligned[n_idx][j][i][0], i, n, j, np.sqrt(p)) for i in

range(n)])

df = pd.DataFrame(data, columns=["Xhat", "i", "n", "j", "X"])

df["abs_diff"] = np.abs(df["Xhat"] - df["X"])

max_pernet = df.groupby(["n", "j"])["abs_diff"].max().reset_index()

max_pernet["norm_factor"] = np.log(max_pernet["n"])**2 / np.sqrt(max_pernet["n"])

max_pernet["norm_diff"] = max_pernet["abs_diff"] / max_pernet["norm_factor"]

Figure B.2 plots max_pernet["norm_diff"] as the average (solid line) and 95%
probability interval (shaded ribbon) for each value of n. If there exists a constant
value c such that, as n grows, the values consistently fall below this constant with
increasing probability, we have empirically demonstrated the desired result. As
observed, this value decreases rapidly as we increase the number of nodes. We
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Figure B.2 A plot illustrating the density histograms of the limiting factors√
n(x̂i −

√
p), as n increases (black histogram) against the density for the normal

distribution with mean 0 and standard deviation 1− p (gray dashed).

could choose virtually any constant attained by this curve (for instance, 0.10).
The plot demonstrates that as the number of nodes approaches infinity, the
probability that the y-axis values are less than our chosen constant approaches
1, as desired.

We can also derive an expression for the asymptotic distribution of the dif-
ference between the true and estimated positions. Since F has only one point
mass at √p, we can evaluate integrals and expectations with respect to this
distribution:

∫
Rd

Φ(z,Σ(x)),dF (x) = Φ (z,Σ(
√
p)) .

We obtain the exact form of the covariance term Σ(x) from the second moment
matrix ∆ = E[x2

i ] = p:

Σ(x) =
1

p2
E[p(x

√
p− (x

√
p)2)].

Combining these results, we find that the limiting distribution of the difference
between x̂ and x satisfies:

√
n (x̂i −

√
p) −−−−→

n→∞
N (0, 1− p) for each node i = 1, . . . , n.

We implement this in Python as follows:

df_reduced = df[df["j"] == 0].copy()

df_reduced["limiting_factor"] = np.sqrt(df_reduced["n"]) * (df_reduced["Xhat"] -

df_reduced["X"])

We show the distribution of the factors
√
n(x̂i −

√
p) for a single network

for each value of n in Figure B.2 (black histograms). We plot these limiting
factors against the pdf for an appropriate normal distribution with mean 0 and
standard deviation 1−p (gray dashed line). As n grows, the limiting distribution
of
√
n(x̂i −

√
p) approaches the desired normal distribution.
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B.3.3 Application: two-network hypothesis testing

The results previously discussed demonstrate that the true and estimated latent
positions are close to each other, and in fact, their distance gets smaller as n
increases. As such, ase provides an accurate estimator of the latent positions.
This result justifies the use of X̂ in place of X for subsequent inference tasks, such
as community detection, vertex nomination, or classification. The theoretical
results for ase have multiple implications. One of them is that the estimated
latent positions carry almost the same information as the true latent positions,
and we can even quantify how different they are. This is particularly useful for
performing statistical inference tasks about node properties. Here we consider
one of these tasks: two-sample hypothesis testing [7].

Comparing the distribution of two populations is a frequent problem in statis-
tics and across multiple domains. In classical statistics, a typical strategy to
perform this task is to compare the mean of two populations by using an ap-
propriate test statistic. Theoretical results on the distribution of this statistic
(either exact or asymptotic) are then used to derive a measure of uncertainty for
this problem (such as p-values or confidence intervals). Similarly, when compar-
ing two observed networks, we may wonder whether they were generated by the
same mechanism. The results discussed before have been used to develop valid
statistical tests for two-network hypothesis testing questions.

A network hypothesis test for the equivalence between the latent positions of a
pair of networks with aligned nodes can be constructed by using the estimates of
the latent positions. Formally, letX,Y be the latent position matrices, and define
A ∼ RDPG(X), B ∼ RDPG(Y ) as independent random adjacency matrices.
We can test whether the two networks have the same distribution by comparing
their latent positions via a hypothesis test of the form:

H0 : X =W Y against Ha : X 6=W Y,

where X =W Y denotes that X and Y are equivalent up to an orthogonal matrix
W ∈ Od, where Od is the set of d× d orthogonal matrices. Since we do not have
access to the true latent positions, we can use the estimates X̂ and Ŷ to construct
a test statistic. This test statistic is defined as

t =
minW∈Od

‖X̂W − Ŷ ‖F√
dγ−1(A) +

√
dγ−1(B)

.

Here, ‖X̂W − Ŷ ‖F is the Frobenius distance between the estimated latent po-
sitions (after adjusting for the non-identifiability). This distance compares how
similar the two latent positions are. It is therefore natural to think that larger
values of this distance will give more evidence against the null hypothesis.

The test statistic also incorporates a normalizing constant of the form
√
dγ−1(A)+√

dγ−1(B). Here σ1(A) ≥ . . . ≥ σn(A) ≥ 0 denote the singular values of A (sim-
ilarly for B), δ(A) = maxi∈[n]

∑n
j=1 aij denotes the largest observed degree of
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the network, and:

γ(A) =
σd(A)− σd+1(A)

δ(A)

is a constant that standardizes the test statistic. It can be shown under appropri-
ate regularity conditions that, under the null hypothesis, this test statistic will
remain bounded with high probability by a constant that depends on the sig-
nificance level of the test, and will diverge with n for some specific alternatives.
Thus, t provides a way to construct a consistent test for the hypothesis testing
problem described above.

B.4 Theory for Multiple Network Models

Models for multiple network data often assume that there is a known one-to-
one correspondence between the nodes of the networks. If this correspondence is
unknown, an estimate can be obtained via graph matching (Section 7.3). Once
the nodes are correctly matched, models for multiple networks exploit the shared
structure across the networks to obtain accurate estimates. In this section we
review theoretical challenges in these circumstances. Excellent academic survey
papers such as [8], [9], or [10] span this problem space.

Given a pair of network adjacency matrices A and B with n nodes each (but
possibly permuted), the graph matching problem seeks to align the networks by
identifying the correct correspondence between their nodes. This alignment can
be achieved by finding a permutation matrix P of size n × n that makes the
networks A and P>BP similar.

Many methods exist to perform graph matching. Here we focus on the following
optimization problem (which is reviewed more thoroughly in Section 7.3):

P̂ = argminP|A−P>BP|2F .

The accuracy of node matching across networks depends on this estimated per-
mutation matrix P̂. We denote by P∗ the true permutation matrix that aligns
the two networks, which is the object we aim to estimate. In principle, if a unique
solution exists that gives A = (P∗)>BP∗, the two networks are isomorphic (i.e.,
equal up to some permutation of the nodes), and matching the nodes across the
networks is possible. However, in the presence of noise (which is typically the
case), the networks are not isomorphic, and hence the solution to the optimiza-
tion problem above becomes more relevant.

The literature has studied the feasibility of finding the correct matching under
different random network models, including correlated Erd"os-R’enyi networks.
This section reviews some of the results for the correlated Erd"os-R’enyi (ER)
model described in 4.9.3 and developed in [11].

The correlated ER model has two parameters: the edge probability and the cor-
relation across a pair of networks. These parameters are crucial in understanding
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the feasibility of solving the graph matching problem. The edge probability con-
trols the amount of information present in each network. If it is close to zero, the
information available to match the networks is low, making the problem harder.
The correlation parameter controls the level of similarity across the networks. A
large correlation value facilitates network matching, as the edges exhibit simi-
lar or exactly the same patterns in both networks. Formally, given parameters
q ∈ (0, 1) and ρ ∈ [−1, 1], the n×n adjacency matrices A and B are distributed
as correlated ER random networks if each network is marginally distributed as
an ER of the form A ∼ ERn(qn), B ∼ ERn(qn), but the edge pairs satisfy
Corr(aij ,bij) = ρ. If ρ = 0, the networks are independent realizations of an ER
network with no common structure between them. If ρ = 1, the networks are
isomorphic. We denote the two networks as A,B ∼ ρERn(qn).

Having defined the model, we next consider whether the solution of the graph
matching optimization problem (defined in Concept 7.3.4) recovers the correct
solution. Under the correlated ER model, this recovery is possible when the
correlation between the networks and the edge probability are sufficiently large.

Formally, if ρ ≥ c1
√

logn
n and qn ≥ c2 logn

n , for two positive fixed constants c1
and c2, the solution of the graph matching problem is correct with high prob-
ability when the graphs are sufficiently large. These conditions ensure that the
correlation across the networks is large enough to provide sufficient shared in-
formation, while the edge density is sufficiently above zero to ensure enough
edges within each network. Stronger versions of this result have been developed
to study sharp information thresholds for the exact recovery of the matching
solution. While finding the solution of the graph matching optimization problem
is NP-hard, many efficient algorithms with theoretical guarantees on exact re-
covery have been developed in recent years. These topics, however, are beyond
the scope of this book [12].

B.4.1 Joint spectral embeddings

Omnibus Embedding (omni)
The omnibus embedding described in 5.5.4 jointly estimates the latent positions
under the joint random dot product network (JRDPG) model, which is discussed
in Section 4.9.1. Briefly, the model is {A(1), . . . ,A(M)} ∼ JRDPGn,M (Xn),
where the rows of Xn ∈ Rn×d are iid samples from some distribution F with
realizations in Rd. Let O ∈ RMn×Mn be the omnibus matrix of A(1), . . . ,A(m)

and Ẑn = ase(O, d) ∈ Rmn×d.
Under this setting, it can be shown that the rows of Ẑn are a consistent

estimator of the latent positions of each individual network as n→∞, and that:

max
i∈[n],m∈[M ]

∥∥∥(Ẑn)(m−1)n+i −Wn(Xn)i

∥∥∥ ≤ c
√
M log(Mn)√

n
. (B.5)

for some constant c. In words, this illustrates that the estimated latent positions
(Zn)(m−1)n+i (a vector) for a given network m and a given node i are uniformly
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close to the underlying latent position matrix (Xn)i, with respect to the same
orthogonal transform Wn across all networks. The omnibus embeddings for each
network are therefore “aligned” to one another (since they are all aligned to the
underlying latent positions up to the same orthogonal transformation).

Furthermore, a central limit theorem for the rows of the omnibus embedding
asserts that:

lim
n→∞

Pr
{√

n
(
Wn(Ẑn)(m−1)n+i − (Xn)i

)
≤ ~z
}

=

∫
Rd

Φ
(
~z, Σ̂(~x)

)
dF (~x),

(B.6)

for some covariance matrix Σ̂(x). For more details, check out the original paper
at [13].

Multiple adjacency spectral embedding (mase)
The COSIE model described in 4.9.2 gives a joint model that characterizes
the distribution of multiple networks with expected probability matrices that
share the same common invariant subspace. The mase algorithm in 5.5.3 is a
consistent estimator for this common invariant subspace, and results in asymp-
totically normal estimators for the individual symmetric matrices. Specifically,
let Sn ∈ Rn×d be a matrix with orthonormal columns (that is, S>S = Id) and
R

(1)
n , . . . ,R

(M)
n ∈ Rd×d score matrices such that P

(l)
n = SnR

(l)
n S>n ∈ [0, 1]n×n,

(A
(1)
n , . . . ,A

(M)
n ) ∼ COSIEn,M

(
Sn; R

(1)
n , . . . ,R

(M)
n

)
, and Ŝn, R̂

(1)
n , . . . , R̂

(1)
n be

the estimators obtained by mase. Under appropriate regularity conditions and
sufficient enough signal on each network, the estimate for Sn is consistent as
n,M →∞, and there exists some constant c > 0 such that:

E
[

min
W∈Od

∥∥∥Ŝn − SnW
∥∥∥
F

]
≤ c

(√
1

Mn
+

1

n

)
. (B.7)

where Od is the set of d-dimensional orthogonal matrices. In other words, the
expected difference between the shared latent positions and the true latent po-
sitions (up to an optimal orthogonal transformation) shrinks as the number of
nodes and number of networks increases.

In addition, the entries of R̂
(m)
n , m ∈ [M ] are asymptotically normally dis-

tributed. Namely, there exists a sequence of orthogonal matrices Wn such that:

1

σm,j,k

(
R̂(m)
n −W>

nR(m)
n Wn + H

(m)
M

)
jk

D−→ N (0, 1),

as n → ∞, where: E[‖H(m)
M ‖] = O

(
d√
M

)
and σ2

m,j,k = O(1). In other words,

the entries of R̂
(m)
n are normally distributed about the underlying score matrices

R
(m)
i when properly oriented by the orthogonal matrix W, where this orthogonal

transformation is the same across all networks. For more details about the mase

algorithm, see [14].
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Appendix C Overview of machine
learning techniques

This section contains useful intuition for machine learning techniques that are
used without introduction in the main content of the book.

1 Section C.1 introduces the concept of unsupervised learning, and gives an
overview of the K-means algorithm.

2 Section C.2 discusses the Bayes plugin classifier, which is a simple classifier
that is useful for Signal Subnetworks.

C.1 Unsupervised machine learning

To start this section off, we generate an example network with K = 3 communi-
ties, similar to the one we used in Section 6.1:

from graspologic.simulations import sbm

from graspologic.embed import AdjacencySpectralEmbed as ASE

import numpy as np

ns = [50, 40, 30]

B = [[0.6, 0.2, 0.2],

[0.2, 0.6, 0.2],

[0.2, 0.2, 0.6]]

np.random.seed(1234)

A = sbm(n=ns, p = B)

# the true community labels

z = [0 for i in range(0,ns[0])] + [1 for i in range(0, ns[1])] + [2 for i in range(0,

ns[2])]

Xhat = ASE(n_components=3).fit(A).latent_left_

C.1.1 K-means clustering

K-means clustering allows us to learn about clusters in our dataset through the
following process:

• Given: Estimates of latent positions ~xi for each node i from 1 to n, and a
number of clusters K.
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Figure C.1 (A) the centers for K-means from the previous iteration for each of the K
clusters, (B) the cluster assignments for each point, (C) the updated centers, based
on the cluster assignments.

• Output: Predicted labels zi for each node i from 1 to n.

K-means is an unsupervised clustering technique that learns latent structure
from data without prior information about node communities. It finds reasonable
guesses for the "centers" of latent structure blobs in the dataset. The algorithm
then assigns each point to its closest center to predict community labels.

To define "closest", we use the Euclidean distance introduced in Concept 5.5.6.
For two points ~xi and ~xj in d dimensions, the Euclidean distance is:

‖~xi − ~xj‖2 =

√√√√ d∑
l=1

(xil − xjl)2

To illustrate the K-means process graphically, we examine a pairplot of the
second and third dimensions:

from pandas import DataFrame

import seaborn as sns

import matplotlib.pyplot as plt

data = DataFrame({"Dimension 2" : Xhat[:,1], "Dimension 3" : Xhat[:,2]})

palette = {"0" : "blue", "1": "green", "2": "red"}

fig, ax = plt.subplots(1, 1, figsize=(6, 4))

sns.scatterplot(data=data, x="Dimension 2", y="Dimension 3", color="gray", ax=ax)

ax.set_title("Estimates of latent positions");

K-means requires initial center positions. While there are strategic methods
for initialization (e.g., sklearn’s kmeans++), we will use arbitrary starting locations
for simplicity:

centers = np.array([[.5, .5], [-0.05, 0.05], [-0.05, -0.05]])

datcenters = DataFrame({"Dimension 2": centers[:,0], "Dimension 3": centers[:,1],

"Cluster": ["0", "1","2"]})

Figure C.1(A) shows the initial center locations. We then identify which points
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are closest to each cluster center by computing the distance between each latent
position estimate and the three centers. The smallest distance determines the
point’s cluster assignment:

from scipy.spatial import distance_matrix

distances = distance_matrix(Xhat[:,1:3], centers)

assignment = np.argmin(distances, axis=1)

data["Closest Center"] = assignment.astype(str)

Figure C.1(B) visualizes the point assignments. Some cluster centers are close
to the center of blobs, but not always.

We now update our centers by taking the mean value (for each dimension) of
the points which are assigned to that cluster:

centers = np.array([np.mean(Xhat[assignment == k,1:3], axis=0) for k in range(0, 3)])

datcenters = DataFrame({"Dimension 2": centers[:,0], "Dimension 3": centers[:,1],

"Cluster": ["0", "1","2"]})

Figure C.1(C) illustrates the updated centers. The centers have shifted to the
approximate midpoint of the points previously assigned to each center based on
the old center positions. After one iteration, the centers appear well-positioned
relative to the discernible data blobs.

For the second iteration, we treat the points as unlabeled again. We recompute
the closest center for each point and update the centers accordingly:

distances = distance_matrix(Xhat[:,1:3], centers)

assignment = np.argmin(distances, axis=1)

centers_new = np.array([np.mean(Xhat[assignment == k,1:3], axis=0) for k in range(0, 3)])

data["Closest Center"] = assignment.astype(str)

This procedure repeats until the centers stabilize. Determining when to stop is
an area of ongoing research, known as the stopping criterion. After two iterations,
we typically observe fairly homogeneous blobs, with points from each of the three
clusters assigned to the same cluster.

We can automate this process and produce predicted labels using sklearn:

from sklearn.cluster import KMeans

labels_kmeans = KMeans(n_clusters = 3, random_state=1234).fit_predict(Xhat)

To verify that we have identified the visually apparent blobs as uniform clus-
ters, we can examine the pairs plot with the predicted labels:

from graspologic.plot import pairplot

_ = pairplot(Xhat, labels=labels_kmeans, title="Pairplot of embedding of $A$",

legend_name="Predicted Cluster")
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Figure C.2 A pairplot of the latent positions for the network, with points colored by
their predicted cluster assignment (via K-means).

Figure C.2 illustrates the resulting K-means clustering. The discernible blobs
from the latent positions are largely assigned to the same predicted clusters. We
use these predicted cluster labels as the predicted communities for our Stochastic
Block Model.

C.1.2 Evaluation of unsupervised learning techniques

Simulated data allows us to evaluate the quality of predicted community assign-
ments against true community assignments. However, predicted labels may not
align directly with true labels. True communities often impart meaningful infor-
mation about the dataset (e.g., "School 1", "School 2", "School 3" rather than
0, 1, and 2). Since the clustering algorithm operates without prior knowledge of
communities, predicted clusters do not necessarily correspond to original com-
munity names. For example, points in true community 0 might be assigned to
predicted community 2, as the algorithm arbitrarily assigns cluster labels.

Visualizing prediction homogeneity with the confusion matrix
To address this limitation in evaluation, we employ a confusion matrix. A con-
fusion matrix compares two sets of labels for a group of data points: one set of
known true labels and another set of labels whose correspondence to the true
labels is unknown. For L possible true label values and K possible predicted
label values, the confusion matrix takes the form:
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Figure C.3 (A) the confusion matrix, and (B) the normalized confusion matrix for a
K-means clustering.

c11 . . . c1K
...

. . .
...

cL1 . . . cLK

 ,
where each entry clk corresponds to the total number of points which are pre-
dicted to be in group l but have a true label of group k. We can compute and
plot the confusion matrix using a heatmap:

from sklearn.metrics import confusion_matrix

# compute the confusion matrix between the true labels z

# and the predicted labels labels_kmeans

cf_matrix = confusion_matrix(z, labels_kmeans)

Figure C.3(A) illustrates the confusion matrix. An effective clustering typically
results in a large proportion of nodes with a particular true label being assigned
to the same predicted label. In this case, the predictions are homogeneous, with
each predicted label corresponding to a single true label.

For a more generalizable approach, we normalize the confusion matrix by
dividing the counts by the total number of points assigned to each true label:

cfm_norm = cf_matrix/cf_matrix.sum(axis=1)[:,None]

from graphbook_code import cmaps

fig, ax = plt.subplots(1,1, figsize=(6,4))

sns.heatmap(cfm_norm, cmap=cmaps["sequential"], ax=ax)

ax.set_title("Normalized confusion matrix")

ax.set_ylabel("True Label")

ax.set_xlabel("Predicted Label");

Figure C.3(B) demonstrates that all points in the normalized confusion matrix
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with a true label of 0 are assigned to predicted label 1, and similarly for the other
rows.

Homogeneity of the confusion matrix and the adjusted rand
index (ARI)
To assess the homogeneity of a predicted clustering relative to true labels, we
use the Rand Index (RI). The RI examines all pairs of data points, considering
whether their true labels and predicted labels are the same or different. We define
two concepts:

1 Success: Two points with the same true labels have the same predicted la-
bels, or two points with different true labels have different predicted labels.
This indicates homogeneous alignment of the points with respect to true and
predicted labels.

2 Failure: Two points with different true labels have the same predicted labels, or
two points with the same true labels have different predicted labels. This indi-
cates heterogeneous alignment of the points with respect to true and predicted
labels.

The Rand Index is computed as the ratio of successes to total comparisons:

RI =
Successes

Successes + Failures

The RI ranges from 0 to 1, with higher values indicating greater homogeneity
between true and predicted labels.

However, the RI has a limitation when evaluating clustering with dispropor-
tionate true labels. Consider a dataset with 10 points, where 9 belong to class
1 and 1 belongs to class 2. If we blindly guess all points as class 1, we achieve
an RI of 0.8 (72 successes out of 90 comparisons), which appears high despite
learning nothing about the data structure.

Consider an extreme example with 10 points, where 9 belong to class 1 and 1
belongs to class 2. If we blindly guess all points as class 1, how does this affect
the Rand Index (RI)?

We compare each of the 10 points with the other 9, resulting in 90 total
comparisons. Let’s analyze these comparisons:

1 When the first point is in class 1 (9 out of 10 cases):
• Of the 9 remaining points, 8 will have the same true and predicted labels

as the first point.
• This yields 9 ∗ 8 = 72 successful comparisons.

2 When the first point is from class 2 (1 out of 10 cases):
• All comparisons fail, as the other points have the same predicted label but

different true labels.
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Thus, the RI is 72/90 = 0.8, a seemingly high value closer to the maximum of
1 than the minimum of 0.

To address this weakness in RI when dealing with unevenly distributed true
labels, we use the Adjusted Rand Index (ARI) [1]. The ARI accounts for these
imbalances in class distribution. We can easily compute the ARI using sklearn:

from sklearn.metrics import adjusted_rand_score

ari_kmeans = adjusted_rand_score(z, labels_kmeans)

print("ARI(predicted communities, true communities) = {}".format(ari_kmeans))

C.1.2.1 The Silhouette score and unsupervised clustering quality
The Silhouette score [2] provides a statistic for comparing clusterings with dif-
ferent numbers of clusters. At its core, the Silhouette score measures how similar
nodes in the same cluster are to nodes in other clusters. For a given number
of clusters, spatially distinct groupings (neither too many clusters for a single
group of points, nor too few clusters for multiple distinct groups) tend to yield
higher Silhouette scores. This statistic is particularly useful because it can be
applied to any unsupervised learning technique without restrictive assumptions.
In contrast, other popular techniques like the Bayesian Information Criterion
(BIC) require specific assumptions about the underlying data being clustered.

To compute the Silhouette score, we require several components:

1 Data points xi for i from 1 to n, representing the estimated latent positions
of the network nodes.

2 Predicted community labels zi, assigning each node to one of K possible clus-
ters.

3 The set Ck, containing the indices of nodes assigned to cluster k. For example,
in a 10-node network with two clusters where the first five nodes belong to
cluster 1 and the last five to cluster 2, C1 = 1, 2, 3, 4, 5 and C2 = 6, 7, 8, 9, 10.

4 The quantity nk, representing the total number of nodes in community k.

We then calculate:

1 The dissimilarity of a node i from other nodes in its community:

ai =
1

nk − 1

∑
j∈Ck,i6=j

‖~xi − ~xj‖

Here, |~xi − ~xj | is the Euclidean distance between vectors ~xi and ~xj . We
compute distances over all nodes in community k except node i, then average
by dividing by nk − 1.
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2 The dissimilarity of a node i from nodes in a different community:

bil =
1

nl

∑
j∈Cl

‖~xi − ~xj‖

For a node i in community k, we calculate its average distance from all
nodes in some other community l.

3 The most similar alternative community for node i:

di = min
l is a community

bil

This represents the community with the smallest dissimilarity from node i,
i.e., the best alternative cluster assignment for i.

The Silhouette Score of node i in community k is then defined as:

si =

{
di−ai

max(ai,di)
nk > 1

0 nk = 1

A Silhouette value si near 1 indicates that node i is much more similar to
points in its own cluster than to those in the best alternative cluster. Conversely,
a value near -1 suggests that node i is more similar to points in a neighboring
cluster than to those in its assigned cluster.

The overall Silhouette score for K clusters is the average of the node-wise
silhouettes:

silhouette scoreK =
1

n

n∑
i=1

si

C.2 The Bayes plugin classifier

The Naive Bayes classifier [3] relies on class-conditional probabilities to deter-
mine which of Y possible classes a new sample belongs to, given features that are
zeros and ones. This section explains the intuition behind this classifier, assum-
ing a background in probability and statistics, particularly categorical random
variables, statistical independence, and Bayes’ theorem.

We begin by considering the probability of observing a particular sequence of
edges in the signal subnetwork of the mth network, given that the network is in
class y. Let us denote this probability as:

Pr

(
observing A(m) given we assume m is in class y

where the signal subnetwork is S

)
= Pr(A(m)|ym = y;S)
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Assuming independence of edges in the network, as in an independent-edge
random network, we can express this probability as:

Pr(A(m)|ym = y;S) =
∏
i,j

Pr(a
(m)
ij |ym = y;S)

Under the Signal Subnetwork model introduced in Section 4.10, eachA(m)|ym =

y ∼ IERn
(
P (y)

)
independently, and each a(m)

ij |ym = y follows a Bernoulli dis-
tribution with probability p(y)ij . Thus, we can express the probability as:

Pr(A(m)|ym = y;S) =
∏
i,j

(
p
(y)
ij

)a(m)
ij
(

1− p(y)ij
)1−a(m)

ij

(C.1)

We now apply Bayes’ Theorem to compute the joint probability of observing
both A(m) and ym having the value y. This joint distribution can be expressed
as:

Pr

(
observing A(m) and m is in class y
where the signal subnetwork is S

)
= Pr(A(m), ym = y;S)

This expression represents the probability that the random network A(m) takes
the value A(m) and the random class ym has the value y simultaneously. Using
Bayes’ Theorem [4], we can write:

Pr(A(m)|ym = y;S) =
Pr(A(m),ym = y;S)

Pr(ym = y)

Rearranging yields:

Pr(A(m),ym = y;S) = Pr(A(m)|ym = y;S)Pr(ym = y)

Substituting the result from Equation (C.1):

Pr(A(m),ym = y;S) = Pr(ym = y)
∏
i,j

(
p
(y)
ij

)a(m)
ij
(

1− p(y)ij
)1−a(m)

ij

Recall that in the signal subnetwork model, πy represents the probability of
our Y -sided die landing on class y, which is equivalent to the probability that
the random class ym takes the value y. Thus, Pr(ym = y) = πy, and we can
express the joint probability as:

Pr(A(m),ym = y;S) = πy
∏
i,j

(
p
(y)
ij

)a(m)
ij
(

1− p(y)ij
)1−a(m)

ij

(C.2)
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The quantity we aim to calculate for our classifier is the posterior probability:

Pr

(
m is in class y given we observe A(m)

where the signal subnetwork is S

)
= Pr(ym = y|A(m);S)

This expression represents the probability that a given sample m is in class y,
given that we observe the network A(m) with signal subnetwork S.

Applying Bayes’ Theorem once more, we can rewrite this expression as:

Pr(ym = y|A(m);S) =
Pr(A(m),ym = y;S)

Pr(A(m);S)

Using the expression from Equation (C.2):

Pr(ym = y|A(m);S) =
πy
∏
i,j

(
p
(y)
ij

)a(m)
ij
(

1− p(y)ij
)1−a(m)

ij

Pr(A(m);S)

This posterior probability is particularly useful for network classification. When
we encounter a new network and wish to assign it to a class, we aim to select
the most probable class given the observed network. Thus, for a new network,
we estimate its class as the one that maximizes this posterior probability:

ŷm = argmaxy∈{1,...,Y }Pr(ym = y|A(m);S)

= argmaxy∈{1,...,Y }
πy
∏
i,j

(
p
(y)
ij

)a(m)
ij
(

1− p(y)ij
)1−a(m)

ij

Pr(A(m);S)

Observe that if (i, j) 6∈ S, then p
(y)
ij = p

(y′)
ij for all possible classes y and y′.

These terms in our product are irrelevant when finding the optimal ŷm, as they
remain constant regardless of the class. Moreover, Pr(A(m);S) is not a function
of the class and can be ignored (as it is a constant rescaling for every class).
Thus, we simplify our expression to:

ŷm = argmaxy∈{1,...,Y }πy
∏

(i,j)∈S

(
p
(y)
ij

)a(m)
ij
(

1− p(y)ij
)1−a(m)

ij

(C.3)

This equation computes the probability that the class is y for all possible
values of y (from 1 to Y ), given the observed network. We then select the most
plausible value as our prediction ŷm, ignoring components that do not depend on
the class (edges not in the signal subnetwork and the unconditional probability
Pr(A(m);S)).

As S, ~π, and the probability matrices P (1), ..., P (Y ) are unknown, we employ a
"plugin" classifier. We estimate the signal subnetwork S using methods outlined
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in Section 8.3 or Section 8.2 to produce Ŝ. We then use the observed class vector
~y to estimate ~π:

π̂y =
My

M

where M is the total number of networks, and My is the number of networks
where ym = y. We estimate the probability entries as:

p̂
(y)
ij =

{
1
My

∑
m:ym=y a

(m)
ij , (i, j) ∈ Ŝ

1
M

∑
m a

(m)
ij , (i, j) 6∈ Ŝ

For each edge (i, j) in the estimated signal subnetwork Ŝ, we compute the
fraction of existing edges across all networks where ym = y. Finally, we estimate
the class for a new network A(m) by “plugging in” these values to the objective
function in Equation (C.3):

ŷm = argmaxy∈{1,...,Y }π̂y
∏

(i,j)∈Ŝ

(
p̂
(y)
ij

)a(m)
ij
(

1− p̂(y)ij
)1−a(m)

ij

This equation represents the Bayes plugin classification rule.
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ρ-correlated, 194

a posteriori stochastic block model, 471
a priori stochastic block model, 469
adjacency matrix, 49
Adjacency Spectral Embedding, 223
adjacency vector, 340
adjacent, 49
adopted padded graph matching, 394
aligned networks, 373
alternative hypothesis, 318
anomalous, 402
asymptotic consistency, 490
asymptotic notation, 304
attributes

edge attributes, 12, 179
multiple-network attributes, 12
network attributes, 12, 198
node attributes, 11, 179

Bayes accuracy, 414
Bernoulli model, 113
Bernoulli random variable, 113
Beta distribution, 357
bias of estimate, 92
bias-variance tradeoff, 92
bilateral homotopy, 180
binary, 198
binomial test, 366
block matrix, 129, 470
Bonferroni-Holm adjustment, 367
bootstrap, 353
breadth-first search, 443

categorical values, 129
center nodes, 448
Chebyshev’s inequality, 492
classes, 198
clinically useful molecule, 422
closed Euclidean unit ball, 477
cluster, 296, 298
community, 128
community assignment vector, 128, 469
community subnetworks, 133
connected network, 76
connectome, 16

conservative test, 359
contained model, 126
context nodes, 448
core-periphery block matrix, 155
correlation, 193
correspondence, 295, 373
covariate, 198
covariate-assisted spectral embedding, 275
cross validation, 410

data wrangling, 308
decimation, 105
degree distribution histogram, 82
degrees

average degree, 65
expected node degree, 162
in-degree, 59
node degree, 58, 68
out-degree, 59

density of a random network, 162
depth-first search, 443
deterministically identical, 320
diagonal augmentation, 91
dichotomous, 198
dimensions, 5
disassortative block matrix, 155
distribution on an inner product space, 462
distribution-free transforms, 104
duplicate value pitfall, 100

edge, 5
edge importance statistic, 407
edge importances, 406
edge truncation, 93
edge-weight distribution, 93
eigendecomposition, 223, 224
EigenSpoke, 313
embedding matrix, 432
embedding method, 218
embeddings, 212
epochs, 431
Erdös-Rényi block matrix, 152
estimand, 215, 487
estimate, 215, 486
estimate of the shared latent positions, 261
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estimator, 486
Euclidean distance, 235
Euclidean norm, 235, 476
expected degree matrix, 164

familywise error rate, 367
features, 219
fingerprints, 423
finite-space markov chain, 439
first-order random walk, 439
Fisher’s exact test, 319
folds, 410
forward pass, 431
forwards model selection, 328

generalizing model, 127
generative model, 118
gradient descent, 382
graph matching problem, 338, 371
graph neural network, 428

heavy tailed distribution, 245
heterogeneous random networks, 187
homogeneity, 187
homogeneous, 187
homogeneous random networks, 187
homophilic block matrix, 152
hypotheses, 318
hypothesis test, 14

identically distributed, 483
independence testing problem, 359
independent-edge random networks, 466
inner-product distribution, 477
intersection of the unit ball and the

non-negative orthant, 476
isometry, 252

joint matrix, 256

kernel density estimate, 234
kidney-egg block matrix, 154

labels, 10
Laplacian spectral embedding, 243
latent dimensionality, 143, 190, 475
latent dimensions, 143
latent position matrix, 143
latent position of a node, 143, 475
latent position test, 355
latent positions of the population network

Laplacian, 242
latent variable, 472
least squares estimate, 345
least squares out-of-sample embedding, 344
left singular vectors, 228
likelihood function, 214, 484
likelihood ratio test, 330
localization of brain function, 370
longitudinal networks, 399

markov property, 439

match ratio, 385
matched networks, 373
matching, 348
matrix decomposition, 150
matrix factorization, 150
matrix properties

asymmetric, 87
binary, 54
dense, 308
diagonal, 68
hollow, 54, 463
indefinite, 91
indefiniteness, 151
orthogonal, 224, 249
positive semidefinite, 71, 91, 149
sparsity, 92, 308, 315
symmetric, 53, 463
unweighted, 54, 463

maximum likelihood estimation, 214, 483
mean-squared error, 345
model parsimony, 326
model selection, 325
modularity

modular, 133
off-diagonal subnetworks, 133
on-diagonal subnetworks, 133

multiple comparisons adjustments, 367
multiple comparisons problem, 367, 402
multivariate normal distribution, 359

naive padded graph matching, 392
neighborhood, 443
nested hypothesis, 327
network density, 63
network machine learning, 8
network properties

dense, 100
loopless, 54
network topology, 49, 272, 422
self-loop, 54
simple network, 57, 468

network sparsity, 305, 307, 315
node, 5
node properties

adjacent nodes, 57
incident, 57
neighbors, 57

node pruning, 79
nominal relationship, 129
non-negative orthant , 476
null hypothesis, 318

observations, 114
offset, 433
omnibus embedding, 265
omnibus matrix, 265, 266
one-hot encoded community assignment

matrix, 137
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one-hot encoding, 135
optimizer, 431
ordinal relationship, 103, 129
orthogonal Procrustes problem, 352
orthogonal transformation, 249
out-of-sample embedding, 340
outcomes, 113
overfitting, 92

p-value, 319
padded graph matching, 390
pairs plot, 233
parameter, 113, 462
parametric, 354
parametric bootstrap, 354
parametric null replicates, 354
pass-to-ranks, 103
paths

connected nodes, 60
distance, 61
path, 60
path length, 60
shortest path length, 61

permutation matrix, 376
planted partition block matrix, 153
population network Laplacian, 164
prediction, 431
probability equivalence classes, 465
probability matrix, 116, 466

quantile, 95

random network, 110
random node degree, 162
realizations, 113, 114
regularization, 79
relaxation, 468
right singular vectors, 228
right-skewed distribution, 106, 245

sample, 18, 114
sampling distribution, 353, 487
score matrices, 191, 261
scree plot, 281
second-order biased random walks, 441

bias factors, 444
biased transition factors, 445
in-out parameter, 442
return parameter, 442
transition probabilities, 445

seed nodes, 334, 386
semi-supervised learning, 11
sequence, 304
sequence of random networks, 304
set cardinality, 464
shared latent position matrix, 190
shared latent positions, 261
signal, 200
signal disparity, 200

signal edges, 405
signal nodes, 415
signal subnetwork (SSN) model, 200
signature, 479
singular value decomposition, 227, 228
singular values, 228
sliding window, 448
softmax activation function, 451
sparsification, 92
spectral embedding, 72
square-root matrix, 147
statistic, 353
statistical dependence, 114
statistical independence, 114, 218, 466
statistical inference, 318
statistical learning, 16
statistical model, 117
stochastic, 126
stochastically equivalent, 126
subnetworks

coherent signal subnetwork, 416
connected component, 76
incoherent signal subnetwork, 408
induced subnetwork, 74
largest connected component, 76
lowest density subnetwork, 394
signal subnetwork, 200, 201, 405
strongly connected subnetwork, 77
subnetwork, 74
weakly connected subnetwork, 78

sufficiently sparse, 308

tabular format, 4, 218
test statistic, 318
testing folds, 410
thresholding, 95
training folds, 410
transition probability, 439
transition probability matrix, 440
triplets

closed triplet, 65
open triplet, 65
triplet, 65

two-sample test, 317
types of learning systems

attributed network learning system, 11
model-based learning system, 14
multiple network learning system, 10
non model-based learning system, 15
non-attributed learning system, 10
representation learning, 218
single network learning system, 9
supervised learning, 11
unsupervised learning, 10

types of nodes
core nodes, 155, 245
isolated nodes, 81
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outlier nodes, 81
pendant nodes, 81
peripheral nodes, 155, 245
pizza hut nodes, 83

ultrasparse networks, 308
unbiased estimator, 487
uncorrelated, 196
underly ambitious pitfall, 100
univeral approximator, 428
unscaled spectral embedding, 260
upper triangle of a matrix, 88

variance of estimate, 92

zero augmentation, 107


